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Abstract. In this paper we introduce “AcTrak”, a system that provides
training-free and orientation-and-placement-independent step-counting
and activity recognition on commercial mobile phones, using only 3D
accelerometer. The proposed solution uses “step-frequency” as a feature
to classify various activities. In order to filter out noise generated due
to normal handling of the phone, while the user is otherwise physically
stationary, AcTrak is armed with a novel algorithm for step validation
termed as Individual Peak Analysis (IPA). IPA uses peak-height and
inter-peak interval as features. AcTrak provides realtime step count. It
also classifies current activity, and tags each activity with the associated
steps, resulting in a detailed analysis of activity recognition. Using our
model, a step-count accuracy of 98.9 % is achieved. Further, an accu-
racy of 95 % is achieved when classifying stationary, walking and run-
ning/jogging. When brisk-walking is added to the activity set, still a
reasonable level of accuracy is achieved. Since AcTrak is largely orienta-
tion and position agnostic, and requires no prior training, this makes our
approach truly ubiquitous. Classification of step-based activity is done as
walking, brisk-walking and running (includes jogging). So, after a session
of workout, the subject can easily self-assess his/her accomplishment.

Keywords: Step counting · Activity detection · Unobtrusive sensing ·
Mobile sensing · Mobile computing · mHealth

1 Introduction

The sedentary nature of urban and semi-urban lifestyle coupled with easy access
to basic resources like ample food has produced a new array of physical prob-
lems [15]. Hence, a controlled diet and ample physical activity become important
aspects of health and wellness. It is important for subjects to monitor and assess
their daily activities with respect to the benchmark recommended by medical
practitioners or health/fitness experts. The recent boom in smartphone market
has made it the most pervasive and ubiquitous sensing platform available with
the masses. Hence if a method were to use smartphone sensors in a power and
cost effective manner to provide activity monitoring, it would be of immense use.
Professional pedometers and fitness gadgets provide activity monitoring and
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step-counting features. However, there are two major issues. Firstly, there is
additional cost involved in buying and “wearing” the additional sensors. Sec-
ondly, most of these devices need to be “trained” for individual users to count
steps and recognize activities. AcTrak attempts to solve the above issues by
using smartphone sensor, namely the 3-axis accelerometer for step counting and
activity recognition, using step-frequency and a novel IPA algorithm. Though
Global Positioning System (GPS) can also be used to assess user activity, but
as marked by Sun et al. [14], it cannot provide refined analysis of human move-
ments. Additionally, GPS sensor drains a lot of power, and can only be used
outdoors.

2 Previous Work

Human activity recognition using sensors has been a widely researched area.
Accelerometers have become established sensors in this respect, although some
researchers have also attacked the problem using machine vision [4,16]. Research
has been carried out using wearable sensors [1,10]. These solutions give fine-
tuned data for recognizing even static activities like sitting, standing and even
different gestures, but poses obtrusion from wearing external device(s) that
the subject may not be comfortable with. After accelerometers started becom-
ing available in mobile devices, they were taken up for activity recognition
[2,3,6,14,17]. Using accelerometer in mobile and other embedded devices as
a pedometer has also been explored [3,7–9,11,13]. Marschollek et al. [9] com-
pares various open and proprietary methods of step detection using a cell phone
accelerometer. Some researches pose a constraint on orientation aspect of the
device [3,6,12,17]. Sun et al. [14] has relaxed this requirement and has used
resultant acceleration for detecting steps. However, it still requires exhaustive
training for all possible orientations and device placement options. We observe
that prior approaches in this direction have performed the step detection and
activity classification by including measures which employ absolute amplitude
profiles of the sensor data. These profiles change from person to person, from
activity to activity or placement of mobile device with respect to body and hence
require a training phase. Also prior arts have not taken into account the sta-
tionary noise periods occurring during device handling, which may be of large
amplitudes comparable to that of the actual activities, and can result in false
positives. These are two drawbacks that AcTrak tries to eliminate.

3 Methodology

The methodology used in AcTrak has been outlined in Fig. 1. Different stages of
the method are discussed in the following subsections.

3.1 Data Preprocessing

The algorithm in our approach uses resultant acceleration for processing, thereby
ensuring an orientation free usage of the mobile device [7,14]. Data from the
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Continuous Data Stream

Windowed Data

Zero Normalization

Linear Interpolation

Low Pass Filtration

Frequency Spectrum

Identifying non-activity window 
using frequency spectrum

Peak Detection and Step 
Validation using IPA; 

calculating step cycle lengths for 
all valid steps in the window 

Classification of window 
activity using step frequencies 
derived from step cycle lengths

Fig. 1. AcTrak-Algorithm overview

3-axis accelerometer requires some pre-processing before using it for step detec-
tion in a discrete-time manner. A step-wise account of preprocessing process is
described in the following sub-sections.

Windowing. At first, a window-based analysis is performed on the raw data
stream coming from accelerometer. In this approach, a window interval of 2 s
was chosen heuristically, which is short enough to provide a real time response
to the user without missing a substantiate step information, and long enough in
order to record inter-step temporal and frequency characteristics.

Zero Normalization. Next the data window is zero normalized eliminating
the DC bias which is undesired in the frequency domain analysis, which is one
of the subsequent steps.

Interpolation. Since the accelerometer data is captured at variable sampling
rate due to the nature of software calls for sensor data acquisition [2], interpola-
tion is used to make the signal in constant sampling rate, required for frequency
domain analysis.

Low Pass Filtration. This step performs noise cancellation by filtering out
the high frequency components (e.g. stray vibrations, internal sensor noises). We
use an FIR low pass filter with a cutoff frequency of 4 Hz. Li et al. [7] uses a value
of 3 Hz, but AcTrak uses a higher cutoff to also encompass faster step activities
like running.
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3.2 Step Detection and Activity Classification

This section describes the methodology for step detection and activity classifi-
cation.

Stationary Noise Detection. As our solution runs dynamically on a mobile
device and keeps updating the user interface in real time, an important practical
problem arises of filtering out the stationary periods; the time-windows during
which the user is operating the mobile device but not performing any activity
of interest. This problem has been largely unsolved. [7] analyzes only manually
selected periods of activity, which is not a very practical scenario, especially for
a real time smartphone app. It was observed from experimental data that the
stationary noise periods and the actual activity periods vary greatly in their
frequency domains. Hence, we separate them using following measures from the
Fast Fourier Transform (FFT) spectrum of the acceleration data window:

– Dominant Amplitude (Ad), the value of the largest Discrete Fourier Transform
(DFT) coefficient

– Dominant Frequency (fd), the frequency component exhibiting Ad

– Peak Sharpness (ps), the sum of squares of slopes for k DFT coefficients on
either side of the highest peak in the frequency spectrum:

ps =
k−1∑

i=−k

(
A(i) − A(i + 1)

Ad

)2

(1)

where A(0) represents the largest DFT coefficient i.e. Ad.

The last measure differentiates distinct long and narrow peaks with substan-
tial periodicity in the sensor data with otherwise short and wide peaks, which
mostly represent noisy windows. Such wide peak spectrum have been observed
when the mobile device experiences a jerk, e.g. while freely allowing the device
to fall into the pocket. It was observed that except when the mobile device is
hand-held, the order of the peak amplitudes of acceleration values pertaining to
steps is well greater than 1.0m/s2. This is evident because whenever the user
places the device in the upper half of his body, the intensity of net acceleration is
less than as compared to when the device is placed anywhere in the lower body,
such as trouser pockets, where an additional component of the leg movement
and free movement of the device in sometimes very loose pockets (like those in
casual trousers) add up to give a higher resultant acceleration. Next, it was also
found that in almost all of scenarios where the mobile device was placed with
the lower body, the acceleration signals posed a different frequency spectrum,
which contained, no more than, two major peaks, with an additional note that
the amplitude of the second peak was no shorter that ≈ 80% of the amplitude
of the greater peak, as shown in Fig. 2(b).

In order to ensure the validity of the peaks we place limits on Ad followed by
thresholds on ps and no. of peaks, Pn. This flow is shown in Fig. 3. Al is a lower
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(a) Accelerometer Signal

(b) Scaled Positive Frequency Spectrum

Fig. 2. Filtered acceleration signal and
the related frequency spectrum

activity stationary 

If

Al < Ad < 1.0 

If 

Pn< 2 & ps > 0.3 

If 

Pn< 3 & ps > 0.3 
& Ad >= 1.0 

activity non-stationary

Yes 

Yes

NoNo 

Fig. 3. Flow for deciding a stationary
window

threshold limit on Ad and Pn is the number of peaks present with height at least
75 % of Ad. After a stationary window, activity and step update is given after
processing two consecutive windows. Thereafter, updates are provided after each
window.

Step Detection. The process of robust step-detection is important as the accu-
racy of both step count as well as activity classification depends largely on it.
After a data window has been verified, as discussed above, to be non-stationary,
the step detection algorithm is applied to that window. For identifying steps,
we use a peak detection algorithm, with a constraint of minimum number of
samples between two peaks. After identifying peaks, each peak is validated if it
represents an actual step. Li et al. [7] uses Dynamic Time Warping (DTW) tech-
nique with some heuristics in order to validate the detected peaks as steps. As in
Fig. 2(a), number of samples between consecutive steps are not uniform. Instead
the number of samples for the whole step cycle shows the required periodicity.
Naqvi et al. [11] tried to bring out a relationship between step frequency and
threshold for the peak heights using the vertical axis signal from accelerometer.
However their work poses an orientation constraint on the device.

We introduce IPA (Individual Peak Analysis), a novel and a robust method,
in order to perform peak validation. Using information from the frequency spec-
trum of the data window, we get an estimate of the properties of valid peaks.
For all the peaks, we observe two features, viz. peak height, i.e. the difference
between peak crest (pkHt) and the least value until the previous valid peak
(ppm), and the inter-peak intervals (pDiff). It was observed that the product
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of these two parameters in a window is a consistent measure for all the peaks rep-
resenting valid steps. This is also evident from Fig. 4 where the peak height for
peak 2 (pkHt2+ |ppm1,2|) and peak 3 (pkHt3+ |ppm2,3|) varies, but is countered
with their corresponding peak differences (pDiff1,2 and pDiff1,2 respectively).
Hence we derive that this new feature, which we call peakProduct, is a good mea-
sure for classifying accelerometer signal into step and non-step clusters using the
frequency domain analysis. We define peakProduct, Pk as follows:

Pk = (pkHtk − ppmk−1,k) × pDiffk−1,k

fs
(2)

where Pk denotes the product for kth peak in the window and fs is the sampling
frequency. For k = 1, i.e., first peak of the window, last valid peak of previous
window is taken into consideration. Parameters of Eq. 2 are depicted in Fig. 4.

pkHt2

pDiff1,2

1 

pDiff2,3

pkHt3

2 3 

ppm1,2

ppm2,3

Fig. 4. Parameters for Pk

Since the values Ad and fd represent the periodicity of steps, the cycles in
the acceleration signal pertaining to valid steps are expected to exhibit similar
values. The measure corresponding to Pk generated from the frequency spectrum
of the window is Fp = Ad

fd
. After analyzing various windows of steps (≈ 5000)

with the device placed at different positions, it was observed that for almost all
the valid peaks, the product Fp behaved proportionally to the product Pk, as
expected. Hence, the following criterion was selected for a peak to represent a
valid step:

Pk ≥ (τ × Fp) (3)

Using regression we determined that a value of 1.3 for τ gave best validation
results. We call the above peak validation method as IPA. This stage outputs a
step cycle length vector, SCL, where SCLi is the sample difference between ith

valid peak and (i − 2)th valid peak.

Case of Edge Peaks: As with all windowed analysis, there are peaks which are
flat enough to make their presence at the edge of two consecutive windows
(see Fig. 5). Such peaks would typically pass undetected by the peak detection
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algorithm used, producing a glitch in the overall step cycle length vector of the
window. For solving this problem, AcTrak employs a smart technique whereby
we mark the first sample of every window as a peak (if amplitude > 0), which
is then further validated using IPA.

(a) Data Window k (b) Data Window k + 1

Fig. 5. Two consecutive data windows with a flat undetected edge peak

Classification. As mentioned in Sect. 2, substantial research has been done
in the field of activity classification using trained classifiers, which use various
signal features as classification parameters, both amplitude and temporal. Clas-
sification results are fairly accurate [1,6,14] with these measures, but the suc-
cess of the trained classifier depends on the similarity of situations of training
phase and testing phase, which is not completely feasible practically especially
in case of mobile devices which pose wide possibilities of placement options. In
this paper, we have attempted to classify activities without using any train-
ing phase. Towards this end, we use only temporal measures of the activities,
which take care of wide possibilities of amplitude characteristics of the sensor
signals owing to different user positions and even different pocket profiles (jeans
vs. casual trousers). We have chosen a subset of activities from existing classi-
fication researches, viz., walking, brisk walking and jogging/running, which can
be differentiated on their temporal profiles alone, as a step towards a complete
orientation and placement free unobtrusive method. We classify the mentioned
activities using a windowed-analysis whereby we determine threshold step fre-
quencies for the mentioned activities as fbw and fr.

To estimate these thresholds, we gathered data from five subjects of varied
demographics (different from the test subjects used for gauging the classification
performance in Sect. 4) and determined the mean step frequency for each activity
as MSFw,MSFbw and MSFr (Table 1). Thereafter we determined the boundary
thresholds, fbw as MSFw+MSFbw

2 (= 1.85) and fr as MSFbw+MSFr

2 (= 2.4). Using
SCLi from step detection stage, we define four weight measures: w1, w2, w3
and w4 as shown in Fig. 6. The data window is then assigned as representing a
particular activity as shown in Fig. 7. The four weights classify the activities on
the basis of above calculated boundary thresholds, which can be defined with
fair accuracy for a wide demography of persons. The key advantage of using only
temporal features for classification is that it works seamlessly with any option
of device placement.
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Table 1. Step frequencies from test subjects

Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Mean

Walking 1.78 1.72 1.81 1.7 1.755 1.753 (MSFw)

Brisk walking 1.9 2.03 2.033 1.86 1.92 1.9486 (MSFbw)

Running 2.77 2.86 2.97 2.89 2.82 2.862 (MSFr)

sfreqi = Fs/(SCLi/2) 

If 

sfreqi ≥ frw1 = w1 + (fbw-
sfreqi)

2

w2 = w2 + (fbw-sfreqi)
2

w3 = w3 + (fr-sfreqi)
2

w4 = w4 + (fr-sfreqi)
2

Yes 

Yes 

Yes 

If 

sfreqi>1 & 
sfreqi<fbw

sfreq >1 &
sfreq f w

If 

sfreqi ≥ fbw &
sfreqi < fr

fr fbw

sfreq < ff

Fig. 6. Flow for assignment of activity
weights

If w1 > w4 

If w2 > w1 

walking brisk 
walking 

running/ 
jogging 

Yes Yes 

Yes 

If w3 > w4 

Fig. 7. Classification of activities on
the basis of calculated activity weights

4 Experiments and Results

We produce results in a threefold manner, whereby first we show the effective-
ness of the step-counting method and compare it with the established methods.
Then we show the robustness of AcTrak in cancelling out stationary noise caused
by normal operation of the mobile device and in the last phase, we illustrate
the activity detection performance of AcTrak. The application was built on an
iPhone with a sampling frequency of accelerometer as 80 Hz. For analyzing step
count accuracy, four subjects were allowed to walk freely inside a typical office
space, by keeping the phone in different orientations attached to different parts of
the body as shown in Table 2. To compare with the step detection algorithm by
Li et al. [7], five sets of accelerometer data was logged with an iPhone placed in
the subject’s trouser pocket. Results of AcTrak were obtained in real-time while
the algorithm by Li et al. [7] (Peak Detector+Heuristics+DTW) was run offline.
The results are shown in Table 3, where IPA outperforms the DTW in step val-
idation. DTW was observed to deem invalid steps as valid in some very noisy
situations in spite of applying proper heuristics, where IPA correctly eliminated
invalid peaks.



AcTrak - Unobtrusive Activity Detection and Step Counting 455

AcTrak’s error, as in Table 3, is also lower when compared to those of the open
algorithms as analyzed by Marschollek et al. [9], where Wolf method yields least
step detection error of 8.4 %, and also when compared to the energy algorithm
by Schindhelm et al. [13], where the least error yielded is 3.6 %.

Next, the robustness of AcTrak in eliminating the random stationary noise is
demonstrated. Two spells were performed whereby two different users operated
on the mobile phone (games, texting etc.), randomly giving some jerks (placing
on table, allowing the device to freely fall in the pocket etc.) The results were
compared with the algorithm by Li et al. [7]. Results for the two spells, S1 and
S2, are tabulated in Table 4. It can be seen that AcTrak efficiently avoids any
wrong detection of steps in case of stationary noise and random operation of
device, which is important from a practical perspective as already discussed in
Sect. 3.2.

Table 2. AcTrak: step detection performance with various device placements

Sub 1 Sub 2 Sub 3 Sub 4

Aa Db A D A D A D Avg. Error %

Hand 90 76 84 83 96 91 85 70 9.9

Shirt’s pocket 90 90 86 86 93 85 88 88 2.1

Trouser’s front pocket 90 84 85 90 95 96 89 92 4.24

Trouser’s rear pocket 92 90 85 83 95 91 90 81 4.68

Waist clip 89 96 85 84 94 91 87 83 4.2

Avg. error % 6.4 2.12 4.45 7.1 5.02
aActual steps
bDetected steps

Table 3. AcTrak: step detection
performance comparison

A D: [7] D:
AcTrak

Error%:
[7]

Error%:
AcTrak

130 133 132 2.3 1.5

64 72 63 12.5 1.5

54 58 54 7.4 0.0

40 42 41 5.0 2.5

37 41 37 10.8 0.0

Avg. error % 7.6 1.1

Table 4. AcTrak: comparison
of false detections in stationary
noises

Time FDc: [7] FD:AcTrak

S1 50 s 18 2

S2 40 s 16 0
cFalse step detections

Finally the results for activity detection are presented. Here, we used the
HASC corpus 2011 data set [5] with individuals of varied demographics and using
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different devices for data logging. We performed classification for the activities
stay, walk and jog, as available in the data set. We selected a set of 100 persons
randomly to perform the classification and the resulting confusion matrix is
presented in Table 5, where each entry represents the percentage of time classified
under the head of a particular activity by AcTrak. Also the classification of [5]
was preceded by a training phase including up to 80 individuals, where AcTrak
doesn’t use any training. Comparing with the classification accuracy as in [5],
we achieve a better accuracy as shown in Table 5, even after aggregating the
classification accuracy of Jog and Skip [5] to only Jog/Run(AcTrak) and Walk,
Stairs Up and Stairs Down [5] to only Walk(AcTrak) in order to attempt a
sensible and a fair comparison.

Table 5. AcTrak: comparison
of activity classification accuracy
with HASC corpus dataset [5] (all
in % accuracy)

Stay Walk Jog/Run Accuracy [5]

Stay 99.8 0 0.2 86.7

Walk 2.1 96.7 1.2 97.0

Jog/Run 1.2 2.8 96.2 82.3

Table 6. Activity classification
results (all in % error accumu-
lated)

Walk Brisk walk Run

Sub 1 0.00 0.00 0.00

Sub 2 17.19 19.57 0.00

Sub 3 3.33 4.55 15.00

Sub 4 7.02 17.95 0.00

Sub 5 0.00 25.71 8.33

In order to explore the accuracy of brisk walking using AcTrak, which was
not possible in the previous comparison with [5] due to data availability lim-
itation, we carried out an independent experiment using 5 volunteers. As like
the previous case, since unsupervised and training free activity detection was
performed it was very important to validate the algorithm against a variety of
people spanning across demographics. As shown in Fig. 8, the same step-based
activity may produce significantly different accelerometer signal for different sub-
jects. In order to validate that the algorithm works well for most individuals,
a set of five individuals were selected with varying demographies as illustrated
in Table 7, and the volunteers were asked to perform the activities of interest,
viz., walking, brisk-walking and running. Results collected over these subjects
are depicted in Table 6, along with the percentage error accumulated for each
activity.

The error was calculated against ground-truth data of step count annotated
by the subjects themselves. Error percentage is given as:

Error Percentage =
|Total Steps Detected− Steps Detected for Activity|

Total Steps Detected
× 100

As is clear from Table 6, the percentage error between walking and brisk
walking is higher than between walking and running based activities. Also for a
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few subjects, brisk-walking and running came as overlapped activities. To point
the above issue, individual step frequency during each activity for each subject
were also recorded as presented in Table 8 where it can be seen that the step
frequency for walking and brisk-walking for some individuals like subjects 3
and 4, are almost similar. Also for subject 2, brisk-walking and running step-
frequencies are almost equal. Hence, the difference in frequency between walking
and brisk walking is a fuzzy boundary that is open to human interpretation,
whereas the activities of running/jogging can be easily differentiated from others.
So, from Table 6 it is clear that an unconscious mix-up of activities had taken
place during the experiment, leading to a marginally higher error. However, the
purpose of AcTrak is served well, as it is built to correct similar errors often
committed by people during workout sessions.

(a) Profile 1 (b) Profile 2

Fig. 8. Different acceleration signal profiles for brisk walking for two different subjects

Table 7. Demographics of differ-
ent subjects

Age Height Gender Body Weight

Sub 1 25–30 Short Male Slim Light

Sub 2 25–30 Tall Female Fat Heavy

Sub 3 35–40 Short Male Stout Medium

Sub 4 25–30 Tall Male Stout Heavy

Sub 5 40–45 Tall Male Slim Medium

Table 8. Average step frequencies

Walk Brisk walk Run

(1.2–1.85) (1.85–2.4) (>2.4)

Sub 1 1.63 1.89 2.8

Sub 2 1.23 2.44 2.75

Sub 3 1.69 1.86 2.84

Sub 4 1.75 1.82 2.6

Sub 5 1.66 1.8 2.77

5 Conclusion and Future Work

In this work we have depicted AcTrak for unsupervised classification of common
step-based activities on commercially available mobile devices. The method uses
only temporal features, and hence is able to tolerate large variations in signal
due to human imperfections, varied placement options and different activities.
While competitive methods require extensive training, AcTrak requires none.
For step detection, we use IPA to validate steps for multiple activities. Also we
address the problem of false positives due to normal handling of the device.

As a future endeavor, we plan to include options for positioning the device
at places like arm-bands, which is typical for workout sessions. This is a chal-
lenging problem, since multiple components from the arm movements needs to
be captured in addition to vertical acceleration component of the overall body.
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Also we plan to include detection of ascending and descending stairs. Though
already addressed in existing literature, we aim at a completely unsupervised
training-free method. Preliminary observations have shown that such classifica-
tion is possible.
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