Appstrument - A Unified App Instrumentation
and Automated Playback Framework for Testing
Mbobile Applications

Vikrant Nandakumar®™), Vijay Ekambaram, and Vivek Sharma

IBM Research - India, Bangalore, India
{vikrant .nandakumar,vijayel2,vivek.irl}@in.ibm.com

Abstract. Mobile Test Automation is gaining significant importance
for an app-tester because it helps to alleviate the voluminous effort
and time associated in thoroughly testing an application. Challenges like
diversity in mobile hardware, multiple operating systems, ever-increasing
application complexity and high volume of test cases etc. reiterate the
importance of exploiting automation techniques for mobile application
testing. In order to exhaustively capture user actions during the record-
phase, faithfully reproduce those actions during playback-phase and also
to capture the relevant metrics while playing back, instrumentation of the
Application-under-test (AUT) becomes an imperative process. However,
the type and level of instrumentation is different and is very specific to
the category of testing which has to be automated. This paper presents
Appstrument, a unified framework for instrumenting mobile applica-
tions to make them ready for functional, performance and accessibility
testing. This framework allows instrumenting the application to get it
ready for either a single category of testing or a combination of two or
more of these categories, with multiple optional features for each cate-
gory. In addition to this, given a test script, the framework also supports
automated playback of instrumented applications. Appstrument has been
deployed and tested against some popular applications from Google Play
(Android apps) and some IBM in-house iOS applications. Results indi-
cate that this framework is able to successfully instrument a sizeable
number of applications and effectively playback user-defined test cases
automatically to collect relevant metrics/results corresponding to each
category of testing.

Keywords: Mobile applications * Instrumentation - Android - iOS -
Testing - Functional - Performance - Accessibility

1 Introduction

Testing mobile applications is an emerging research area that faces a variety
of challenges due to increasing number of applications getting developed and
a plethora of new devices being released into the market. These new devices
have varied form factors, screen size, resolution, OS, hardware specification etc.

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014
I. Stojmenovic et al. (Eds.): MOBIQUITOUS 2013, LNICST 131, pp. 474-486, 2014.
DOI: 10.1007/978-3-319-11569-6_37

Appstrument - A Unified App Instrumentation 475

which increases the difficulty to effectively test an application. Also, in compar-
ison to conventional Desktop and Web applications, mobile applications have
shorter release cycles (lesser time-to-market) and the update frequency is high,
making it necessary for the tester to perform additional testing quite often. Due
to these factors, testing a mobile application becomes a very expensive, labori-
ous and time consuming process. IDC [1] predicts that smartphone shipments
will reach 978 million in 2014. Hence, with the emerging smartphone market,
there is a lot of emphasis on how applications perform on the actual devices. Of
late, speed and performance have become the primary concern for consumers of
mobile applications. This fact is emphasized in a recent Compuware survey which
found that 4 out of 5 users expected an app to launch in 3s or less. Considering
these factors, its imperative to have an automated testing solution which would
help save time, minimize human effort and ensure better quality and perfor-
mance of mobile applications. In order to exhaustively capture user actions dur-
ing the record-phase, faithfully reproduce those actions during playback-phase
and also to capture the relevant metrics while playing back, instrumentation of
the Application-under-test (AUT) becomes an imperative process. Instrumenta-
tion is the process of inserting few lines of code (hooks) in the original AUT to
facilitate effective recording and automated replay of test cases.

In this paper, we present Appstrument, a unified app instrumentation and
automated playback framework for testing mobile applications. Appstrument
supports functional testing, performance testing and accessibility testing on
Android and iOS applications. For each category of testing, this framework sup-
ports multiple features which can be used in isolation or in combination with
a feature from a different category. Furthermore, the framework also supports
automated playback of instrumented applications.

The rest of the paper is organized as follows. Section 2 talks about the moti-
vation for this research work. The detailed architecture, design and implementa-
tion is discussed in Sect. 3. The framework evaluation and results are presented
in Sect.4. Section5 throws light on a few other similar efforts in this domain,
followed by Future work and Conclusion in Sect. 6.

2 Motivation

Mobile App instrumentation is primarily needed for getting complete control
over an application during execution. Instrumentation is becoming necessary in
automated mobile application testing due to the stringent nature of the mobile
OS. Most of the existing solutions which bypass the app instrumentation require-
ment aren’t straight forward and requires the device to be rooted/jail-broken [2].
Some of the testing solutions provided by the OSes like Android, suffer with the
disadvantage of requiring the testers to code up the test case in a formal lan-
guage like Java, VBScript etc. Furthermore, the current instrumentation and
playback techniques used in testing mobile apps are very purpose-specific and
limited to a particular type of testing. Lack of a unified consolidated framework
to perform automated mobile application testing is the motivation behind this
research work.

476

V. Nandakumar et al.

3 Appstrument Framework for Instrumentation and
Playback

This section describes about the detailed design, architecture, implementation
and working of the Appstrument framework.

3.1 System Architecture and Implementation

The overall architecture of the Appstrument framework is depicted in Fig. 1. It
comprises of five different components

Ve User User
F IBM ¥ _ N " _
L Workiight /\ MPUtT s Input
&
PRSP VOIS SusoeV ORI 2
. 1
1 Appstrument App |
; center (AC) 1
O7Appstrument 1« L
i Instrumentation : N Suser e
NP Y ,'/’-I_B-I\;I\\\ _._module (IM) _ ; conﬁg(:
b § ’I*T’.\ VO RTW input
» _?ug"j_ *<.Recorder i (7) 1N
! sy }4
IR vkl] o - T
{ Appstrument Test ' Lop 1 Appstrument . { Appstrument
i Case Repository :—)' Playback service %‘ Reporting engine !
(TR Testeer (PS) i L RE) .

Fig. 1. Appstrument - Overall Architecture

1. Appstrument Test Case Repository (TR) is a collection of automated

test

scripts (list of test steps) which can be executed on the AUT by the play-

back service. TR is integrated with three different plugins viz. IBM Rational
Quality Manager (RQM) [9], Automating Test Automation [3] and IBM
Rational Test Workbench [10].

(a)

IBM Rational Quality Manager offers a collaborative environment for
test planning, construction, and execution. It acts as a centralized repos-
itory for test cases and is integrated with a number of popular testing
products available in the market. Appstrument TR has integration with
RQM via an adapter through which it can fetch the test cases and push
them to the Playback Service for execution on the AUT.

Automating Test Automation (ATA) [3] is a tool which addresses the
problem of creating automated test scripts from manually written test
cases. ATA integrates with the Appstrument TR and stores the tuple-
based English-like Clearscript statements obtained by converting manual
test cases.

Appstrument - A Unified App Instrumentation 477

MANIFEST dlosscsdhe " Activity1.class
apktool Activityl || Wava classes compited dex2jar ‘iﬂ‘:fff:g:" ASM
AUT.apk | > i || Wk |-+ 0>y Sl >
J binary apk Servicet Dalvik VM to WMbytecode) | 1 o code (Instrumented)
| User P"W‘dd :rjzﬁugcs;a;;t | App Resources I byje;;d\;sﬁtn enigilgf:r;ng : Re-packaging
|input fres bytecodes

/libs
+ Read AndroidManifest.xml
« Modify AndroidManifest.xml

Original resources Ires i
required by AUT + Madified Manifest AUT resources project

apkClasses.jar

appstrument. jar

[omamon lasses |
-EDE Cﬁ:‘: uﬁm'ﬂf f;
e-AUT.apk -
N rated |
[Output ;“"‘d.
g:.-.‘; g test Pmpci
|ereation

Fig. 2. Instrumentation in Android

(c) IBM Rational Test Workbench consists of a recorder engine which can
capture the user-actions in the form of Clearscript statements. The tester
can go with this option in situations when there are no manually written
test cases available for the AUT.

2. Appstrument App Center (AC) contains the applications which are avail-
able for Appstrument Instrumentation Module (IM) for instrumentation.

(a) IBMWorklight [11]isacomprehensive mobile application platform to build,
run and manage mobile applications. The IBM Worklight Application
Center [12] is an enterprise application store which allows the enterprise
administrator to install, configure and administer a repository of mobile
applications for use by individual employees and groups across the enter-
prise. Appstrument AC module has an in-built adapter to pull an applica-
tion directly from the Worklight Application Center and pass it on to the
Appstrument IM module.

(b) Appstrument AC also provides an interface for the user to upload an
APK file or the application source code in a zip file format. The need of
an APK binary file is primarily for Android applications. However, in the
case of i0S, there is a requirement for the application source code to be
uploaded to the AC.

3. Appstrument Instrumentation Module (IM)

(a) Instrumentation in Android: In the case of Android, the AUT is
decompiled, reverse engineered and instrumented. The detailed instru-
mentation process in Android is described in Fig. 2. The following are the
steps involved in the Android instrumentation process

478

V. Nandakumar et al.

— The Android application package referred to as AUT.apk file is given
as input by the tester.

— Using the dump badging command of the Android Asset Packag-
ing Tool (aapt) [4] tool, high level information about the .apk file
like package name, versionCode, versionName, permissions, features,
minSdkVersion, targetSdkVersion, app label, app icon file path, main
launchable activity name etc. are obtained.

— The AUT .apk file is reverse engineered using the Android apktool [5].
This tool unzips the .apk file generating all the resources (images, lay-
out XMLs, string resource XMLs, manifest file, etc.) and the compiled
classes (classes.dex) of the AUT. classes.dex is nothing but byte-code
of all AUT classes compiled for the Dalvik virtual machine. The Mani-
fest XML is slightly modified to set internal flags for the Appstrument
PS to automatically detect that the AUT is instrumented and ready
for playback.

— In the next step, dex2jar [6] tool is used to decompile classes.dex to
decode and understand the underlying Java classes. This tool trans-
lates the Dalvik VM byte-codes to the Java VM byte-codes. The resul-
tant file is classes.jar which contains corresponding Java classes from
classes.dex.

— The individual files from classes.jar is extracted by using the Java jar
tool. From the Manifest file, the declared Activity information is
obtained and using the ASM byte-code engineering library [7], the Java
byte-code is loaded into the memory and altered in different ways.

— Once the bytecode is loaded, for each Activity class declared in the
manifest, modifications are performed on the Android activity life
cycle methods viz. onCreate(), onStart(), onResume(), onPause() and
onDestroy(). These methods are modified to include an additional line
towards the end of each method, which enables a call-out to Appstru-
ment instrumenter class, thereby establishing control over the com-
plete application during runtime.

(b) Instrumentation in iOS: In the case of an i0OS application, there is

a requirement for the AUT’s source code to carry out the instrumenta-
tion process. The Appstrument library is linked with the AUT’s source
code and the AUT is built to get the instrumented AUT. However, in
this process there is no modification of source code of the original AUT.
We make use of the Objective-C Method Swizzling [8] concept to make
the method in the AUT call an alternate implementation which is dif-
ferent from the original implementation. In the below example, since
directly overriding the sendFvent method (called by UIApplication to
dispatch events to views inside the window) would break the responder
chain sequence, the Objective-C Method Swizzling concept is used to
hook into our Appstrument adapter code on the iOS event bus using the
original sendFEvent method. Once the sendEvent method is swizzled, App-
strument gains access into the event bus at runtime and can push a new
event during playback of the AUT.

Appstrument - A Unified App Instrumentation 479

<?xml version="1.0"?>
<Appstrument=>
- <FunctionalTesting>
true
<ImageCaptureAndMarkup>true</ImageCaptureAndMarkup>
<VerificationPoints>true</VerificationPoints>
<DynamicFind>true</DynamicFind>
</FunctionalTesting>
- <PerformanceTesting>
false
<ResourceMonitoring >false</ResourceMonitoring>
<MethodLevelProfiling>false</MethodLevelProfiling>
<EventProfiling>false</EventProfiling>
<KernelAndUIthreadMapping >false </KernelAndUIthreadMapping>
</PerformanceTesting>
- <AccessibilityTesting>
false
<ImageCaptureAndMarkup>false</ImageCaptureAndMarkup>
<AccessibilityAutoCorrection>false </AccessibilityAutoCorrection>
</AccessibilityTesting>
</Appstrument>

Fig. 3. Appstrument config file

— (void)sendEvent : (UIEvent#)event;

(c) Appstrument config file: The Appstrument IM module takes a App-
strument config file as input before it starts instrumenting the AUT.
This Appstrument config file defines the different configuration parame-
ters which have to be considered for generating the instrumented AUT.
This file is in XML format and has a boolean flag (true/false) defined
against each of the features for every category of testing. These features
are optional for the user to choose and are in addition to (i) basic playback
for Functional Testing, (ii) playback + resource monitoring for Perfor-
mance Testing, (iii) playback + compliance check for Accessibility Test-
ing. The details about the various features are explained in the following
section. Figure 3 shows a sample Appstrument config file.

4. Appstrument Playback Service (PS)

The Playback Service is responsible for the execution of a test script on

the AUT. PS picks up the test script from the Test case Repository (TR)

and plays it back on the instrumented application from the Instrumentation

Module (IM). The output of the playback is sent to the Reporting Engine

(RE). Depending on the Appstrument config file provided to the IM module,

certain features are enabled or disabled for each category of testing during

playback. The details of features which are supported by the PS are as follows:

(a) Features for Functional Testing

i. Image Capture and Mark-up - By enabling this feature during
playback, the Playback Service will capture the snapshot of AUT’s

screen on which the action happens for a particular test step. Addi-
tionally, on the captured snapshot, the PS will draw a bounding box

around the Ul element which is associated with that test step to
indicate to the tester where exactly in that screen the action has
happened. For example, if a user clicks on the “Submit” button on a

login page, then the snapshot of the login page with a bounding box

around the “Submit” button is provided in the Appstrument Report.

480

V. Nandakumar et al.

ii.

iii.

Verification Points - This is a feature by which the Playback Ser-
vice can check if a particular Ul element conforms with a tester-
specified property like (i) verifying if a TextView contains the text
as defined by the tester, (ii) location of the TextView on the screen
etc. The verification point definitions are included as a part of the
test script to be played back on a AUT.

Dynamic Find - This feature helps the Playback Service to resolve
dis-ambiguities in the test case to ensure a faithful playback on the
AUT. For example, if the test step is “Click on Submit button to the
left of Reset Button”, the Playback Service should be aware of other
UI elements in close proximity to the Submit button. The details
about these Ul elements, referred as associated element description,
are required to execute a test step with greater accuracy.

(b) Features for Performance Testing

i.

ii.

iii.

Resource Monitoring - This default Performance Testing feature
captures the various parameters like CPU Utilization, RAM Usage,
Virtual Memory Usage, Network Traffic (incoming & outgoing) etc.
Appstrument PS captures these parameters without any requirement
for instrumentation of AUT.

Method-level profiling - Enabling this feature would capture all
the method level details with respect to the AUT. Appstrument logs
messages during method start and exit to track these information.
Event profiling - This feature captures all the system, user, Ul
events of the AUT occurring during playback to visualize the control
and the data flow of the application.

. Kernel and UI thread Mapping: Having this feature enabled

would help in capturing all the kernel thread activities (like Wifi
service calls, Activity Manager, Window manager, etc.) and map
these activities with respect to the AUT events to understand the
performance bottlenecks.

(c) Features for Accessibility Testing

i

ii.

Image Capture and Mark-up - This feature is very similar to
the Image Capture and Mark-up feature mentioned in Functional
Testing. Unlike Functional Testing, the principal difference in acces-
sibility testing is, instead of drawing a bounding box on the target
UI element (for a single test step), the accessibility non-compliant
UI element is highlighted to the tester in the playback report.
Accessibility Auto Correction - Enabling this feature would not
only identify the accessibility non-compliant Ul element, but also try
to perform an auto correction to make it compliant. For example,
for an Android EditText widget, if the android:hint property is
not set, this feature would employ the Dynamic Find (Functional
testing feature) to identify a nearby associated label to fill in the
property field thereby auto correcting the non-compliance error.

Appstrument - A Unified App Instrumentation 481

Appstrument Playback Mini Report: sample_test [7/22/13 12:57 PM]

Test: sample_test [executed on 7/22/13 12:53 PM]
Categories to test: Functional, Performance, Accessibility
Application: IBM NUC Sensing App (version 4; created on 7/22/13 12:50
PM; executed on 7/22/13 12:53 PM)
Execution Status: Functional — All steps passed
Performance — Passed
Accessibility - Failed. 1 or more elements failed the test
Device: samsung GT-P3100 (Android; API level 15)

Fig. 4. Appstrument Playback Mini Report (Sample)

CPU Utilization Vs Time

S HcrU
Utilizaton:

375

250

CPU%)

Method Under Execution:

StatusActivity.onCreate (20ms)

‘StatusActivity.onStart (Oms)

125 ¢
0.0
12:18:10 12:18:30 12:18:50 12:19:10
12:18:20 12:18:40 12:19:00 12:19:20
Time(s)

Fig. 5. Appstrument Performance Testing Report (Sample)

5. Appstrument Reporting Engine (RE)

Reporting Engine (RE) generates test reports for the test script executions
on the AUT by the Playback Service. Depending upon the flags set in the
Appstrument config file, reports are generated for various categories of testing
along with the optional features under each category. RE generates two types
of reports. Figure 4 shows an Appstrument Playback Mini Report which gives
a summary of the test execution using the Appstrument framework. Figure 5
shows a detailed Performance Testing Report depicting the CPU utilization of
the AUT with respect to time. Upon hovering over the graph, the method level
details executed at that particular instance of time is also shown. Similarly,
Appstrument RE generates detailed category-wise/feature-wise reports for a
particular test script execution.

482 V. Nandakumar et al.

4 FEvaluation

4.1 Testing Environment

In-order to show the impact of dynamic feature selection, we tested the App-
strument with the following categories of application:

— Android-Native Application: Apps considered for testing in this category
are Calculator, S Planner, Quickoffice, IBM Sametime, Facebook and IBM
sensing app.

— Android-Hybrid Application: Apps considered for testing in this cate-
gory are RedBus, Twitter, BookMyShow, IRCTC Online Booking and IBM
Worklight apps.

— i0S-Native Application: Since iOS instrumentation requires source-code
for instrumentation, we used 5 internal IBM iOS native apps. (names not
mentioned to maintain confidentiality)

— i0S-Hybrid Application: For the same reason stated above, we used 5
internal iOS hybrid IBM Worklight apps.

Each application is tested with 5 different test cases to ensure that most
features of the AUT are covered. We used Samsung Galaxy Tab (Android 4.0)
and iPhone 4S (i0S 6.1) as target devices and the Appstrument framework is
deployed on a Lenovo T430 machine running Win 7 with 4 GB RAM and Intel
Core i7 processor.

4.2 Time to Instrument

Time to Instrument refers to the total time Appstrument has taken to instrument
the AUT. For evaluation purposes, we have instrumented all the applications
mentioned in the Sect.4.1. In Table 1, we have shown the time Appstrument has
taken to instrument few popular Android applications for functional testing with
all 3 features included. Instrumentation of the applications is a one-time process,
as Appstrument saves the instrumented AUT in its repository for future testing
purposes.

Table 1. Time to Instrument

AUT Time to Instrument(ms) | Binary size(MB)
IBM SameTime | 47280 1.13

Whatsapp 205237 10.4

Facebook 402860 13.7

Skype 246991 15.1

Flipboard 58499 2.3

Appstrument - A Unified App Instrumentation 483

4.3 Record and Playback

In order to evaluate Appstrument with respect to its playback capability, we
tested each AUT (mentioned in the Sect.4.1) with varying test-cases (both
deterministic and non-deterministic). Non-Deterministic test-cases refer to the
test-cases where the flow of execution and the interval time between test-steps
varies with respect to the run-time inputs. Appstrument is able to playback all
the test-cases with reduced overhead. Analysis with respect to the overhead is
mentioned in the following sections.

4.4 Impact of Instrumentation on Functional Testing

Appstrument provides the various instrumented versions (as explained in Sect. 3.1)
with respect to functional testing. A tester can choose the features required and
the instrumentation overhead varies depending on these set of features.

500

W Original M Original
Version Version
— M Complete Il Complete
B 450 Instrumented 2 Instrumented
3 Version = Version
) S
2 Image 5 Image
& Capture 2 Capture
E 400 W Verifioation H 28 M Verification
S Point S Point
Eg M Dynamic Find 3 M Dynamic Find
g 350 18
g
300 10
Android-Native ~ Android-Hybrid 10S-Native 108-Hybrid Android-Native Android-Hybrid 10S-Native 10S-Hybrid
AUT AUT
(a) Playback Time Overhead (b) CPU Usage Vs Instrumentation

Fig. 6. Impact of instrumentation on functional testing

Figure 6(a) compares and analyzes the playback time of various instrumented
versions. X axis represents the time taken for each test-step to execute during
playback. From the graph, we observed the playback time of the various fea-
tured instrumented versions follow this order: {Complete instrumented version
> Dynamic Find instrumented version > Image Capture instrumented version >
Verification point instrumented version > Original Version} (Note: Original Ver-
sion refers to the un-instrumented AUT). Interestingly, further analysis shows
that the CPU utilization of these instrumented versions in Fig.6(b) follows a
similar pattern as the playback time. Since Appstrument allows specific config-
urations of the required features for functional testing, testers can reduce the
instrumentation overhead based on their requirements. Table 2 shows the per-
centage of overhead reduced (with respect to the playback time) for various
partially instrumented versions as compared to the complete instrumentation.

4.5 Impact of Instrumentation on Performance Testing

In Fig. 7(a), we compare various instrumented versions (as mentioned in Sect. 3.1)
with respect to performance testing. Playback time of these instrumented ver-
sions varies with respect to the features selected. Table 3 shows the performance

484 V. Nandakumar et al.

Table 2. Functional testing-overhead reduction

AUT category | Image capture | Verification point | Dynamic find
Android-Native | 14 % 19% 10%
Android-Hybrid |3 % 17% 7%
i0S-Native 9% 13% 4%
i0S-Hybrid 10% 16 % 4%

overhead reduction obtained with respect to selective instrumentation as com-
pared to complete instrumentation. For testers, there is a huge scope to reduce
instrumentation overhead by choosing appropriate configurations based on their
requirements.

500 M Original 300 M Original
Version Version
M Complete M Complete
Instrumented 240 Instrumented
Version Version
1 Method M Image
Profiing Capture and
380 M Event Profiling 180 Mark-up
M Kemel-Ul
Thread Trace

440

W Accessibility
Auto
Correction

Playback Time/TestStep(ms)
Playback Time/Tes(Step(ms)

320 120

260
60
Androld-Native: AndroktHybid [OS-Nafive |0S-Hybrid Android-Native ~ Android-Hybrid 10S-Native 10S-Hybrid

AUT AUT

(a) Performance Testing (b) Accessibility testing

Fig. 7. Impact of instrumentation on performance and accessibility testing

Table 3. Performance testing-overhead reduction

AUT category | Method profiling | Event profiling | Kernel-UI thread mapping
Android-Native | 18 % 11% 5%
Android-Hybrid | 20 % 14 % 7%
i0S-Native 21 % 12% 5%
i0S-Hybrid 19% 13% 6 %

4.6 Impact of Instrumentation on Accessibility Testing

Figure 7(b) shows the analysis of the selective feature capability of Appstrument
with respect to the Accessibility testing. Since features like Accessibility auto-
correction and Image Capture and Mark-up (as mentioned in Sect.3.1) incur
more overhead as compared to the basic accessibility testing, the tester can
choose these features as and when they are required. From Fig.7(b), we also

Appstrument - A Unified App Instrumentation 485

understand that the Accessibility auto-correction feature has a heavy overload
on the AUT’s performance as it nearly doubles the playback time of the complete
test-case.

5 Related Work

A cursory examination of the literature in test automation for mobile applica-
tions clearly throws light on the significant attention devoted to the instrumen-
tation techniques. Recent mobile testing publications like [14,16,18,19] clearly
indicate the necessity for code instrumentation in mobile testing. Mobile automa-
tion testing products in the market like TestStudio from Telerik, MonkeyTalk
from Gorilla Logic and Jamo from Jamo Solutions do instrumentation for mobile
test automation. Recent papers in mobile performance testing like Energy Pro-
filer [18] and Applnsight [14] instruments the AUT to capture all the perfor-
mance related metrics with respect to the AUT. SIF [15] talks about creating
abstractions for selective instrumentation and also recounts the advantages of
selective instrumentation. Comparing Appstrument with these prior-arts, App-
strument provides a much detailed architecture for complete as well as selective
instrumentation with respect to most common mobile testing categories like
Functional, Performance and Accessibility testing.

6 Future Work and Conclusion

In this paper, we presented Appstrument - a unified framework for mobile appli-
cation instrumentation and playback for automated testing. In future, we envi-
sion to include several other categories of testing like security testing, usability
testing, localization testing etc. We have plans to expand on the features sup-
ported under each umbrella of testing. We intend to drastically improve our
coverage with the diversity of applications and devices the framework currently
supports. Efforts are on to come up with a solution to get rid of the source
code requirement for iOS instrumentation. In sum, we foresee a better, power-
ful, efficient and versatile Appstrument framework in future which overcomes
the various challenges associated with mobile test automation.

References

1. IDC Worldwide Smartphone 2012-2016 Forecast Update, June 2012

2. Gomez, L., et al.: RERAN: timing-and touch-sensitive record and replay for
Android. In: ICSE ’13 (2013)

Thummalapenta, S., et al.: Automating test automation. IBM Research report
(2011)

Android, AAPT tool, July 2013. http://elinux.org/Android_aapt

Android, apktool, July 2013. https://code.google.com/p/android-apktool/
Dex2Jar tool, July 2013. http://code.google.com/p/dex2jar/

Bruneton, E.: ASM 4.0 - A Java bytecode engineering library, OW2 Consortium

w

N ot

http://elinux.org/Android_aapt
https://code.google.com/p/android-apktool/
http://code.google.com/p/dex2jar/

486

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

V. Nandakumar et al.

Cocoa Dev, Method Swizzling, July 2013. http://cocoadev.com/MethodSwizzling
IBM Rational Quality Manager, July 2013. http://www-03.ibm.com/software/
products/us/en/ratiqualmana/

IBM Rational Test Workbench, July 2013. http://www-03.ibm.com/software/

products/us/en/rtw
IBM Worklight, July 2013. http://www-03.ibm.com/software/products/us/en/
worklight /

Irvine, M., Maddocks, J.: Enabling Mobile Apps with IBM Worklight Application
Center, IBM Redpaper, June 2013

Mahmud, J., Lau, T.: Lowering the barriers to website testing with CoTester. In:
Proceedings of the 14th International Conference on Intelligent User Interfaces,
pp. 169-178 (2010)

Ravindranath, L., Padhye, J., Agarwal, S., Mahajan, R., Obermiller, I., Shayandeh,
S.: Applnsight: mobile app performance monitoring in the wild. In: Proceedings of
the 10th USENIX Conference on Operating Systems Design and Implementation
(OSDI'12), pp. 107-120 (2012)

Hao, S., Li, D., Halfond, W.G.J., Govindan, R.: SIF: a selective instrumentation
framework for mobile applications. In: Proceeding of the 11th Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys '13), pp. 167—
180 (2013)

Sama, M., Harty, J.: Using code instrumentation to enhance testing on J2ME: a
lesson learned with JInjector. In: Proceedings of the 10th Workshop on Mobile
Computing Systems and Applications (HotMobile '09) (2009)

Zhou, W., Zhang, X., Jiang, X.: Applnk: watermarking android apps for repackag-
ing deterrence. In: Proceedings of the 8th ACM SIGSAC Symposium on Informa-
tion, Computer and Communications Security (ASIA CCS ’13), pp. 1-12 (2013)
Pathak, A., Hu, Y.C., Zhang, M.: Where is the energy spent inside my app?: fine
grained energy accounting on smartphones with Eprof. In: Proceedings of the Tth
ACM European Conference on Computer Systems (EuroSys '12), pp. 29-42 (2012)
Nath, S., Lin, F.X., Ravindranath, L., Padhye, J.: SmartAds: bringing contextual
ads to mobile apps. In: Proceeding of the 11th Annual International Conference
on Mobile Systems, Applications, and Aervices (MobiSys ’13), pp. 111-124 (2013)

http://cocoadev.com/MethodSwizzling
http://www-03.ibm.com/software/products/us/en/ratiqualmana/
http://www-03.ibm.com/software/products/us/en/ratiqualmana/
http://www-03.ibm.com/software/products/us/en/rtw
http://www-03.ibm.com/software/products/us/en/rtw
http://www-03.ibm.com/software/products/us/en/worklight/
http://www-03.ibm.com/software/products/us/en/worklight/

	Appstrument - A Unified App Instrumentation and Automated Playback Framework for Testing Mobile Applications
敳敲癥搠䁤 㴀 ⨀䁬整䁴潫敮 ⴀ㘀瀀�
	1 Introduction
	2 Motivation
	3 Appstrument Framework for Instrumentation and Playback
	3.1 System Architecture and Implementation

	4 Evaluation
	4.1 Testing Environment
	4.2 Time to Instrument
	4.3 Record and Playback
	4.4 Impact of Instrumentation on Functional Testing
	4.5 Impact of Instrumentation on Performance Testing
	4.6 Impact of Instrumentation on Accessibility Testing

	5 Related Work
	6 Future Work and Conclusion
	References

