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Abstract. We investigate the detection of activities and presence in
the proximity of a mobile phone via the WiFi-RSSI at the phone. This
is the first study to utilise RSSI in received packets at a mobile phone
for the classification of activities. We discuss challenges that hinder the
utilisation of WiFi PHY-layer information, recapitulate lessons learned
and describe the hardware and software employed. Also, we discuss fea-
tures for activity recognition (AR) based on RSSI and present two case
studies. We make available our implemented tools for AR based on RSSI.
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1 Introduction

In urban areas, a mobile device is constantly exposed to (possibly encrypted)
communication. In contrast to traditional communication, where such data is
considered as noise or congestion, we exploit implicit information on environ-
mental situations carried by the signal strength fluctuation of overheard packets.

Fluctuation on WiFi RSSI might indicate presence, the number of people
around or even activities conducted in proximity (cf. Fig. 1).

Localisation of objects and individuals [11] as well as the classification of
activities [13] or crowd counting [15] has been considered recently. We distin-
guish between systems utilising software-defined-radio (SDR) devices to sample
the fluctuation in a received signal and systems leveraging information avail-
able from received data packets. In the former case, due to the higher sam-
pling frequency and additional information available, the recognition accuracy is
generally higher. However, these systems require specialised SDR devices.
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Fig. 1. Illustration of the recognition of activities via RSSI fluctuation

We recognise activities on a single device (a mobile phone) from packets
broadcast by a transmitter not under our control (a WiFi access point (AP)).
In particular, we investigate the frequency of received packets and the distance
between the receiver and the passive subject monitored performing activities as
well as the impact of utilising RSSI from multiple APs. The contributions are

(1) the presentation and discussion of Python-tools to visualise and process cap-
tured RSSI data for the recognition of environmental situations

(2) a discussion of accuracy achieved from RSSI sampled on a mobile phone
(3) an implemented toolchain for RSSI-based device-free passive recognition

This is the first study to demonstrate the recognition of activities in a passive,
device-free, RSSI-based system and the first to leverage an off-the-shelf phone.

2 RF-based Device-Free Recognition

The recognition of movement, activities and gestures from RF-channel features
induced by individuals in proximity not equipped with a transmit or receive
device is generally referred to as device-free-radio-based recognition [10,11,13].

For instance, Sigg et. al recognise activities from the fluctuation of a con-
tinuous signal in [12]. The authors utilise the distance between signal peaks,
the RMS, the third central moment and the entropy of a received signal as
distinguishing features. With multiple receive antennas, also multiple activities
conducted simultaneously can be distinguished [13]. Although Adith et al. demon-
strated that time diversity can compensate for missing spatial diversity in a
single antenna system [1], multiple antennas generally enable advanced recog-
nition techniques. For instance, Hong et. al distinguish a moving individual at
four different locations by applying random matrix theory on the received signal
vectors from multiple antennas [2]. Pu and others demonstrated the accurate dis-
tinction of gestures via micro-Doppler variations from narrow-band signals [4,7].

These studies use highly accurate information on the wireless channel obtained
by SDRs. Such hardware is typically missing in consumer mobile devices.
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Focusing instead on RSSI fluctuation which is commonly available at contem-
porary wireless devices, Patwari and others estimated the breathing frequency
of an individual from the RSSI of packets exchanged by surrounding nodes [6].
Each node in a token-passing protocol transmitted packets at about 4 Hz (result-
ing in packet transmission at 80 Hz when considering all nodes). Authors have
predicted the count of up to 10 stationary or moving individuals [15] from RSSI
within a field of sensor nodes. Other studies consider the detection of activities
(standing, sitting, lying, walking and empty) from RSSI in a sensor network [8].
These systems utilise dedicated transmit and receive nodes and therefore have
full control on the size, payload and frequency of packets transmitted [9].

In a passive, mobile phone-based system, channel access is restricted to the
RSSI or other link quality indicators. These values are computed in the wireless
interface at the receiver with every incoming packet. Clearly, this means that
the sampling rate and the accuracy of the available data is severely reduced.

Another challenge is the access to the WiFi hardware since firmware with
access to WiFi parameters is sparse. Also, standard mobile phone operating
systems prevent root access to the phone’s hardware, which is required to run
the interface in monitor mode. More severe even, most handsets utilise the same
chipset family (e.g. Broadcom bcm4329, bcm4330(B1/B2), bcm4334, bcm4335)
for which the default firmware does not provide access to the desired information.

The use of an external antenna would mitigate these problems1. However,
since this solution considerably extends the dimensions and complexity of the
hardware utilised, we instead used a modified firmware for the above mentioned
Broadcom chipset family that allows to run a WiFi interface in monitor mode [3].

We installed this firmware on a Nexus One running Cyanogen mod 7.2 and
used tcpdump on the interface in monitor mode to capture RSSI of received
packets. In monitor mode, no data can be transmitted so that no impact can be
taken on the frequency of received packets. We can, however, adjust the channel
monitored and utilise multiple APs on the same channel.

To-date, there is no study on passive device-free RF-based AR that leverages
RSSI from environmental sources not under the control of the system. Moreover,
there is no such system running on a mobile phone. We report our experiences
in designing such a system and discuss challenges encountered.

With RF-based recognition on mobile phones, RF-based sensing can be
broadly applied for the recognition on hardware we all carry around constantly.

3 Tools for RSSI-based Activity Recognition

We developed tools to process RSSI data. All tools are written in Python and
are available for download2. They consist of multiple loose coupled components
which are glued together by importing them into an encasing python script, that
defines the workflow (cf. Fig. 2). The tools cover the following tasks:

1 https://github.com/brycethomas/liber80211/blob/master/README.md
2 All tools are available at http://www.stephansigg.de/Mobiquitous2013.tar.gz

https://github.com/brycethomas/liber80211/blob/master/README.md
http://www.stephansigg.de/Mobiquitous2013.tar.gz
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Fig. 2. Schematic overview on the functionality and workflow of our tools

– Obtain RSSI data and other meta-data from pcap files
– Classification, filtering and grouping of packet-data (from the pcap files)
– Feature calculation
– Feature export for the orange data mining toolkit3

– Graphical analysis of features and raw data
– Video analysis of features and raw data

Now we describe how these tasks are achieved and how to reuse components.

3.1 The Pcap Parser

An external capturing tool should be used to record traces of the radio data.
It is important to use a WiFi adapter in monitor mode since otherwise it
performs Ethernet emulation; radio specific information, like RSSI values, are
not accessible then. We assume that captured traces are stored in the .pcap
format.

The pcap files are read by the component Pcap Parser.py. The function
Pcap Parser.parse takes a pcap-filename and optionally the number of packets to
read, as input. It returns a dictionary4 indexed by the sender mac address and
storing objects of type Storage Classes.Sender, defined in Storage Classes.py.
Such object holds metadata5 about senders and the samples gained from them:
Storage Classes.Sample stores RSSI, timestamp, packet type and data rate.

The parsing itself is done by the external library pcapy6 which interfaces
libpcap7. It is also capable of live packet capturing.

3 http://orange.biolab.si/
4 A dictionary (or associative array is a python data type holding key-value pairs.
5 Sender metadata: Type [station, access point, unknown]; Mac Address; SSID
6 http://corelabs.coresecurity.com/index.php?action=view&type=tool&name=

Pcapy
7 http://www.tcpdump.org/

http://orange.biolab.si/
http://corelabs.coresecurity.com/index.php?action=view&type=tool&name=Pcapy
http://corelabs.coresecurity.com/index.php?action=view&type=tool&name=Pcapy
http://www.tcpdump.org/
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3.2 Data Grouping and Feature Calculation

Since the pcap parser clusters the data by sender and determines the types of
these senders, APs with the highest packet count can be picked easily.

Based on the timestamps, samples can be grouped to units. Units are non-
overlapping and contain all samples received in a fixed timespan. This can be
used to normalize non-uniform sample rates; units that contain too few sam-
ples can also be dropped. Timestamp-based annotation data can be assigned to
the respective units, too. These steps are implemented in the Data Grouping.py
component within the function Data Grouping.build units.

Further grouping can be done with the function Data Grouping.windowing .
This function takes a list of units, the desired window size and a boolean value
determining possible overlap. Overlapping windows have an offset of one unit.
Feature calculation is based on these windows. Several features are already imple-
mented in the Features.py component, including: mean, variance, sign. Multiple
features can be combined to one (multidimensional) data point by the function
Features.calculate features. It returns a list of Data Classes.Data Point.

Finally, units, windows and data points can be stored using Python’s pickle
module8. The later described video analysis tool takes this as input.

3.3 Visualization and Export

The calculated features, as well as the raw RSSI data can be plotted by the
component Visualization.py. For this, the external library matplotlib9 is used. It
comes with an interactive plotting mode and various export modules.

Figure 3 displays the interactive plotting mode; in Fig. 3a the whole record-
ing (5 min) is displayed, Fig. 3b shows a zoomed-in part (13 s). PDF-exports of
features and raw data is supported. The module Orange Export.py exports the
features for post-processing in the orange data mining toolkit.

(a) Recorded RSSI data of a complete file (b) Subset of the same file zoomed in

Fig. 3. Visualisation of RSSI raw data in the interactive plot

8 http://docs.python.org/2/library/pickle.html
9 http://matplotlib.org/

http://docs.python.org/2/library/pickle.html
http://matplotlib.org/
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3.4 Video Analysis Tool

Even recognition algorithms based on machine learning depend on human expert
knowledge. A set of meaningful features is chosen manually and calculated over
the raw data in advance. To choose such features a human expert has to gain
knowledge on how the information about the different states (e.g. performed
activities) are contained in the data. The video analysis tool is supposed to help
with this task.

By observing the evolution of raw data as a video stream, a human can
develop an intuitive comprehension about similarities and differences of the data
points during different states/activities. Also, the video analysis tool can show
preprocessed data to provide insight in different aspects of the data (for instance,
histograms). This can be used to investigate possible interim stages and eventu-
ally to develop a new meaningful feature for the problem. If data is tagged, tags
can be associated with colors.

4 Case Study: Device-Free Passive Recognition on
Phones

We conducted case studies in indoor environments at ETH Zurich and TU
Braunschweig. For the recognition we utilised a Nexus One with Cyanogen mod
7.2 and the WiFi driver of [3]. For our case study at ETH Zurich (Sect. 4.2),
we were interested in the sample rate required for RSSI-based recognition. The
study was conducted over four days with repetitions of each experiment on the
consecutive days. The phone was placed on a table but exact position and ori-
entation of the phone and surrounding objects was intentionally altered.

The case studies described in Sect. 4.3 were conducted at TU-Braunschweig
over two consecutive days with repetitions of experiments on both days. We
investigated the impact of the distance of an individual to the phone. For this,
we fixed the location of the phone but altered the surrounding furniture (chairs,
tables, board). On the floor, locations were marked in increasing distance of 0.5 m
up to 4.0 m. At these locations, an individual would walk around or perform
gestures for at least 5 min. In addition we exploited that two APs were present
in this scenario to investigate the impact of the choice of the AP.

4.1 Suitable Features for RSSI-based Recognition

We initially considered a set of 18 features. Figure 4 details the most relevant
of those. Features were generated over a window of 20 RSSI samples each. We
applied a feature subset selection process utilising a relief function with 20 neigh-
bours and 50 reference examples. By this, the feature set has been reduced to a
set of 12 features (cf. Table 1). Additionally, we manually exploited combinations
of the resulting features to identify those which are most expressive.

Several combinations of the features mean, median, variance, maximum and
the difference between minimum and maximum achieved best classification results.
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Fig. 4. Features utilised for the classification of activities. For space limitations, we
omit the well known definitions of a signal’s fast Fourier transformation and a signal’s
entropy. Equally, the definition of the third central moment and the difference between
subsequent maxima are not listed here for their simplicity.
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Table 1. Features and their significance after feature selection

Significance Feature description

0.023 Maximum signal strength
0.010 Mean FFT
0.003 Normalised spectral energy
0.003 Mean signal strength
0.003 Median of the signal’s strength
0.003 Difference between minimum and the maximum in one sample window
0.003 Minimum signal strength
0.002 Standard deviation of the signal’s strength
0.002 Variance of the signal’s strength
0.002 Signal peaks within 10% of a maximum
0.001 Third central moment
0.000 Entropy

For the case studies, we decided for a feature combination of mean, variance, max-
imum and difference between maximum and minimum.

4.2 Impact of the Sampling Frequency

Utilising RSSI from a system not covering a transmitter, one of our main con-
cerns has been the sample rate. Since the receiver has no impact on the number
of incoming packets, it has to rely on data connections made by other devices.
From our experiments, we frequently captured about 50 to 70 packets per second
on one channel (all APs and packet types). Considering only meaningful packets
from a single AP, this figure easily dropped below 20 or even 10 on average. In
addition, the stream of packets is fluctuating considerably. We might experience
a second with only one or two packets followed by one with twice the average
number of packets. Clearly, this fluctuation also affects the value calculated for
the various features. In order to estimate the impact of a specific sample rate,
we kept the window size constant and uniformly ignored or duplicated packets
when a desired packet count was not met.

We distinguish between an empty office at ETH Zurich where the mobile
phone is lying on a table, the same room with a person walking next to the
table and a person holding the phone and handling it. Recordings have been
taken over four days at different times of day. Each single activity is sampled
for five minutes in a row. This was repeated on each day twice for all activities.
Overall, about three hours of continuously sampled data has been produced and
was employed for the study.

We utilised a Naive Bayes classifier with 100 sample points and a Loess
window of 0.5, a classification tree in the implementation of the orange data
mining tool with two or more instances at its leaves and a k-NN classifier with
k = 20 (best results have been achieved with k between 10 and 20), and a 10-fold
cross validation. Figure 5 depicts our results.
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(a) Classification Accuracy (b) Information Score

(c) Brier Score (d) Area under the ROC curve (AUC)

Fig. 5. Classification results for the Naive Bayes, classification tree and k-NN classifier.
The distinct tables show the performance with distinct sample rates.

The figure details the overall classification accuracy (CA) for all classifiers
together with their information score (IS), Brier score and the area under the
ROC10 curve (AUC) as defined by [5,14]. The information score presents a mea-
sure of how well the classifier could learn a specific data set. The higher the
value, the more often did the classifier predict the correct class. Brier score
measures the mean squared difference between a predicted probability for an
outcome and the actual ground truth. The AUC describes the probability that a
classifier will rank a randomly chosen positive instance higher than a randomly
chosen negative one.

Table 2. Confusion matrices for the Naive Bayes, classification tree and k-NN classifiers
with a sample rate (RSSI information) of 20 samples per second

Classification
activity empty holding recall

T
ru

th activity .714 .007 .279 .71
empty .007 .936 .057 .94

holding .286 .043 .671 .67
precision .709 .949 .667

(a) Naive Bayes classifier

Classification
activity empty holding rec
.879 .007 .114 .88
.029 .9 .071 .90
.186 .057 .757 .76
.804 .933 .803

(b) Classification tree

Classification
activity empty holding rec
.829 .014 .157 .83
.021 .921 .057 .92
.207 .036 .757 .76
.784 .949 .779

(c) k-NN classifier

10 Receiver Operating Characteristic.
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(a) Classif. Accuracy(b) Information Score (c) Brier Score (d) AUC score

Fig. 6. Classification results for the Naive Bayes, classification tree and k-NN classifier.
The distinct tables show the performance with 5 samples/second and for different
combinations of data obtained from two access points.

The sample rate impacts these statistics. The values improve up to a rate of
20 samples per second and then worsens again. We account this to the increased
fraction of duplicated samples to artificially achieve a steady sample rate over
time (samples we added to achieve a steady sample rate). Table 2 details the
confusion matrices achieved for the various classifiers in this scenario.

4.3 Impact of the Distance to a Receiver

We also considered in the distance to the WiFi receiver of a mobile phone
in which still a recognition is feasible. To this end, we conduct another case
study in a lecture room of TU Braunschweig. In the study, the mobile phone is
placed on top of a table, capturing packet information while a person is moving
in varying distance to the device. We investigated the accuracy to distinguish
between an empty environment, the environment with a person moving in 4 m
distance and the environment with a person moving closer to the receiving mobile
phone. Naturally, the classification accuracy deteriorates when the locations in
which activity was performed are closer together (cf. Fig. 6). Table 3 shows for
the k-NN classifier11 that in this setting a person moving in 0.5 m distance can
be well distinguished from the empty case and from a person moving in greater
distance. While still in 4 m distance the signal received is distinguishable from
an empty room, the accuracy is considerably lower.

Table 3. Confusion for activities in different distances to the phone (AP 1; k-NN)

Classification
0.5m 4.0m empty recall

T
ru

th 0.5m .981 .019 .981
4.0m .026 .768 .206 .768

empty .013 .310 .677 .677
precis. .962 .702 .763

(a) Near and far

Classification
2.0m 4.0m empty recall

2.0m .872 .115 .013 .872
4.0m .244 .603 .154 .603

empty .077 .205 .718 .718
precis. .731 .653 .812

(b) Medium and far

Classification
3.5m 4.0m empty recall

3.5m .530 .349 .121 .530
4.0m .403 .396 .201 .396

empty .154 .188 .658 .658
precis .488 .424 .671

(c) Greater distance

11 For space constraints, we only depict results of the k-NN classifier. Results with
other classifiers have been comparable.
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Table 4. Utilising data from another access point in the same scenario

Classification
0.5m 4.0m empty recall

G
r.

tr
u
th 0.5m .940 .034 .027 .940

4.0m .074 .732 .195 .732
empty .020 .174 .805 .805

precision .909 .779 .784

(a) AP 2; k-NN classifier

Classification
0.5m 4.0m empty recall

G
r.

tr
u
th 0.5m 1.0 1.0

4.0m .027 .846 .128 .846
empty .007 .134 .859 .859

precision .968 .863 .871

(b) AP 1+2; k-NN classifier

When the distance to the person moving is increased, naturally, the cases are
more likely confused. However, note that in all cases the movement conducted
in 4 m distance can be distinguished from the other two cases. Consequently, we
conclude that there is a good potential to classify activities also in this distance
so that for standard indoor environments a mobile phone can cover a typical
room sufficiently.

In the case study described in Sect. 4.3, two dominant APs were present
operating on the same frequency. Although the signal strength between both
differed by about 10 dBm on average, the classification accuracy reached was
comparable using packets from either AP (cf. Tables 3 and 4). However, by util-
ising the information observed from both APs, it is possible to further tweak the
classification performance. We created features considering the data received
from both APs simultaneously.

When the results are combined so that features are created from RSSI
information from both APs, the accuracy can be further improved (cf. Fig. 6).
Tables 4a and b depict the confusion matrices for the k-NN classifier in both
cases.

5 Conclusion

We have presented our experiences with the recognition of activities from RSSI
samples captured on a mobile phone. This is the first study of a passive RSSI-
based AR system and the first to exploit the capabilities of an off-the-shelf
mobile phone. In particular, we investigated the impact of the sampling rate,
the distance of the observed passive subject and discussed the consideration
of RSSI samples from multiple APs. In addition, we published and explained
the tools developed in the scope of this study for the use in related research
projects. We envision, that this research will open new possibilities for AR since
mobile phones are very personal devices carried virtually everywhere and since,
unlike with inertial sensors, RSSI-based AR is feasible also when the device is
not carried on the body.
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within the Postdoc-Programme of the German Academic Exchange Service (DAAD).
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