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Abstract. Sensor networks play crucial roles in the environmental monitoring.
So far, the large amount of resource consumption in traditional sensor networks
has been a huge challenge for environmental monitoring. Compressive sensing
(CS) provides us a method to significantly decrease the number of sensors
needed and Bayesian compressive sensing (BCS) makes it possible to deploy
sensors selectively rather than randomly. By deploying sensors to the most
informative places, we expect to reduce the reconstruction errors further com-
pared with random sensor deployment. In this paper we employ multiple sensor
deployment algorithms and BCS based signal recovery algorithm to build novel
environmental monitoring systems, in which the environmental signals can be
recovered accurately with undersampled measurements. Besides, we apply these
environmental monitoring models to ozone data experiments to evaluate them
and compare their performance. The results show a significant improvement in
the recovery accuracy from random sensor deployment to selective sensor
deployment. With 100 measurements for 16641 data points, the reconstruction
error of one of the sensor deployment approaches was 40 % less than that of
random sensor deployment, with 3.52 % and 6.08 % respectively.

Keywords: Environmental monitoring + Compressive sensing - Sensor
networks - Sparse Bayesian learning

1 Introduction

Since the ozone depletion in Antarctic was found in 1985, environmental issues have
been drawing global attentions. Environmental monitoring can be used to estimate the
future environmental impacts and evaluate the performance of strategies designed to
mitigate environmental damage.

As the main approaches to monitor environment signals, sensor networks play
important roles in signal sampling phases. However, the enormous cost for the sensors
has been hampering the development of environmental monitoring in many countries.
Even a single sensor station could be very expensive for some specific environmental
signals [7]. In such cases, compressive sensing, which allows sensing at rates much
smaller than the Nyquist-Shannon limit and reconstructing the signal without much loss
[1, 2, 15], can be applied to decrease the number of the sensors needed and recover the
monitored signal accurately.

Where to deploy the sensors and how to recover the environmental signals based on
the measurements are two fundamental but crucial tasks in environmental monitoring.
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In our previous work, we applied Bayesian compressive sensing (BCS) techniques to
environmental monitoring and built a novel environmental monitoring system
with random sensor deployments [3]. The reconstruction error was less than 5 % with
the number of used sensors no more than 1 % of all possible sensor places in the ozone
monitoring experiments presented in [3]. In this paper, we attempt to decrease
the reconstruction errors further by deploying sensors to the most informative places.
To be specific, we combine different sensor deployment algorithms with Bayesian
compressive sensing based signal recovery algorithm to build the environmental
monitoring systems and evaluate their performance by ozone monitoring experiments.

Both open-loop and closed-loop sensor deployment algorithms are involved in this
paper. Open-loop means that the deployment of the sensors and sampling phase are
separated, while closed-loop (adaptive) means that the sampling phase and the deploy-
ment of sensors are implemented simultaneously, i.e. the two processes are interrelated.
The experiment results show significant improvements in reconstruction accuracy using
adaptive BCS sensor deployment algorithms.

The remainder of the paper is organised as follows. In Sect. 2, we consider the
environmental monitoring problem as a linear regression problem and introduce the
Bayesian learning algorithm to solve it. This is also the algorithm to reconstruct
environmental signals based on sensor measurements. In Sect. 3, we introduce open-
loop sensor deployment algorithms with different criteria, such as entropy criterion and
mutual information criterion, and how they can be used in environmental monitoring.
An adaptive compressive sensing approach to deploy sensors is also presented in
Sect. 3. In Sect. 4, we evaluate how well these sensor deployment algorithms perform
with respect to their reconstruction errors in ozone monitoring experiments. Conclu-
sions and future work are presented in Sect. 5.

2 Bayesian Compressive Sensing Based Environmental
Monitoring

In this section we will briefly introduce the method to reconstruct environmental sig-
nals based on the sensor measurements. This signal recovery algorithm is also the one
used in the environmental monitoring system presented in [3].

We consider the monitoring of ozone as an example. Given all the ozone data in a
monitored region, these values can be aggregated into an n by 1 vector X,. X, repre-
sents the instant ozone distribution in this region. The goal in environmental moni-
toring is to recover X, with the measurements of a limited number of sensors. The
reconstruction of the signal X, can be summed up as solving a linear regression
problem as follow:

Ymxi = OXi + € = OnxnWnxi +€ (1)

where Y,,,x; is an m by 1 vector (m < n) stands for the sensor measurements, ® = JB
is the projection matrix, B is a fixed Basis matrix, & is the sampling matrix, w is the
sparse weights to be estimated, and e are the zero-mean Gaussian distributed noises in
the measurements. The measurement/sampling matrix ¢ represents the sensor locations
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to observe the ozone signal. Each row in the sampling matrix & is exactly a unit vector
with only one non-zero element in it. In this way, X, is an m by 1 vector composed of
the observed values of the sensors.

Compressive sensing is a technique for estimating sparse solutions to underdeter-
mined linear regression. Only when w is sparse (whose elements are mostly zeros) will
the estimate of w be feasible and accurate [15]. It is reasonable to assume that most
environmental signals are sparse under Gaussian Kernel basis B. Thus, the algorithm is
executed by decomposing the original environmental signal X, as X, = Bw, and the
reconstructed signal X can be recovered by multiplying the basis matrix B and w. The
Gaussian basis matrix B,x, is defined as follow:

B =[¥(Xi)¥(Xe) - lI](Xrn)f (2)

wherein W(X;i) = [K(Xii, Xy1) - - K(Xii, Xin)] and K(Xy;, X;5) is Gaussian Kernel
function

K (Xsi, X5 :exp{—n1 (Xeit, =Xt ) > =1 (Xoi2 —erz)z} (3)

where 1; and n, are hyper-parameters of the kernel function, and the coordinates of X;
is (Xuir, Xiiz)-

Generally speaking, we have 1, minimization [5], greedy/iterative algorithms and
some other algorithms, such as the model based CS [6] and Bayesian compressive
sensing, to reconstruct the signal in CS. Bayesian compressive sensing is proposed by
Shihao Ji in 2008 [10] to estimate the sparse vector w,x; in (1), in which Bayesian
models are applied to maximise the posterior probability of w;..

BCS recovery algorithm combines hierarchical sparseness priors for w,.; and e
[10] with Relevance Vector Machine (RVM) based Bayesian CS inversion [13] to
estimate W,x;. Given Y, x; and ®.x, we estimate o and cs% that are the hyper-
parameters in Gaussian priors for w,.; and e [10] by maximising P(w]y, a, o3), and
then the sparse vector w can be determined. Moreover, the BCS recovery algorithm
used in this paper employs a fast sparse Bayesian learning algorithm to improve the
computational speed. The detailed processes in this fast algorithm can be referred in
[14]. Compared with other recovery algorithms in compressive sensing, BCS provides
the posterior density function for w,; instead of a point estimate of w. This property
enables us to indicate the measure of confidence of the reconstructed signal with the
“error bars” provided by BCS. Furthermore, the construction of the sampling matrix
& can be diversified in BCS, which means different sensor deployment strategies can
be employed in BCS rather than deploying the sensors randomly.

3 Sensor Deployment
In this section, we will present one of the crucial tasks in environmental monitoring, i.e.

how to deploy the sensors to the most informative places. The following subsections
identify two open-loop sensor deployment algorithms that deploy sensors before the
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sampling phases and one adaptive sensor deployment algorithm that deploys sensors
during the sampling phases.

3.1 Open-Loop Entropy Approach

Given some sensors that have been deployed in the monitored region, we consider the
case that we want to deploy another sensor and hope to achieve the best recovery
accuracy with the BCS recovery algorithm. Intuitively, we can deploy the sensor to the
place with the highest uncertainty.

“Entropy” is a widely used measure of the uncertainty in the information theory and
many other areas. In this open-loop entropy approach, the “entropies” of all possible
sensor places are calculated and we deploy the next sensor to the place with the highest
entropy. We denote y as one of all possible sensor places, A as the set of the places that
have been sensed and X, as the sensor measurement at place y. The entropy in this
approach is defined as follow:

1
H(Xy|XA):§10g (2nec§(y‘XA) (4)

where G?MXA =Xy — ZyaZaaZay [11] is the variance of X, given X, and Xj is a
measure of the information redundancy between place i and place j.

There are many methods to define Zj; so far [11]. The most commonly used method
is to define X;; as a Gaussian function that decreases exponentially with the distance
between place i and place j. As the distance between y and A increases so does the
value of H(X,|X). Thus, far apart places tend to give high entropies. In this way, the
sensor deployments can be estimated by maximising Gg(yle repeatedly.

3.2 Open-Loop Mutual Information Approach

The entropy criterion presented in Sect. 3.1 tends to place sensors along the boundary
of the monitored region [11]. Thus, a sensor on the boundary cannot detect the signals
out of the region and may waste sensed information. The phenomenon was noticed by
Ramakrishnan in 2005 [8].

Andreas Krause presented in [9] that the mutual information (MI) criterion can be
applied to solve the problem. The mutual information of a possible sensor place y is
defined as follow:

1 G§<>'\XA
MI(y) = H(X,[Xa) — H(Xy|Xv\4) = Elog(zi) (5)
Xy[Xv\a

where A is the set of the places that have been sensed and V is the set of all possible
sensor places.

In this approach, we maximise the mutual information criterion shown in Eq. (5) to
estimate the optimal sensor places. The place y with the highest MI(y) is the optimal
place to deploy the next sensor based on the set of former sensor places A. This
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equation is sub modular style and it avoids the problem deploying sensors along
the boundaries by subtracting the uncertainty of place y given V\A from the entropy
H(Xy|XA). We will evaluate its performance in Sect. 4.

3.3 Adaptive BCS Approach

Bayesian compressive sensing (BCS) provides us the “error bars” to measure the
uncertainty of the reconstructed signal [10]. This property enables us to adaptively
estimate the optimal next projection to be added into the measurement matrix. In this
way, our measurement matrix is designed based on former measurements and the
recovery accuracy could be improved compared with other methods.

Selecting Projections Adaptively. The sparse weights vector w is actually a multi-
variate Gaussian distribution with the mean p and covariance matrix 2 [11]. In [10],
Shihao Ji proposed to design the projection matrix ® to minimise the differential
entropy [12] h(X) = — J P(X) log P(X)dX for the reconstructed signal X = Bw. To
deploy a new sensor is equivalent to adding a new row on the projection matrix. If we
add a new projection T on ®, where 7" is a new row, and we want to minimise the h(X),
it has been proven in [10] that the goal is equivalent to maximising the t'Zt.

1121 = t"Covariance(w)t = Variance(Y) (6)

We can conclude from (6) that the 1" to be added into ® represents the most
informative measurement. T' 2t is equivalent to a measure of the “information gain” in
our case.

Given the environmental monitoring problem shown as Eq. (1), the projection
matrix ® = ¢B is actually choosing rows from basis matrix B and we aim to choose the
optimal row from B one by one to build the ® and minimise t' 2.

In this case, 7' is a row in B. The measure of how informative t" is can be then be
described as follows:

nexteore (i) = 7' 21 = a' BXBa = B}ZBa (7)

where a" is a 1 by n unit vector in which the i-th element is one and B} is the i-th row
of the basis matrix B.

This adaptive sensor deployment algorithm uses the measurements of deployed
sensors as the feedbacks to help guide the deployment of the next sensor. Thus, the
information Moreover, the approach greedily takes the current estimated variances as
the criterion to optimising sensor deployments. Thus, the results of this method may
not be absolutely optimal.

The Computational Model. Compared with non-adaptive BCS approach, the main
difference is that our adaptive BCS approach first builds a random small projection
matrix to do initial measurements, and then we add measurements gradually based on
the feedback of former measurements. With the same number of measurements, the
adaptive method improves the recovery accuracy by designing the projection matrix
selectively instead of randomly. Figure 1 shows the work flow of the adaptive BCS.
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There are three phases in the adaptive BCS environmental monitoring model,
which are sampling, recovery and reconstruction. The three phases are detailed as
follows:

1. Sampling phase: We sample the environmental signal with the sampling/sensing
matrix, in which sensor deployment information is contained. An initial sensor
deployment consisted of few random sensor places is generated to start the work
flow shown in Fig. 1.

2. Recovery phase: We estimate the sparse vector w and its covariance matrix with the
BCS technique. Then we estimate the next sensor location with the method
described in this section and revise the sampling matrix. We run the sampling-
recovery loop until termination condition is met.

3. Reconstruction phase: The monitored signal can be reconstructed via a simple
matrix multiplication X = Bw.

In the adaptive BCS approach, the sensor deployment phase and sampling phase are
implemented simultaneously. This property of the adaptive BCS environmental mon-
itoring model may bring difficulties to practical engineering. Thus, we propose to train
the sensor locations with history data. This history data based adaptive BCS approach
will be discussed in Sect. 4.3.

Sampling

Original Signal Xr=[xry, =, xryJ”

Sampling Matrix ®=[® ... ® ]! <

Recovery

‘ Samples Y=[yy, ***, yul" ‘

‘ Basis Matrix Byxy
l JL Loop Until a

g . . termination
Projection Matrix ©,xy condition is met

JT

Recovery Weights wyx; and
Covariance Matrix X

‘ Next projection t7T ’:

Adaptive Process

Reconstruction

Reconstruction Signal X=Bw=[xj, ==+, xyJ" ‘

Fig. 1. Work flow of the adaptive BCS
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4 Experiment and Results

With the open-loop sensor deployment algorithms and the adaptive BCS approach
presented in Sect. 3, the sensors are deployed selectively rather than randomly in the
monitoring systems. Thus, we expect to achieve better recovery accuracy than the
environmental monitoring system proposed in [3].

To evaluate these monitoring models, we applied different sensor deployment
algorithms to ozone monitoring experiments and compare their performance. We
mainly introduce the environmental monitoring tests on two different sizes of ozone
signals and analyse the performance of the history data based adaptive BCS approach.
The ozone distribution data can be retrieved from the database of NASA and is
available at ftp://toms.gsfc.nasa.gov/pub/eptoms/data/monthly_averages/ozone. The
ozone data sets used in our experiments are monthly averages data sets that are merely
the daily ozone values for an entire month divided by the number of days. The dis-
cussion of the experiment results is shown in Sect. 4.4.

4.1 30 by 30 Ozone Distribution Monitoring

To compare the performance of the sensor deployment algorithms presented in Sect. 3,
we apply these algorithms to a 30 by 30 ozone distribution monitoring experiment in
this subsection. The original ozone distribution data we need to recover is a part of the
global ozone distribution map available from NASA. It is a 30 by 30 ozone distribution
in Feb 2005 (Latitudes 36.5 North to 65.5 North with 1 degree step and Longitudes
179.375 West to 143.125 West with 1.25 degree steps).

The proposed adaptive Bayesian compressive sensing algorithm in the ozone data
experiment is as follow:

1. Randomly choose 30 rows from B to build the projection matrix ® and run the BCS
recovery algorithm [13, 14].

2. Calculate the next_scores shown in Eq. (7) for all the rows in B that are not in ® so
far. Add the row that corresponds with the largest next_score to ©.

3. Run the BCS recovery algorithm with the new ©.

4. If the termination condition is met, otherwise goto 2.

5. Reconstruct the signal with Basis matrix B and the sparse weights vector w.

In Fig. 2(a) and (b) show the deployment of 60 sensors with entropy criterion and
mutual information criterion respectively in this experiment.

It can be seen from Fig. 2 that the number of the boundary sensors in (b) is
significantly less than that in (a). The mutual information criterion solves the problem
that entropy criterion tends to deploy sensors along boundaries very well.

The reconstruction errors of different approaches can be seen in Fig. 3. The
adaptive BCS approach and the open-loop entropy approach perform the best in this
experiment. It can also be seen that the mutual information criterion performs no better
than the entropy criterion.

Both entropy criterion and mutual information criterion are open-loop approaches.
Thus, the whole sensor deployment tasks in these two approaches are completed before
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sensor distnbution map
30

25 ¢

5 1 " » 2 )
(a) entropy criterion

sensor distnbution map

2 F

P
(b) mutual information criterion

Fig. 2. The sensor distribution map of entropy criterion and mutual information criterion (60
Sensors)

measurements. Although mutual information criterion prevents deploying too many
sensors on the boundary, we cannot say one criterion is dominating the other one in
terms of their recovery accuracies.

4.2 129 by 129 Ozone Distribution Monitoring

In order to adequately bear out the recovery accuracies brought by the sensor
deployment algorithms, we apply these algorithms to a 129 by 129 ozone distribution
monitoring experiment in this subsection. Compared with the experiment in Sect. 4.1,
this experiment is implemented upon an ozone dataset with much larger resolution.
The performance of these environmental monitoring models when dealing with mas-
sive environmental signals can be evaluated through this experiment typically. Figure 4
shows the original ozone distribution map that we need to recover.

A comparison of the reconstructed signals with the random sensor deployment
approach and the adaptive BCS approach can be seen in Fig. 5 (100 sensors).
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Fig. 3. Comparison of the reconstruction errors of different approaches

It can be seen from Fig. 5 that the reconstructed signal with adaptive sensor
deployment is much closer to the original one compared with random sensor
deployment. The adaptive BCS approach can improve the signal recovery accuracy of
the environmental monitoring system significantly.

A comparison of the reconstruction errors with different approaches can be seen in
Fig. 6.

It is shown in Fig. 6 that the adaptive BCS performs the best among the three
approaches. Its properties are especially suitable for monitoring environmental signals
with few sensors.

It is worthwhile to point out that the open-loop approaches depend heavily on the
definitions of Giyle shown in Egs. (4) and (5). The hyper-parameters in cileA will

greatly affect the performance of the algorithms. With same hyper-parameters, the

0o

Fig. 4. A 129 by 129 ozone distribution in Feb 2005 (Latitudes 62.5 South to 65.5 North with 1
degree step and Longitudes 179.375 West to 19.375 West with 1.25 degree steps)
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(b) Adaptive BCS

(a) Random sensor deployment

Fig. 5. The reconstructed signals with conventional BCS and adaptive BCS (100 sensors used,
based on Fig. 4)

open-loop entropy approach performs well in the 30 by 30 ozone distribution moni-
toring experiment, but not that well in the 129 by 129 ozone distribution monitoring
experiment.

Furthermore, the computational complexities for open-loop approaches are gener-
ally very high, especially when the set of all possible sensor places V is very large. This

is also the reason that we do not have the reconstruction error curve for the open-loop
mutual information approach in Fig. 6.

4.3 Ozone Monitoring with History Data

Adaptive BCS approach has achieved good performance in our experiments. It is a
closed-loop approach that bases on real observed values. That means the sensor
locations are closely related to the measurements. The sensor places will be changed if
the monitored environmental signal changes. In the real phenomena monitoring

industry, the environmental signals are always changing and this will bring difficulties
to the adaptive BCS approach.
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Fig. 6. Comparison of the reconstruction errors with three different approaches (Based on Fig. 4)
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On the other hand, it is impossible that a fixed sensor deployment works very well
for all environmental signals. If the sensor deployment cannot be changed adaptively,
what we can do is to find a fixed sensor deployment that generally works well or deploy
more Sensors.

If the history dataset is similar to the test dataset, the sensor deployment trained by
the history data would work also very well for the test data in general. In the real world,
a signal usually changes little if the time does not change a lot. Thus, applying the
sensor deployment trained by the latest data to the environmental monitoring tasks will
work, especially for the environmental signals such as ozone signals that change
slowly.

In this subsection, we train the sensor placements with the adaptive BCS approach
based on an ozone data of February 2005 and test it on the ozone data of March 2005.
Moreover, we will compare its performance with other approaches.

The training data and test data is shown in Fig. 7.

Figure 8(a) shows the reconstructed ozone signal with the sensor deployment
trained by Fig. 7(a), and Fig. 8(b) shows the reconstructed ozone signal with the sensor
deployment trained by Fig. 7 (b).

-

- "
- 0

: (a) Training (February ozone
data) Adaptive BCS
algorithm

- Qe
- -

(b) Test March
ozone data)

Fig. 7. Training ozone data and test ozone data
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Fig. 8. The reconstructed ozone distributions with different approaches (150 sensors used)

It can be seen from Fig. 8 that the adaptive BCS (history) approach performs even
better than adaptive BCS (current) approach in terms of the recovery accuracies.

The curves of the reconstruction errors with three different sensor deployments are
illustrated in Fig. 9.

It is shown in Fig. 9 that the sensor deployment trained by February ozone data also
works very well for the March ozone data. The performance of adaptive BCS (history)
is nearly the same as that of adaptive BCS (current). The experiment shows that our

strategy to train the sensor deployment with history data is feasible if the locations of
the sensors cannot be changed adaptively.
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Fig. 9. A comparison of the reconstruction errors with three different approaches

4.4 Discussion of the Experiment Results

Based on the results of the ozone monitoring experiments, we have the following
discussion:
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Open-loop entropy and mutual information: In our experiments, open-loop
approaches perform well with proper hyper-parameters. We used the same hyper-
parameters in Sects. 4.1 and 4.2. Based on our experiment results, we believe that
adjusting the hyper-parameters carefully in Sect. 4.2 will improve the performance of
the open-loop entropy approach further. Adaptive algorithms for adjusting the
parameters can be investigated in the future.

Mutual information can solve the problem that entropy criterion tends to place
sensors along the boundaries and avoid the “information wasting” of the sensors in
many cases. However, mutual information does not perform better than entropy cri-
terion in terms of the reconstruction error.

The computational complexities of the open-loop approaches are generally very
high. We built a truncated algorithm by ignoring the influence between far apart
sensors (removing the small elements in the ¥ presented in Sect. 3.1) [11] and applied it
to our experiments. We also did not calculate Eqs. (4) and (5) for all possible sensor
places, but for selected places. Although these approaches had been used in our
experiments, the computational complexities were still very high. This problem is
particularly acute in dealing with massive environmental signals.

Adaptive compressive sensing approach: Adaptive BCS environmental monitoring
model generally performs the best in our experiments. With this environmental mon-
itoring model, we do not need to worry about the hyper-parameters and computational
complexities. Thus, adaptive BCS based sensor deployment algorithm is more appli-
cable compared with other sensor deployment algorithm.

Sometimes the sensors cannot be placed adaptively for practical purposes. We
proposed to use the adaptive BCS approach to train the sensor placements with the
latest history data. The results of our experiments validated the feasibility of this
approach.

5 Conclusions and Future Work

The environmental monitoring task can be generalised as a problem to solve the
equation Y«; = OpxnWixi + € = DnxnBnsxnWaxi + €. We applied different sensor
deployment algorithms and BCS based signal recovery algorithm to environmental
monitoring and compare their properties. Their performance was tested under different
ozone data resolutions.

It can be seen that compression degree was even lower for larger environmental
signals. Generally speaking, compressive sensing is particularly suitable for decreasing
the number of the samples needed in the monitoring of massive environmental signals.

The performance of open-loop design methods can be very well with proper hyper-
parameters. Thus, scholars have been trying to design better definitions for the vari-
ances in the open-loop sensor deployment algorithms to improve their performance,
such as nonstationary covariance matrices proposed by Nott [4]. However, the high
complexities of the open-loop approaches presented in this paper are hampering these
algorithms. Truncated algorithms can be applied to reduce the complexity of open-loop
design approaches to some extent, but the problem has not been resolved satisfactorily
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so far. How to adjust the hyper-parameters adaptively is also a research direction
remained to be developed in the future.

Given the measurements of placed sensors, the mechanism of the adaptive
Bayesian compressive sensing approach can be explained as deploying the next sensor
to the place with the highest estimated variance. With 100 measurements for 16641
global ozone distribution data points, the reconstruction error of adaptive sensor
deployment approach was 40 % less than that of random sensor deployment, with
3.52 % and 6.08 % respectively. We then presented the feasibility to train the sensor
placements by the adaptive BCS approach with history data and evaluated its perfor-
mance with experiments. This approach works well especially for steady environmental
signals such as ozone.

The adaptive BCS approach generally performed very well in our experiments. It is
a greedy algorithm to choose the next sensor location based on current measurements.
Sensors are deployed one by one with this algorithm. Thus, the final sensor deployment
of this approach may not be global optimal solution. Inspired by the history data based
adaptive BCS approach, we may combine the history data to restrict the “score” in the
Eq. (7) to improve its performance further. To be specific, we may ignore the places
that have been proved to contribute less in the monitoring of history data.

We will apply our environmental monitoring system to real environmental moni-
toring industries in the future. A lot of unveiled problems in our experiments will
appear in environmental monitoring industries. For example, there will be a lot of
locations that are not physically reachable in the real world. Furthermore, the world is a
multiple dimensions world rather than two dimensions in the experiments, thus where
to localise the sensors in the real world becomes a problem. The accuracy of the GPS
system will also affect the accuracies of sensor placements.
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