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Abstract. The development of human activity monitoring has allowed
the creation of multiple applications, among them is the recognition of
high falls risk activities of older people for the mitigation of falls occur-
rences. In this study, we apply a graphical model based classification
technique (conditional random field) to evaluate various sliding window
based techniques for the real time prediction of activities in older sub-
jects wearing a passive (batteryless) sensor enabled RFID tag. The sys-
tem achieved maximum overall real time activity prediction accuracy of
95 % using a time weighted windowing technique to aggregate contextual
information to input sensor data.
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1 Introduction

The development of accurate human activity recognition methods is a growing
field of study as many applications can be derived from this base. One application
is the mitigation of high falls risk activities of older people in hospitals or age care
facilities, as falls events occur especially in the bedroom [1]. A correct recognition
of such high risk events can lead to an intervention to mitigate an event that
can potentially cause further physical injury and mental distress [12]. For high
falls risk mitigation the accurate recognition of real time activities is paramount
as most falls occur during transfer activities, which are changes of static activities
or locations (e.g. sit to stand, stand to sit or ambulating) [1,14]. In this article we
consider activity recognition in the context of identifying high falls risk related
activities.

Recent work on real time recognition of events have succeeded using body
sensors [2,4,8,9,13,17], using tri-axial accelerometers, magnetometers and gyro-
scopes. These studies along with research using video images [11,18] or
environment sensors [7,10] required the use of different time or data (number of
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samples, pixels) based segmentation approaches to extract relevant information
for data classification.

The difficulty for real time recognition of activities using sensors is that
individual sensor readings are limited in time-space and by themselves provide
little additional information about the related activity for the classifier to predict
an activity correctly. In order to provide further contextual information to data
collected [6], incoming sensor data stream is segmented for feature extraction
prior to evaluation.

Using data segments is not precise as there is no pre-defined window size and
sizes may differ depending on the application [4,8] or sensor platform used [2,8].
In addition, a passive sensor’s data stream is not continuous and data collected
can be incomplete or noise distorted. These factors can influence the informa-
tion quality of the individual data segment. Moreover, the occurrence and infor-
mation value of future readings are uncertain and the classifier relies exclusively
on current and past information to emit a result. The classifier performance is
also affected by the presence of data from unrelated activities (e.g. distant past
activities’ data or sensor readings from unrelated areas or activities) and data
from unrelated activities may outweigh current activity information in a given
data segment [7].

This paper describes several sliding window segmentation methods for a real
time per sensor datum prediction of human activities from a sensor and ID data
stream from a battery-less wearable radio frequency identification (RFID) plat-
form, called W2ISP [5]. Our main focus is the implementation and evaluation of
the effectiveness of segmentation methods using a multi-class classifier to identify
incoming activity data in real time. We used a conditional random field (CRF)
classifier because of its desirable sequence dependency modelling capabilities.
The main contributions of this study are: (i) development of a real time CRF
based classifier for activity recognition of passive sensor and ID data streams;
(ii) implementation and testing of multiple fixed and dynamic sized windowing
methods for contextual information extraction based on data characteristics;
and (iii) experimental demonstration of the accuracy of these methods using
data gathered from a trial with older subjects (66–86 years old) in a clinical
environment.

The rest of the paper is described as follows: Sect. 2 gives a brief overview of
related work, Sect. 3 discusses the methodology for our windowing approaches.
Section 4 shows the evaluation results from the various methods in the previous
Section and finally conclusions are given in Sect. 5.

2 Related Work

There are several studies with as many approaches for the real time recognition
of human activities using threshold and machine learning classification systems.
Some real time results [4,8,13] imply the timely recognition of body positions or
postures, however, these methods required a data buffer from which the classifier
makes a prediction. Hence, results are available periodically rather than having
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an output per individual sensor reading; some studies considered overlapping of
data to provide faster output while having larger data buffers [8]. A study by
Wang et al. [17] used a 1 s sliding window and a smartphone processing platform
producing a recognition delay (time elapsed from ground truth to prediction of
the ground truth) of ∼ 5.7 s. Other real time smartphone based studies relied
on the sensors embedded in the device [9] or were used as a hub for other worn
sensors [2]. Current smartphones are not imperceptible devices and their usage
with older populations needs to be studied.

All these methods used different approaches to segmenting and windowing
data. Most tried empirically different segment sizes to find that which maximized
the resulting accuracy using the same set of features [8,17] or the window selec-
tion was arbitrary [9]; while others were limited by the underlying technology
itself [4]. In addition, most of these studies produced periodical results only and
used battery operated sensors which are bulky and not appropriate for older or
frail subjects. Furthermore, none has been evaluated on an older population.

In the work of Krishnan et al. [7], several methods were applied to evaluate
the best sliding window method for smart home data sets. Each method provided
extra features for added information about the last received sample. The nature
of irregular and incomplete data from environment sensors in the smart home is
similar to that of passive worn sensors in an RFID platform, as is our case. This
research study implements methods adapted from [3,7] to the ID and sensor
data stream from sensor enabled passive RFID devices to evaluate time series
data segmentation approaches for real time classification of scripted activities
from older people.

3 Methodology

In this section, we present the developed windowing methods for feature extrac-
tion and describe the datasets and classification system used. These methods are
based on the passive sensor platform (W2ISP) constraints where signal collec-
tion is irregular, noisy and incomplete. Our RFID deployments used antennae
location to obtain readings from targeted areas of high falls risk activities (in
and around a bed and a chair) in two clinical rooms (Sect. 3.7).

Using a tri-axial acceleration (ADXL330) data stream from a W2ISP we pre-
dicted the activity label (Sect. 3.7) that best represented every datum received.
Our feature vector included: V = [af , av, al, sin(θ), RSSI,AID,�T ] for the
recognition of bed exits, where af , av and al are frontal, vertical and lateral
components of the tri-axial accelerometer sensor, sin(θ) refers to the body tilt
angle, RSSI is the strength (power) of the signal received from the W2ISP by
an RFID reader, AID = {aID1, .., aIDA} (where A is the number of anten-
nae) is the identifier of the antenna that collected the datum and �T is the
time difference between current and previous reading [15]. In [15] we obtained
high accuracy for label detection using batch processing of activities sequences
segmented by trial and by patient with a CRF classifier. In this study, we use
CRF for real time activity recognition and apply different windowing techniques
for feature extraction and predict the activity label of the last received sensor
reading.
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3.1 Activity Windowing (AW)

This approach considers that the system knows in advance the activity that is
being performed and segments the data per each activity for both training and
testing stages. Although knowing the activities performed beforehand in a real
environment is implausible given that the separation of activities is unambiguous,
maximum accuracy is expected from the predicted labels. Given this condition,
we consider this technique our golden standard. However, this approach does
not perform predictions in real-time but predicts samples in different sized pre-
segmented batches where each batch represents a single activity. We use the
generic set of features V for each observed sensor reading (Sect. 3) as input to
the classifier.

3.2 Fixed Sample Windowing (FSW)

This approach considers a sliding window with fixed number of samples. The
windowed sample sequence provides contextual information about the last sam-
ple in the window to enable the classifier to emit a more accurate prediction [7].
Different window sizes can better fit the duration of different activities (labels)
as was the case in Sect. 3.1 when the activities are already known. To illustrate
this case, consider resting positions such as lying or sitting on bed or the chair
that usually last several minutes or hours when compared to dynamic activities
such as walking. The lengths of such events are disproportionate and difficult to
segment in real data; whereas a fixed sample segmentation is simple to produce.

The selection of window size is an empirical process, where the best result
corresponds to the segment length that best fits all activities. For this analysis
additional features are extracted and added to our generic feature vector V as
contextual information. In contrast to [7] the set of extra features corresponds
to the count of events reported by each antenna in the window, as we can differ-
entiate sensor reading origin by the antenna used. Hence, the number of extra
features is equal to the number of antennae present. Moreover, these summed
amounts are further normalized to four levels of importance (0: unused, 1: low,
2: medium and 3: high importance) computed as follows:

F (i, k) =
⌈ 3 ∗ ci,k∑A

j=1 cj,k

⌉
(1)

where A is the number of antennae and ci,k corresponds to the count of antenna
i events in the window for the last reading k.

Two issues are present in this method. First, the window duration can span
a long time and readings from distant past activities can affect the classifier
decision. Second, a large volume of readings from previous activities unrelated
to the current activity or spurious readings from distant antennae covering a
distinct area present in the window can also alter the classifier decision. In order
to meet these issues, weighted features are considered to balance the influence
of unrelated data [7] and are described in Sects. 3.3 and 3.4.
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3.3 Time Weighted Windowing (TWW)

This method is based on FSW in Sect. 3.2, as it uses a fixed sample window.
However, more importance is given to events closer to the last sample to reduce the
effect of historical events on the classifier. This technique gives each sample i in
a window a distinct weight T (i, k) which is a function of the time difference �i,k

between the last received sample k and sample i in the fixed time window. The
evaluation of the weights is defined by an exponential function:

T (i, k) =
{

0 if �i,k >= 1
D

exp (−D ∗ �i,k) else (2)

where D is the rate of decay, if D > 1 elements very close (�i,k <1 s) are given
priority as the exponential function decays quickly; smaller values of D allows
the function to consider a wider time range of sensor readings. The method also
considers a limited amount of time, bounded by �i,k = 1

D , as larger values of
�i,k provide less weight. The extra features now consist of the sum of the weights
for the readings corresponding to each antenna in the window and replaces the
extra features from FSW method. Hence, the extra features are defined by the
vector: W = [

∑
T (i, k)δ(ai, aID1), . . . ,

∑
T (i, k)δ(ai, aIDA)], where ai ∈ AID

is the antenna corresponding to the ith sample and the function δ(am, an) is
defined as:

δ(am, an) =
{

0 if am �= an

1 if am = an
(3)

In addition, we normalize vector W to levels of importance using (1).

3.4 Mutual Information Windowing (MI)

Similarly to TWW (see Sect. 3.3), this method uses a fixed sample window (see
Sect. 3.2). However, this approach intends to reduce the influence of readings
from antennae focused on areas unrelated to the current activity. In general,
samples of different activities are collected from antennae depending on the
activity location. Nevertheless, readings from distant antennae occur in real data
with low received energy (RSSI), although these readings are rare. We consider
two types of mutual information between the ith sample and the last sample k
in a segmented window: (i) MI1: mutual information (MI) of two consecutive
readings occurring from any pair of antennae as defined in [7] and given in (4);
and (ii) MI2: the MI of two consecutive readings occurring from a given pair
of antennae at any time (i.e. disregards the order of antennae occurrence while
focusing only on antenna relationships), defined in (5), where N is the number
of elements in the training sequence, ai ∈ AID and function δ(.) is as defined
in (3).

MI1(m,n) =
1
N

N−1∑
j=1

δ(aj , am)δ(aj+1, an) (4)

MI2(m,n) =
1
N

N−1∑
j=1

(δ(aj , am)δ(aj+1, an) + δ(aj , an)δ(aj+1, am)) (5)
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The mutual information is built from the entire training data set prior to test-
ing where a square matrix (A×A) with all possible antennae pairs and a triangu-
lar matrix is obtained for MI1 and MI2 respectively. These MI weights are used
to build the extra features, where all sensor readings in a window are weighted
in relation to the last reading and summed in relation to their corresponding
antenna, obtaining the vector W = [

∑
MIr(i, k)δ(ai, aID1), . . . ,

∑
MIr(i, k)

δ(ai, aIDA)] where r = {1, 2}. Vector W is normalized to levels of importance
using (1).

3.5 Dynamic Windowing (DW)

This method considers a time based window of varying size using statistical
properties of the data to continually adapt the window size. This method, first
devised by Jeffery et al. [3] for cleaning of RFID data streams, was applied
because the algorithm balances the need to provide contextual information by
increasing the window size and reducing the window size when sensor readings
become more sporadic. This method considers a stepped window size increments
(0.5 s per sample) but reduction is rapid (halving the window size) when required
[3]. We assume a standard epoch1 duration of 0.25 s and sensor observation
probability of 90% [3]. For this method we use the extra features of the FSW
method (see Sect. 3.2).

3.6 Fixed Time Windowing (FTW)

This method considers a sliding window of fixed time duration T ∗, as opposed
to a dynamic changing time window size as in DW. All readings within the time
interval T ∗ from the last received reading k are considered in a window. Given
the irregular collection of data (due to the nature of the passive device), the
number of samples per segment will differ. For this method we use the extra
features of the FSW method (see Sect. 3.2).

3.7 Datasets

We used data from two clinical room deployments as described in [15]; where
both datasets (RoomSet1 and RoomSet2 ) used four and three antennae respec-
tively. In RoomSet1 one antenna is placed on top of the bed (ceiling) and three
on the walls focusing on the chair and around the bed providing a wide area
of coverage. In RoomSet2 two antennae were placed on top of the bed (ceil-
ing) and one antenna focused on the chair. Fourteen older subjects were trialled
(age:74.6±4.9), wearing the W2ISP on top of their garments. They performed a
series of scripted activities which included: (i) lying (in bed); (ii) sitting in bed;
(iii) sitting in chair; and (iv) ambulating. The CRF classifier was used to predict
these four activity labels. In order to collect the ground truth, activities were
annotated in real time by an observer. The same basic features were extracted
1 Epoch refers to a group of RFID interrogation cycles.
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for each dataset; however, the total number of features differed for both datasets
as the aggregated extra features are based on their antennae deployment.

3.8 Classifier

In this research, we used a linear chain CRF, a model for structured classification
(prediction) [16], as in a previous study [15]. We have preferred this method as
it models the dependencies of activities in a sequence. Due to this advantage
the system is trained using the complete sequence of activities of each training
trial for parameter estimation with the exception of the first method (AW) as
it assumes activities are previously known and independent from each other.
In CRF, training and testing stages require the probabilistic inference of the
target labels (hidden variables). In general, the inference process allows us to
obtain: (i) marginal probabilities of the labels (using sum-product algorithm);
and (ii) the most probable global state of all our hidden variables i.e. maximum
a posteriori (MAP) assignment (using max-product algorithm). Our application
requires real time response, thus we use the sum product algorithm (which only
propagates the messages forwards) to find the marginal probability of the current
hidden variable given the past and current observation efficiently. The prediction
is done by maximizing the marginal probability.

The sum product algorithm propagates messages for every edge (i, j) con-
necting nodes i and j in a graph. In Fig. 1, circles represent the state variables
Y = {y1, . . . , yk} and squares represent factors (node and edge potentials). The
message updating and marginal probability are computed as follows:

mi,k(sk) =
∑
si

(ψ(si)ψ(si, sk)
∏

t∈Ni\{k}
mt,i(si)) (6)

p(sk) = 1
Z ψ(sk)

∏
i∈Nk

mi,k(sk) (7)

where ψ(si) and ψ(si, sk) are node and edge potential respectively, si represents
node i, Ni\{k} represents the set of neighbours of node i with the exception of
node k, p is the marginal probability and Z is a normalization factor. In the case
of our real time application, we are only interested in the marginal probability
of the last variable (yk) given the input observation as shown in Fig. 1, where
the marginal probability of variable yk reduces to:

p(yk | x1:k, λ) = 1
Z(λ,x1:k)

ψ(yk;x1:k, λ)mk−1,k(yk;x1:k, λ) (8)

where messages mi,j are calculated using (6) and λ = {λt} represents the
parameters estimated in training. Moreover, the message mk−1,k(yk;x1:k, λ) is
recursive as it depends on previous messages as in the expression mk−1,k(yk;x1:k,
λ) =

∑
yk−1

ψ(yk−1;x1:k, λ)ψ(yk−1, yk;x1:k, λ)mk−2,k−1(yk−1;x1:k−1, λ).
This derivation for the sum product is appropriate for real time streaming

data as the sequence of information is always increasing and an activity label
prediction is required for each datum. Therefore, we apply the expression in (8)
for inference during testing.
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Fig. 1. Message propagation for the probability distribution of yk

3.9 Statistical Analysis

The analysis of results was obtained using a 10-fold cross validation where gen-
eral performance was measured using overall accuracy (referred as accuracy and
given in (9)), and individual label performance using geometric mean (GM) and
Fscore as defined in (9), where N is the number of readings, TP is true positives
and recall, specificity and precision are determined as per standard definitions.
Results are shown as mean ± standard deviation (SD). Statistical significance
is measured using a two-tailed two-sample t-test at 5 % significance level.

Accu =
TP

N
GM =

√
recall.specificity Fscore =

2.recall.precision

recall + precision
(9)

4 Evaluation

The first evaluation corresponds to labelling a pre-segmented sequence in the AW
method. High accuracies (> 97.7%) and high Fscore and GM values (> 87%
and > 92%) are obtained for RoomSet1 and RoomSet2 datasets (see Table 2).
In RoomSet2, metrics for sitting-in-chair are affected by one test fold where
only 17 samples were present for that activity which was missed (false negative),
affecting all metrics. Accuracies for the FSW method are shown in Table 1(a),
which tested sliding windows of 5 to 60 samples. Highest accuracy for RoomSet1
is achieved between N = 10 and 20; the largest source of error is caused by false
negatives (FN) of sitting-in-bed and false positives (FP) in ambulating labels.
These errors are minimal in AW approach. RoomSet2 is affected by one fold
where samples collected during lying and sitting-in-bed caused mutual errors,
which also affected the rest of the methods. Given that RoomSet2 metrics do
not vary in this set of window sizes, we consider the window sample size of 15
as the best parameter for this method.

The TWW method was tested using a fixed window size of 15 samples as
found in FSW method. For this study we tested decay rate values of D = 2−7 to
20 as shown in Table 1(b). Highest accuracy for RoomSet1 occurs for D = 2−2

and then drops slightly. In contrast, best performance for RoomSet2 occurs
between D = 2−1 to 2−3 with some folds affected by mutual error between lying
and sitting-in-bed as in FSW method. However, accuracy is not significantly
different across RoomSet2 (p > 0.34). Hence, we consider a decay rate of D =
2−2 as the best parameter for this windowing case.

Results for MI windowing indicates that both MI1 and MI2 approaches (see
Sect. 3.4) obtained similar results as shown in Table 2, where results are almost
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identical. From the MI1 matrices shown below, we can see that for RoomSet1
there is little interaction between antennae, with higher values for self transition
of antennae as found in [7]; in RoomSet2 there are strong transition values for
antennae aID2 and aID3 both of which are located on top of the bed and report
most in-bed and around-bed sensor readings.

MI1RoomSet1 (%)
aID1 aID2 aID3 aID4

aID1 35.12 0.25 2.18 3.28
aID2 0.22 8.77 0.04 0.06
aID3 2.23 0.03 16.48 4.33
aID4 3.24 0.04 4.36 19.26

MI1RoomSet2 (%)
aID1 aID2 aID3

aID1 3.19 0.16 0.31
aID2 0.17 21.92 18.15
aID3 0.4 18.14 37.42

The DW method produced high accuracy (94.6 %) results for RoomSet2 but for
RoomSet1 results are comparable to those of previous windowing methods as
shown in Table 2. However, Fscore and GM are significantly different compared
to MI (p < 0.01). Partial results for FTW are shown in Table 1(c), where time
durations of 1 to 128 s were tested. The highest accuracies were achieved with a
4 s time window for both datasets. In RoomSet2, there is little variation among
different time windows. In contrast, for RoomSet1 this method achieves the
highest accuracy for all tested methods as seen in Table 2 but this result is still
significantly different from that of the golden standard (p ∼ 10−7).

Finally, we combined time and space based segment contextual information
extraction with expected performance improvement. Combination of FTW and
MI1, introduced mutual information rather than counting events in FTW. The
results for RoomSet1 lie between the amalgamated methods; however, the over-
all performance for RoomSet2 is lower than FTW and MI1. The combination
case of TWW and MI1 introduced extra features from both methods, achiev-
ing the highest accuracy for RoomSet2 which is comparable with our golden
standard (p = 0.14). Results for RoomSet1 are slightly lower than the best per-
formance with FTW method (see Table 2). This is because TWW+MI1 had a
rich extended information. However, in FTW+MI1 the fixed time window did
not bring enough mutual information as the number of samples in a segment
can be as low as one, performing lower than counting per antenna samples.

Further analysis of Table 2 indicates low Fscore and GM values for
RoomSet1 created mostly by FNs and FPs (false positives) for sitting-in-bed
and ambulating respectively. These errors were reduced in the FTW case but
not greatly. Metrics for RoomSet2 were affected by two main causes, one fold in
particular produced large FN and FP for lying and sitting-in-bed respectively
and few readings for sitting-in-chair label which in some folds are ignored pro-
duced recall, Fscore and GM values of zero and affected these averages. In both
datasets, the low composition of ambulating activity data (not shown) compared
to the other states affected individual and average metrics as only a couple of
seconds of data are retrieved as a subject walked away from the reading range
of antennae near the bed or chair.

These results indicate the real time inference algorithm (marginal infer-
ence) found most difficulty predicting ambulating and sitting-in-bed samples
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for RoomSet1. In general, no method was able to produce maximum results for
both datasets, although results for FTW and TWW+MI1 methods are compa-
rable (p > 0.48) in both datasets. RoomSet2 disposition using two antennae
focusing on the bed was able to avoid classification error in RoomSet1, however
there were relatively smaller number of sensor readings for sitting-in-chair as
only one antenna powers the tag in RoomSet2. In terms of real time analysis,
test inference calculation time for both datasets is of 5.12µs and 7.31µs per sam-
ple respectively and this time is minimal compared with the observed minimum
inter-sample duration time of 25 ms. These results were obtained using algo-
rithms implemented in MATLAB scripts and mex code but these algorithms
will run faster if developed in a low level language as C/C++ and therefore
our results also demonstrate that the classifier is capable of real time sample
prediction.

Table 1. Partial accuracies for FSW, TWW and FTW methods

(a) Accuracy for Fixed Sample Window method

Datasets N = 5 N = 10 N = 15 N = 20 N = 30 N = 60

RoomSet1 70.6±6.0% 71.2±6.1% 72.5±5.9% 72.2±6.2% 70.6±6.2% 70.7±5.9%

RoomSet2 94.9±4.3% 91.9±11.5% 91.8±11.2% 91.7±11.3% 91.2±11.6% 93.5±6.9%

(b) Accuracy for Time Weighted Window method

Datasets D = 20 D = 2−1 D = 2−2 D = 2−3 D = 2−4 D = 2−7

RoomSet1 70.3±6.1% 71.6±6.1% 73.1±7.5% 71.8±6.2% 71.7±6.0% 71.8±6.1%

RoomSet2 91.3±11.2% 94.3±5.0% 91.7±11.2% 93.5±4.6% 92.1±11.1% 90.2±10.8%

(c) Accuracy for Fixed Time Window method

Datasets T = 1 T = 2 T = 4 T = 8 T = 16 T = 128

RoomSet1 70.5±6.2% 73.9±7.1% 78.2±7.3% 73.6±6.8% 71.9±6.7% 70.2±5.7%

RoomSet2 91.5±11.3% 91.6±11.4% 92.3±11.2% 92.2±11.1% 92.2±11.0% 91.2±11.0%

Table 2. Classification accuracy for all tested methods for both datasets, including
average Fscore and GM for all activities.

RoomSet1 (%) RoomSet2 (%)

Method Accuracy Fscore GM Accuracy Fscore GM

AW 98.1±1.8 93.5±5.5 96.1±3.7 97.7±3.6 87.0±21.0 92.8±16.6

FSW 72.5±6.0 57.9±6.5 76.6±5.5 91.8±11.2 67.5±23.2 82.5±17.7

TWW 73.1±7.5 59.0±9.2 77.1±8.0 91.7±11.2 69.3±21.4 84.4±18.0

MI1 70.8±6.0 55.2±5.0 74.0±4.3 94.4±5.2 68.6±20.5 84.3±17.2

MI2 70.8±6.1 55.3±5.4 74.1±4.9 93.8±5.2 67.5±20.4 83.3±16.8

DW 74.7±8.1 61.2±10.2 79.2±8.4 94.6±4.7 68.4±22.7 83.4±18.6

FTW 78.2 ± 7.3 65.1 ± 11.5 82.1 ± 9.2 92.3±11.2 68.5±23.9 82.8±18.7

FTW+MI1 71.5±6.0 56.6±5.6 75.2±4.8 91.7±11.1 67.1±22.9 82.9±17.8

TWW+MI1 77.1±7.8 63.8±11.5 81.0±9.1 95.0 ± 4.2 71.6 ± 20.2 85.8 ± 16.8
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5 Conclusions

In this study we have developed a number of sliding window based data segmen-
tation techniques for real time prediction of human activities where contextual
information was introduced as extra features to the input observation to improve
classification accuracy. Although no segmentation method exceeded the golden
standard for both datasets, methods TWW+MI1 and FTW achieved high per-
formance metrics in both datasets and had comparable results with the golden
standard with RoomSet2 dataset. In general RoomSet2 achieved better results
than RoomSet1, due to its more focused antennae disposition which caused less
prediction errors as opposed to a wider area coverage as in RoomSet1. Moreover,
the system can process real time streaming data using fixed or variable window-
ing approaches on a sample by sample basis with high accuracy as in the case of
RoomSet2 ; and using a CRF classifier which learned the model using complete
sequences of activities and applied into real time label prediction.

A limitation comes from the scripted nature of the activity datasets. Nonethe-
less, all related sensor worn research (see Sect. 2) were based on scripted set of
activities, where execution order was random or sequential. Further analysis is
required to determine whether these segmentation techniques based on scripted
models can perform well with unscripted and undirected activities.

Finally, this work sets the foundation for high level applications such as high
falls risk activities (bed and chair ingress or exit, room exiting and bathroom
access) recognition in real time.
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