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Abstract. Adaptive wireless networks can morph their topology and
support information gathering and delivery activities to follow high-level
goals that capture user interests. Using a case study of an adaptive net-
work consisting of smart phones, robots, and UAVs, this paper extends
a declarative approach to networked cyber-physical systems to incor-
porate quantitative aspects. This is done by distinguishing two levels
of control. The temporal evolution of the macroscopic system state is
controlled using a logical framework developed in earlier work while the
microscopic state is controlled by an optimization algorithm or heuristic.
This two-level declarative approach is built on top of a partially-ordered
knowledge sharing model for loosely coupled distributed computing and
is an example of a so-called fractionated system that can operate with
any number of wireless nodes and quickly adapt to changes. Feasibility of
the approach is demonstrated simulation and in a hybrid cyber-physical
testbed consisting of robots, quadcopters, and Android devices.

Keywords: Cyber-physical systems · Distributed systems · Declarative
control · Adaptive networks · MANETs · Swarms · Robots · UAVs

1 Introduction

Adaptive wireless networks are designed to morph in response to changing require-
ments and conditions. Such networks are becoming increasingly feasible with
the emerging convergence of technologies in mobile networking, personal digital
assistants (PDAs), smart phones, robotics, smart antennas, and sensors.

At the highest level of abstraction, an adaptive wireless network takes into
account the user’s information needs, adapts while sensing the environment, and
tries to find a solution that best satisfies the user’s requirements under the given
constraints. Adaptive wireless networks are a special case of networked cyber-
physical systems (NCPS). Robots are wireless nodes equipped with sensors and
actuators that allow them to autonomously change location. PDAs carried by
humans serve as user interfaces to the adaptive network. Different from tradi-
tional mobile ad hoc networks (MANETs), adaptive wireless networks are closer
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to content-based networks and solve a more general resource planning and opti-
mization problem by utilizing the computational resources and sensor/actuator
capabilities of each node, e.g., the capability to move, turn, take a picture, or
sense a sound.

This paper generalizes a declarative approach to distributed control of NCPS
[18] that distinguishes two levels of control: (1) distributed logic based on user-
injected goals controls the system’s evolving macroscopic state (e.g., the location
of a swarm of UAVs or robots) and (2) an optimization algorithm drives the
system’s microscopic system (e.g., the formation of the swarm) in a direction
that satisfies the specification of the macro-state that, in the most abstract
approach, can be declaratively expressed as an objective function.

This paper focuses on a subclass of NCPS with distributed control called
heterogeneous fractionated systems. Apart from their decentralized nature, they
are characterized by the involvement of different types of nodes (PDAs, robots,
and UAVs) that, if the same type, are interchangeable for the purposes of this
application. One key implication of this model is the independence of the control
algorithm from the number of nodes of each type available. Futhermore, both
temporary or permanent failure/disconnections or rescaling of the system to
adjust its resources can change the number of nodes at runtime. Reference [29]
describes additional motivations for the fractionated approach to NCPS.

The unpredictability of the environment that immediately yields the tradi-
tional impossibility results for asynchronous systems dictates the use of a suf-
ficiently weak, and hence (wirelessly) implementable, model for loosely-coupled
distributed computing. This paper considers fractionated systems as a special
case of the partially ordered knowledge sharing (POKS) model [17] which does
not rely on any form of atomic transactions and only provides eventual con-
sistency. In this declarative setting, knowledge refers to all information shared
between the nodes, specifically observations (facts) and control actions (goals),
as explained in [18] in more detail.

The primary contribution of this paper is the integration of qualitative and
quantitative aspects in a unified declarative approach that widens the applica-
bility of the distributed logical framework for NCPS [18]. A second contribution
is the extension of the cyber-application software framework to support a hybrid
testbed and new set of applications based on this generalized approach.

1.1 Motivating Scenario: Self-organizing Cyber-Physical Ensembles

An example of cyber-physical ensembles is a swarm of programmable ground
robots and UAVs that perform a distributed surveillance mission — e.g., to
achieve situation awareness during an emergency — by moving or flying to a
suspicious location, collecting information, and returning to a base location in
a formation that creates an effective sensing grid. This application also involves
human-carried computing/communication devices such as smart phones that
collect/report sensor data and inject users’ interests into the system. Heteroge-
neous nodes have different capabilities: UAVs can fly and generate an encoded
video stream with their front- and bottom-facing cameras. Additional computing
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Fig. 1. A user’s interest is injected into the network at a location L0 around which
the robots/UAVs are initially clustered randomly. A noise, recorded at a location L1,
triggers the distributed mission.

resources also enable UAVs to extract a snapshot from the encoded video and
decode it into JPEG format. Robots can only move on the ground and decode
the encoded snapshots from UAVs. The network is adaptive in the sense that it
morphs in response to the users’ needs.

Figure 1 exemplifies the scenario in which a hybrid swarm moves/flies to a
location to investigate a noise reported by an Android phone. The swarm takes
a snapshot of the area and returns to the base location. In this scenario, pertur-
bations from the environment (e.g., wind), delayed/incomplete knowledge due
to network disruption, and resource contention cause uncertainty. Real-world
actions must compensate for temporary network disconnections or failures. These
actions can only indirectly control parameters, such as a robot’s position, that
can be observed by sensors (e.g., GPS). Therefore, a swarm should dynamically
configure itself, optimize its resources, and provide robust information dissemina-
tion services that adapt to the users’ interest in a specific topic. This interest can
induce cyber-physical control (e.g., robot positioning, UAV trajectory/formation
modifications) and trigger additional sensing (e.g., snapshot of an area).

Goals (e.g., interests and controls) and facts (e.g., sensor readings and compu-
tational results) can arrive from the users and the environment at any time, and
are opportunistically shared whenever connectivity exists. Programmable robots
and UAVs compute their local solution based on local knowledge and exchange
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up-to-date information about the progress of their solution. These abilities enable
a distributed and cooperative execution approach without the need for global
coordination. In a sample mission, the snapshot extracted from the encoded
video stream (abstraction) may be directly sent to other nodes if the network
supports it. If not, the decoded stream (computation) is sent to other nodes
in the form of knowledge (communication). Each node can potentially engage
in many abstractions, computations, and communications, which are classes of
operations regarded as three dimensions of a distributed computing cube.

The completion of a distributed proof accomplishes the mission. The solution
assigns an approximate target region as a subgoal to a swarm’s (macro-scale
controls). The swarm moves or flies to locally realize the subgoal (micro-scale
controls). The distributed reasoning continues to continuously recompute the
local solutions and adjust macro-scale controls accordingly. To satisfy the subgoal
of micro-scale controls, quantitative techniques such as virtual potential fields
or artificial physics (Sect. 3) compute the movements of individual UAV/robots.

1.2 Towards Declarative Networked Cyber-Physical Systems

NCPS typically involves a large number of loosely-coupled components that must
operate in challenging environments subject to few constraints. Traditional algo-
rithms with problem-specific hardwired execution plans often poorly cover the
state space’s vast range of possible operating conditions. Declarative approaches
rely on executable logical specifications operating on a higher level of abstrac-
tion to more directly define the behavior, thereby avoiding micro-management
or over-specification of system behavior. Hence, these approaches potentially
make the system more adaptive and resilient to changes of many kinds, such as
failures, resource constraints, or changes in the number of nodes or the goals.

A partially ordered knowledge sharing (POKS) model based on opportunistic
information exchange avoids hard constraints on connectivity which is typically
wireless and unreliable. As in delay-/disruption-tolerant networks, a local cache
partly compensates for the unreliability at each node. For this paper’s model, the
cache is called a knowledge base (KB). Furthermore, the application-dependent
model uses a form of semantic networking to exploit the meaning of knowledge in
terms of two partial orders referred to as subsumption and replacement orderings
on knowledge units. The subsumption order k ≤ k′ expresses that k′ contains
at least as much information as k: k can be discarded in the presence of k′. The
replacement order k ≺ k′ expresses that k is superseded by new information k′,
and the obsolete k is discarded. In this paper, the former order is used to concisely
represent the logical structure (implication) of the current state, while the latter
represents the passage of time without introducing logical inconsistencies.

The POKS model naturally expresses in-network computations by generating
new knowledge as a function of knowledge received. A typical use of the replace-
ment ordering defines it based on the creation time of the knowledge units, so
that in-network transformations and computation can be applied to (unreliable)
streams of knowledge, e.g., those generated by sensors.
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In declarative networks it is useful to distinguish three classes of operations
that can be performed at each node: abstractions, computations, and communi-
cations. Since the location at which the operations take place does not matter for
the user who simply specifies the information needed in a declarative style, the
system has the flexibility to map these operations to different nodes depending
on resource availability and connectivity. Adaptive networks can, in addition,
morph in response to the user’s interest which is represented as a goal.

This paper entertains two approaches to representing and handling goals.
Logic may qualitatively represent a goal that is satisfied through a deductive
process. The logical framework for NCPS in [18] adopts this approach. It is
based on a distributed proof-system defined on top of the POKS model that
supports both forward and backward chaining in Horn clause theories. In this
framework both facts and goals are uniformly represented as knowledge with
suitable orderings and are directly used as an interface to cyber-physical devices
(sensors and actuators, respectively).

Alternatively, an objective function may qualitatively represent a goal and
measure its degree of satisfaction. This approach, which refers to the objective
function as a virtual potential, is well known in the multi-agent system com-
munity. Related approaches such as artificial physics have been studied as well.
Given an objective function, distributed optimization algorithm incrementally
improve the satisfaction of the goal. As exemplified in [16], use of the POKS
model supports a natural representation of distributed optimization algorithms
using a subsumption ordering on the domain of the objective function that cap-
tures the degree of satisfaction.

2 Background — Cyber-Framework and Distributed
Logic

To implement a distributed computing model based on POKS, the cyber-
framework [17] provides a form of semantic networking with caching in a locally
event-driven paradigm. The cyber-framework provides communication primi-
tives that can shield applications from the complexities of dealing with dynamic
topologies, delays/disruptions, and failures of all kinds. The cyber-framework
also supports implementations with simulated and real environments including
the network (e.g., wireless/wired) and cyber-physical devices (e.g., sensors, actu-
ators). The knowledge dissemination component implements specific strategies
(e.g., deterministic/probabilistic, unicast/broadcast) to propagate knowledge on
top of the underlying network layer. The knowledge dissemination protocols
make essential use of the POKS by replacing, and hence discarding, a unit of
knowledge whenever a higher-ordered unit is received. Note that the kind of
knowledge and its frequency of dissemination depends on the specific cyber-
application and its objectives as reported in [7].

In the cyber-framework, knowledge is stored redundantly in local KBs that
provide the cyber-applications with the abstraction of a distributed network
cache. Each cyber-application runs on a cyber-node that is the smallest managed
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computational resource. Cyber-nodes can have attached cyber-physical devices
(e.g., camera or motors) that observe or control the environment. Cyber-nodes
form a hierarchy within a cyber-engine and a cyber-host that correspond to a
specific process and a machine on which cyber-applications are running, respec-
tively. By using the cyber-API, the interface provided by the cyber-framework,
users can program set-up code that instantiates, composes, and configures cyber-
node/engine/host and applications. A cyber-node provides services for posting
events (local to the cyber-node) and knowledge (globally shared via dissemi-
nation) through the cyber-API — postEvent and postKnowledge, respectively.
The API requires applications that define the local initialization and handling
functions — handleEvent and handleKnowledge.

While the implementation of the cyber-framework provides an operational
model for CPS, the declarative view of CPS enables users to describe the mis-
sion as a logical theory (e.g., Fig. 2). Distributed reasoning with asynchronous
control has been implemented [18] on the cyber-framework with its underlying
POKS model. Goals and facts are represented as knowledge that can be shared
via POKS. At the level of an individual cyber-physical component, the logic
provides a declarative interface for goal-oriented control and feedback through
observations that are represented as logical facts. Inference and computation
allow facts and goals to interact and form new facts or goals. The opportunity
to exchange knowledge with other nodes should lead to cooperation, and the
absence of such opportunities should lead to more autonomous behavior.

In this implementation of the logical framework in [18], each node is equipped
with a knowledge manager (i.e., an implementation of the POKS model), a rea-
soner for declarative control, and attached devices. These devices may be consid-
ered sub-nodes that exhibit a declarative knowledge-based interface. New goals
and facts can arrive at any time and be interleaved with the local inference
processes. Two kinds of goals and facts exist: the cyber-goals/cyber-facts and
goals/facts are the interface with the environment and the basis of inference,
respectively. For example, the UAV generates both a cyber-fact of its current
location that satisfies a corresponding cyber-goal and a fact/subgoal from for-
ward or backward chaining. The demo scenario (Sect. 1.1) and its implementa-
tion (Sect. 4) experimented with a swarm of one to seven robots/UAVs in total
and used two Android nodes. These nodes have fixed locations and serve as user
access points to the cyber-physical system.

3 Integrating Logic with Quantitative Algorithms

Scalable control of NCPS with resource optimization requires highly decentral-
ized and compositional approaches. Hence, this paper studies a new form of
adaptive declarative networking for cyber-physical ensembles by integrating log-
ical inference with quantitative algorithms. In a nutshell, declarative (i.e., logi-
cal) specifications serve as executable descriptions that guide the ensemble at the
macro-scale, while evolving virtual potentials continuously perform micro-scale
controls. Given a macroscopic goal that may have been obtained after decom-
position of higher-level mission objectives, satisfaction of this subgoal requires
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Forward Clauses:
F1 : Noise(T, A) ⇒ Trigger(T, A).
F2 : Motion(T, A) ⇒ Trigger(T, A).

Backward Clauses:
B1 : Interest(TI , I, E) ⇐ Result(TI , TT , 0, I), Deliver(TI , TT , 1, I, E).

B2 : Deliver(TI , TT , ND, I, E) ⇐ Delivered(TI , TT , ND, I, E).
B3 : Deliver(TI , TT , ND, I, E) ⇐ Position(TP , E, A), Position(TP , E , A ), E = E,

MoveTo(TI , TT , ND, 0, ∞, E , A), Deliver(TI , TT , ND, I, E).

B4 : Result(TI , TT , ND, I ) ⇐ EncodedImage(TI , TT , ND, I), I = Decode(I).

B5 : EncodedImage(TI , TT , ND, I) ⇐ Trigger(TT , A), TI ≤ TT ,
MoveTo(TI , TT , ND, 0, TT + Δtsd, E, A), TakeSnapshot(TI , TT , ND, TT + Δtsd, A, I).

B6 : TakeSnapshot(TI , TT , ND, D, A, I) ⇐ Snapshot(TI , TT , ND, TS , A, I), TT ≤ TS , TS ≤ D.

B7 : MoveTo(TI , TT , ND, D, E, A) ⇐ Position(TP , E, A), TP ≤ D.
B8 : MoveTo(TI , TT , ND, D, E, A) ⇐ Move(TI , TT , ND, D, E, A).

Replacement Ordering: (f denotes a fact, g, a goal and x denotes either)

O1 : f : Position(tP , e, . . .) ≺ f : Position(tP , e, . . .) if tP < tP .
O2 : x : X(tI , . . .) ≺ g : Interest(tI , . . .) if tI < tI .
O3 : x : X(tI , tT , nD, . . .) ≺ f : Result(tI , tT , nD, . . .) if x : X = f : Result.
O4 : x : X(tI , tD, nD, . . .) ≺ f : Deliver(tI , tD, nD, . . .) if x : X = f : Deliver.

Variables: T : time, D: snapshot deadline, A: area, E: ensemble, I: information, N : identifier
Constants: Δtsd: relative snapshot deadline (max. delay from trigger event)

Fig. 2. Logical theory of the motivating scenario in Sect. 1.1 — The trigger condition
is specified as forward clause F1. Backward clauses are evaluated only when a user or
the reasoner injects a goal (or a new subgoal) that unifies with the conclusion of the
clause. Orderings are specified to replace inferior facts/goals.

control of the micro-states of individual elements in the ensemble. In Fig. 2, for-
ward and backward rules direct ensembles to accomplish a particular mission.
Distributed algorithms optimize the formation objectives of these ensembles by
moving or flying the UAVs/robots as a swarm to a specific location and gen-
erating appropriate facts (e.g.,Position) to satisfy corresponding subgoals (e.g.,
MoveTo).

This paper describes a compositional declarative approach that expresses user
objectives in a distributive logic and further decomposes them during transla-
tion into real-world actions or quantitative algorithms. Atomic goals are either
built-in predicates/functions of the logic or actions directly realized by cyber-
physical devices. Non-atomic logical goals for which a corresponding algorithm
exists trigger the execution of that algorithm. If no such algorithm exists, the
system attempts a distributed proof to simplify and solve the goal as far as
possible, potentially injecting new subgoals during the proof’s inference. Since
each ensemble element may have different capabilities and a limited local view,
the continuous evaluation of solutions with respect to the partial order pre-
servers scalability in the context of loosely coupled systems. For example, facts
are disseminated in the network to compensate for heterogeneity in the node
capabilities and other limitations such as resource and sensor failures.

In Fig. 2, a user injects an Interest goal into the system. By processing con-
ditions from left to right, the reasoner attempts to solve a Result goal. It fails at
first because a corresponding Result fact representing a solution does not exist
yet. The local reasoner feeds the new Result subgoal into the local KB. Some
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goals cannot be solved by means of the logical specification, but the local cyber-
physical devices may handle the goal through real-world action: for example,
by taking an image and adding it to the local KB. The MoveTo subgoal will
generate a new Position fact when it is realized. The clause B8 is of particular
interest, since it initiates a change in the position of a swarm. In this unified
approach, quantitative algorithms, e.g. potential-based optimization, realize the
cyber-goal Move. As a result, a new Position cyber-fact will be generated if a
swarm manages to move to the desired location within time constraints. Note
that a goal can be matched with a fact anywhere in the network. The fully dis-
tributed reasoning process allows Decode to be solved at all ensemble elements,
while TakeSnapshot can be only satisfied by ensemble elements with camera
devices (UAVs in this scenario).

This work leverages the concept of a virtual potential [15] for micro-scale
control of ensembles. Each ensemble element is driven by the desire to minimize
its perception of, and hence its own contribution to, the virtual potential. In
this scenario, the potential is designed to guide ensemble elements into position
at a desired pair-wise distance in the formation. The potential also directs the
elements to adapt when a new target location is selected as a macro-scale goal.
The potential function declaratively captures the quality of a given swarm con-
figuration as a weighted sum, p = wfpf + wlpl, where pf and pl are potentials
corresponding to formation and desired location, respectively. As an example,
the formation potential pf should be minimized when a swarm creates a hexag-
onal lattice through the use of one of several possible distributed sensing grids
as discussed in [28].

There are two ways to implement the potential-based approach. The most
general approach, so far explored only in simulation, allows the user to specify a
virtual potential function which is then solved by a generic distributed optimiza-
tion algorithm. The alternative approach used in the experiments described here
is based on the specification of the virtual potential indirectly through a force
field, which is also known as artificial physics [28]. There are two kinds of forces,
namely formation forces and goal forces, that define pf and pl in the above equa-
tion, respectively. Formation forces can be repulsive or attractive. Each ensemble
element repels others closer than a desired distance R while attracting those fur-
ther than R. Force balance must be maintained against pf to map the goal force
into pl and keep the formation during movement to target location. Enforce-
ment of an upper bound on the goal force (as explained in [28]) and tuning of
the weights of composing potential achieves this balance.

4 Real World Deployment on Cyber-Physical Ensembles

The underlying cyber-framework was extended to support various abstractions
and APIs for programming a heterogeneous testbed based on the Parrot AR.Drone
2.0 [22], iRobot Create [3] platforms, and various Android devices.

Heterogeneous Testbed: The AR.Drones and Creates were equipped with
additional computing resources (Gumstix modules [12]) and sensors (GPS and
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Fig. 3. AR.Drones and Create robots were equipped with Gumstix Overo Fire [9] via
a Pinto-TH [10] (AR.Drone) or TurtleCore [11] (Create) expansion board. Overo Fire
is augmented with a GPS unit [20] via serial port and a digital compass [13] via I2C.
In between the sensors and the expansion board sit a pair of logic level converters [27].

digital compass) shown in Fig. 3 to increase their autonomy and improve capa-
bilities such as localization in physical space. The Gumstix computer is also
equipped with a WiFi antenna which provides communication via a peer-to-peer
ad-hoc network. The testbed uses the Google Nexus S running CyanogenMod 7.2
with built-in digital compass, GPS, and camera as a standard Android device.
As for the software side, the AR.Drones (firmware ver. 2.3.3) are controlled via
WiFi, using a modified version of JavaDrone (ver. 1.3) [14] for sending com-
mands and interpreting information from the drone’s onboard sensors and video
cameras. JavaDrone was modified to support video reception from the AR.Drone
2.0 by extracting video frames from the stream and passing them directly to the
framework rather than attempting to decode them. This encoded frame data can
be decoded later when it is deemed necessary, possibly on another device with
more available computing resources. The Creates are controlled via a direct serial
port connection from the Gumstix using the cyber-API which supports sending
movement and audio commands.

Cyber-Framework Extension: Because it is written in Java, the cyber-
framework runs directly on the ARM-based Gumstix module without modifi-
cation. A variety of abstractions were implemented over the available devices to
make writing applications easier and more consistent. To allow testing of the
same code with both real and simulated scenarios, the cyber-framework sup-
ports two different device implementations for each device that share a common
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Fig. 4. Class/Execution hierarchy enables the execution of same application code with-
out modification. The Executor cyber-application controls a device via a sequence of
ControlPrograms such as MoveToProgram.

interface as seen in Fig. 4. Each device is assigned a behavior which can be real
(controlling a real device in the physical world) or simulated (controlling a simu-
lated device in a virtual world). Applications can be run entirely on a simulated
platform such as Stage [8] or Mason [4] without any code modification.

As a further abstraction over hardware devices, virtual Camera and Posi-
tion devices that can be used independently of the underlying hardware (e.g.,
regardless of whether the hardware in use is a drone, robot, or phone) were
implemented. The Camera device supports a single command that takes a snap-
shot of a given area. The Position device reports its location, and supports a
variety of movement methods (e.g., waypoint-based or velocity-based).

For lower level programming of drone/robot actions, a ControlProgram inter-
face allows users to write programs that will run periodically to send new
commands to devices based on their current situation. These programs, which
provide notification to their caller via events on completion, can be asynchro-
nously launched and terminated at will. An example of such a program is
the MoveToProgram which implements waypoint-based movement. The Posi-
tion device uses MoveToProgram to implement the physical movement. Move-
ToProgram runs with device-specific frequency and at each invocation checks
the current position of the device. It then issues direct movement commands
to move closer to the desired destination. If the destination has been reached,
MoveToProgram terminates.

Mission Deployment: To demonstrate the autonomous outdoor mission
described in Sect. 1.1 and further elaborated in Fig. 2, GPS was used for localiza-
tion without infrastructural support such as motion-tracking camera setups. To
compensate for errors in GPS readings and facilitate simpler position and trajec-
tory calculations, the testbed used differential GPS (10 Hz) [1] and a Cartesian
ENU (East-North-Up) coordinate system [2]. For the AR.Drone, which lacks
the capability to reliably stop at a fixed position and wait for its GPS readings
to stabilize, a trajectory prediction filter was implemented to sit between the
GPS sensor and the Drone API. This filter uses a least squares regression to fit
movement to a polynomial curve to predict future positions.
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(a) Mason Simulation (b) Mission Log

(c) Final Deployment

Fig. 5. Mission is tested on simulation and further fine-tuned towards real deployment.
In the mission log, the robot is represented by a pointed black dot. The blue path
represents the trajectory so far. The green arrow is a force acting on the robot. The
bullseye is the swarm’s goal, and grey dots represent the robot’s belief about the
positions of other robots.

Figure 5 shows the progress towards real world deployment. A swarm mis-
sion can be run entirely on a simulated platform to evaluate the algorithm’s
correctness and performance. In Fig. 5(a), a swarm of seven mobile nodes forms
a hexagonal lattice maintained by artificial forces. The formation force dictates
a 9 m distance between each pair of nodes, while the goal force attempts to push
the entire swarm towards a target location. In Fig. 5(b), the same code is then
deployed on a real device and the trajectory is recorded for further debugging
and fine-tuning since the simulation lacks fidelity to accurately model the physi-
cal environment (e.g., movement delay, wind). The demo mission is deployed on
two Android phones, three AD.Drones, and four Creates in a 70× 35-m parking
lot in Fig. 5(c). One Android phone generates a fact that represents an observa-
tion, e.g., a sensed noise, which triggers the distributed execution of a mission
with the user’s location as target area.

Once the swarm has reached at the target location, AR.Drones take encoded
video frames via their front-facing camera, and extract an encoded frame. Cre-
ates then decode the frame and transmit it back to the phones.
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5 Related Work

Declarative techniques are increasingly used in networking, in particular in data-
centric sensor networks and recently in information-centric approaches for wired
and wireless networks. NDlog [21], a variant of Datalog, refocuses the program-
ming tasks on high-level issues of networking by providing a declarative language
and dataflow framework that executes the compiled specifications. Declarative
querying of sensor networks [32] composes services on the fly and in a goal-
driven fashion using the concept of semantic streams. Meld [5] extends the ideas
from declarative sensor networks to modular robots, i.e., ensembles of robots,
by providing an abstract view of a system as a single asset. The flexibility and
efficiency of the declarative paradigm can be further improved by correlating the
logical and physical properties of the system and by integrating the logical and
quantitative approaches for programming NCPS.

References [6,30] studied decentralized control of robotic or aerial swarms
with a limited view of the system caused by intermittent connectivity and
resource constraint. In particular, Swarmorph [24] utilizes network morphing
to create a specific global structure of a heterogeneous swarm for collective
responses to different tasks as a single entity. Swarms of micro aerial vehi-
cles [19,23] have been studied as a newly emerging class of mobile sensor net-
works. However, in most cases the high-level goal is controlled by the base
station with high-quality vision-based localization. This control approach requires
infrastructure and makes the swarm less robust to failure/disconnections of spe-
cific elements, unlike the fully distributed and autonomous control of fractionated
systems proposed here.

Most applications of virtual potential fields have considered single agents
or localized unstructured ensembles. A notable exception is [26] which develops
a compositional approach that results in a single potential function that coor-
dinates a complex mission. A similar approach to aggregate motion control is
inspired by flock behavior based on a distributed behavioral model [25] in which
each simulated bird navigates according to its local perception of the dynamic
environment, the laws of simulated physics, and a set of programmed behaviors.
The computational field model [31] is based on concurrent objects in an open
distributed environment guided by a metric space defined by mass, distance,
gravitational force, repulsive force, and inertia of objects. Its communication
model is based on object migration, an atomic primitive that is too strong for
the kinds of environments targeted by this paper.

6 Conclusions and Future Directions

Generalizing earlier work, this paper investigates the use of virtual potential
functions to extend a logical framework that combines qualitative and quantita-
tive paradigms. After the general approach, which is based on a generic reasoning
and optimization framework, was studied in simulation, the distributed logical
framework was deployed for the first time on a newly developed hybrid NCPS
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testbed which consists of phones, robots, and drones. As a simplification, the
approach describe here used an artificial-physics-based algorithm to implement
the virtual potential instead of a generic distributed optimization algorithm. The
deployment of the latter is in progress and has already been tested in simulations.

Adaptive wireless networks that can physically morph in response to mis-
sion requirements are an ideal application for the declarative approach proposed
here because the distributed state space is too complex for traditional hard-
wired algorithmic solutions, especially in the absence of strong assumptions on
the environment. The case study in this paper illustrates the basic idea by com-
bining robots, drones, and phones, but there is potential for other applications
with newly emerging technologies such as pico-satellite constellations, networked
balloons, and networks of buoys. In addition to physical control over position
and orientation, there are other dimensions of control associated with wireless
technologies such as transmission power control and beam forming that could
be investigated in future work. A core challenge of all these distributed control
problems is that the coordination required to find acceptable solutions must rely
on the same network that is continuously morphed and potentially disrupted by
unforeseen events. Hence, a conceptual framework and tools to evaluate the sta-
bility and robustness of such fractionated systems constitute another important
and challenging direction for future work.
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