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Abstract. In ubiquitous computing environments, we are surrounded
by significant amounts of context information about our individual sit-
uations and the situations we share with others around us. Along with
the widespread emergence of ubiquitous computing and the availabil-
ity of context information comes threats to personal privacy that result
from sharing information about ourselves with others in the vicinity. We
define an individual’s context to be a potentially private piece of infor-
mation. Given the individual context of multiple participants, one can
compute an aggregate context that represents a shared state while at
the same time preserves individual participants’ privacy. In this paper,
we describe three approaches to computing an aggregate measure of a
group’s context while maintaining a balance between the desire to share
information and the desire to retain control over private information.
Our approaches allow dynamic tuning of information release according
to trust levels of the participants within communication range. By evalu-
ating our approaches through simulation, we show that sharing aggregate
context can significantly increase the rate at which a group of co-located
users learns an aggregate measure of their shared context. Further, our
approaches can accomplish high quality context sharing even in situa-
tions with low levels of trust, assuming the availability of a small number
of highly trustworthy partners.

1 Introduction

Ubiquitous computing allows users to share information about their personal
situations directly with one another, enabling users to collaboratively construct
aggregate views of their shared local situations, or context. Constructing these
aggregate views requires sharing potentially highly sensitive and personal infor-
mation, which in turn relies on users’ trust in one another. Imagine a mobile app
that can communicate with other nearby mobile devices and retrieve the names
of the apps that other mobile devices’ users are using. This could be useful from
a social connectivity perspective; we could learn what other apps that other
people in a similar social situation are using at a given time. For example, at a
sporting event, we could determine what other apps nearby spectators are using
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to augment their experiences, for example to check scores or view replays. How-
ever, the app poses a significant threat to the privacy of the mobile device users.
Our approach strives to address the tension between this privacy constraint and
the incentives for exchanging context information among nearby mobile devices.

This paper explores practical mechanisms to enable ubiquitous computing
users to construct aggregate views of their shared context while retaining con-
trol over the dissemination of their private data. In our target environment,
participants with smart mobile devices (e.g., smart phones) collect and share
information with one another directly (i.e., across peer-to-peer links) without
the support of an infrastructure. Such an environment is becoming increasingly
commonplace as smaller, wearable devices are becoming mainstream: mobile
phones record users’ locations using GPS and other localization technologies;
Google Glass can take pictures, record videos, recognize a user’s voice, and cap-
ture myriad context information about a user1; Nuubo, a wireless cardiac mon-
itoring platform, can transmit physiological parameters to a user’s doctors2;
Sony’s smart watch can connect to Android phones and display received texts,
emails, and notifications3. These devices possess considerable computing power
and can communicate through direct wireless channels. Direct interaction among
nearby users enables new forms of data sharing but also presents a challenge in
enabling users to control the release of their potentially private information.
Only by sharing information, however, do participants reap many of the benefits
of the information-rich environment.

We assume an established “trust network” in the ubiquitous computing envi-
ronment. Specifically, for a given participant, this provides a trust value for every
other participant in the network. Work exists in establishing flexible trust net-
works in mobile ad hoc environments [6,10,14,17,20]. Our context aggregation
and sharing mechanisms utilize trust values computed by such a trust network
to determine the amount of private information to release to other nearby users.
Returning to our previous example, at a sporting event, a spectator is likely to
be seated nearby a group of friends or family with whom he has a high degree of
trust. The spectator is perfectly willing to share private information with these
trusted friends; aggregating together the context of a group of trusted friends
can obfuscate each individual’s private information, enabling the aggregate to
be shared with acquaintances with a somewhat lower level of trust. Using this
novel combination of trust and aggregation, our privacy preserving context dis-
tribution mechanism reduces the risk of privacy leakage. Our approaches allow
users to gradually reveal their information in aggregate, to both protect the
individuals privacy and to converge to a collective (correct) aggregate of context
information.

Our motivation stems from users’ needs to be able to feel safe to collect and
share context information in settings that lack centralized trusted authorities.
Limited work exists on privacy in ubiquitous computing, but most approaches
1 http://www.google.com/glass/start
2 http://www.nuubo.com
3 http://sonymobile.com/us/products/accessories/smartwatch/specifications
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require elaborate, centralized infrastructure; we review these methods in Sect. 2.
Our approaches target completely infrastructure-less environments and rely on
direct, peer-to-peer wireless interactions among users’ devices. We make the
following concrete contributions: (i) we define three aggregation schemes that
explicitly trade individual privacy for the degree of data sharing in mobile ubiq-
uitous computing environments; (ii) we tune the amount or nature of sharing
to established measures of trust; and (iii) we evaluate our aggregation approaches
under different deployment scenarios and trust networks. We measure our
approaches’ abilities to converge to a correct assessment of the shared context
in a short amount of time. Our approaches can significantly speed up the rate
at which the entire group learns an aggregate measure of their shared context.
Further, our approaches achieve a high quality of context aggregation, even with
low levels of trust among participants, as long as there are a small number of
highly trusted collaborators.

2 Related Work

Our basic goal is similar to that of differential privacy in statistical databases: it
should be possible to accurately query a database while maintaining the privacy
of individuals whose data is represented in that database [5]. Specifically, queries
should release information about the population represented in the database
without releasing information about any individual that is not generally pub-
licly available. Techniques from differential privacy motivate our goals, but they
assume that information about the population is collected in a single (secured)
central database.

One of an individual’s most sensitive pieces of data is the individual’s loca-
tion; many techniques exist to protect the privacy of individuals’ locations. Most
approaches somehow augment the location data, for example protecting sensitive
location trajectories in a centralized database by inserting realistic fake trajec-
tories [19], by perturbing location trajectories by “crossing paths” of multiple
users [9], or by adding uncertainty to objects’ locations in moving object data-
bases [1]. These solutions are specific to location data, and the focus is often
on attempting to maintain a high fidelity (correctness) of responses to queries
about locations while preserving privacy.

Significant recent efforts have focused on privacy and on its interplay with
crowd-sensing specifically and with mobile distributed sensing more generally. In
the former scenarios, a query issuer requests information that is sensed by mobile
participants, potentially aggregated, and returned to the querier. Ensuring par-
ticipation requires ensuring privacy, most often with respect to the location of
the user whose device does the sensing [4,15,16]. Other approaches take advan-
tage of the additive properties of desired aggregates and use data slicing [25] or
cryptographic techniques [13] to compute complete aggregates for independent
sets of data providers. These approaches either assume resilient communication
(e.g., no slices of data can be lost) or an ultimate back-end (centralized) server.
In contrast, we aim for a purely distributed approach in which all of the users
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desire the aggregate of context information shared among themselves and not
mediated by a service provider that sits between the querier and the tasked
mobile sensing devices. We also explore the novel use of trust in influencing the
release of private information in mobile and ubiquitous computing environments.

Other approaches have attempted to preserve privacy for data types beyond
location by introducing noisy data in participatory sensing [7]; this work’s moti-
vation is quite close to our own, where individual users compute aggregates
(fusions) over locally available data, but this related work does not incorpo-
rate trust (instead relying on random perturbations). The approach circumvents
the fundamental limitations of perturbation for privacy by taking advantage of
properties of the targeted time series data.

Our motivation (and approach) is also similar to secure multi-party com-
putation [26], in which participants share information to jointly compute some
function (e.g., an aggregate) over their individual data without explicitly releas-
ing their (potentially private) individual information. This technique has been
applied to distributed data mining [3], to computing a sum of private data while
relying on data slicing [24], and even to collaborative filtering in peer-to-peer
networks [2]. While the approach is decentralized, it requires a high degree of
controlled coordination among participants that is not possible in purely ad hoc
environments. Further, because it is based on cryptographic primitives, the com-
putational complexity is not reasonable for mobile devices or common tasks [18].
We take advantage of the fact that coordinating parties in mobile and ubiquitous
computing situations may not be completely distrustful of each other, and we
leverage this trust to reduce the cost of achieving acceptable levels of privacy.

Existing work that combines trust and privacy generally focuses on trading
privacy for trust, i.e., revealing private information to others to earn a more
substantial level of trust [23], and on incentivizing this tradeoff [22]. We look
at trust and privacy from a different perspective, presupposing a framework for
establishing trust in other individuals that allows graduated release of private
information based on established trust levels. Establishing trust among collab-
orating parties has been well studied in both completely distributed mobile ad
hoc networks and in pervasive computing, and several approaches exist that we
can rely on to establish trust values between individuals [6,11,20,21]. For the
remainder of this paper, we assume such a mechanism is in place and that, in
using such a mechanism, we can rely on a trust table that is available to each
individual on the local device. The trust table maps an another individual’s
identifier to a trust level, which our algorithms will use in determining how to
share data.

3 Trust-Based Sharing of Context

Our operational model is one in which a group of participants make independent
decisions about sharing context, without the aid of any infrastructure. The goal
of the participants, in general, is to learn some aggregate measure of the entire
group’s context (e.g., the apps in use by other nearby spectators at a sporting
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event, the average grade of a group of students on an exam, an average of a health
indicator for a group at a fitness club, or the bounding box of the locations
of contributors to a participatory sensing application). When a participant i
encounters a participant j, i must decide what information to share, where the
options range from sharing i’s individual context data (which results in the
largest loss of privacy) to sharing an aggregate that combines i’s data with some
other participants’ context values. This partial aggregate that each participant
computes is that participant’s working estimate of the target global aggregate.
We assume that the only way for participants to exchange information is to
encounter each other and make that exchange directly, i.e., through a peer-to-
peer connection. Our approach assumes the aggregate functions can be computed
incrementally (e.g., a sum, average, minimum, maximum, union, bounding box
of locations, etc.) and that individuals’ context values do not change. Along with
each aggregate, we maintain a list of contributors to the aggregate to prevent
including a participant multiple times.

The novelty of our approach lies in the following key observations. First, we
do not commonly find ourselves in situations in which we have absolutely no
trust in any other participants. Second, mutually trusting participants can work
together to aggregate their information to obfuscate their individual context,
increasing their individual levels of privacy. Third, sharing aggregate measures
of context contributes positively to an entire group learning a (near) correct value
for the aggregate of the entire group. While Alice may be willing to reveal her
individual exam grade to her best friend, Bob, (and Bob may be willing to do the
same), she may feel more self-conscious about releasing it to Cindy, who she does
not know (or trust) as well. However, once she and Bob have exchanged their
individual context information, they can aggregate (e.g., average) their scores
and give the average to Cindy, sacrificing less of their individual privacy. Of
course, an average of two grades provides only a small degree of added privacy;
an average of 50 grades provide much more. Therefore, sharing aggregate context
values depends not only on the trust values associated with the recipients, but
also, at least indirectly, on the size of the aggregate (i.e., the number of values
aggregated).

We assume that each participant (e.g., device, application, or user, depending
on the application) maintains its own trust table, that holds a trust value for every
other participant. It is not required that trust values are mutual (i.e., participants
i and j need not have the same level of trust in each other). Trust values can
be based on reputations, can be learned, can change over time, and can even
be context-dependent [21]; these concerns are outside the scope of this paper.
Instead, we rely on the availability of this trust information to determine when to
share potentially private context information. Concretely, we assume that, when
a participant is about to share private context information, the participant can
query its local trust table to determine the level of trust associated with the
potential recipient of the data. Based on the level of trust, the participant can
determine whether to share information and what specifically to share (e.g.,
individual context data or an aggregate of multiple individuals’ context data).
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Fig. 1. An Example of Trust-Influenced Context Shar-
ing; “Aggregate” in this case is the average value; “Agg.
Size” designates the number of participants represented
in the aggregate

We assume trust val-
ues are on an unbounded
continuous scale; a value
of 0 indicates complete
trust, and larger values
indicate lower trust. For
convenience, we assume
that the trust table values
correspond to aggregate
sizes; if participant i has a
trust value of x for partic-
ipant j, then i is willing to
share its information with
j as long as it is contained
in an aggregate with size
greater than x. Practi-
cally, this representation
of trust values requires a
processing step to convert
trust values computed from a scheme such as [21]. Figure 1 shows a small exam-
ple that demonstrates some of these concepts; in the figure, Alice is willing to
share her individual context information with Bob, who can then combine it
and share it with Cindy, who is less trusted by both Alice and Bob. We next
describe four schemes that determine how to share context information, given
the available trust information.

Scheme 1: Individual Context Only. The first scheme is a baseline; in the
first scheme, participants only ever share individual context, and they only share
that context with other participants that they trust completely (i.e., for which
the trust value is 0). When participant i encounters participant j, i determines
whether j is completely trusted. If not, i does nothing. If j is completely trusted,
participant i sends participant j its individual context information. Upon receiv-
ing this information, j incorporates i’s information into an incrementally com-
puted aggregate (that includes j’s own context information as well as any other
pieces of information that j has received from other participants). In this scheme,
as average trust decreases, context information moves more slowly, and the aggre-
gate that any participant can feasibly compute is just the average of context
values from other participants that completely trust the participant.

Scheme 2: Aggregate Context Only. In the second scheme, participants
incrementally compute aggregates and share only those aggregates with other
participants they encounter. Aggregates can be computed incrementally by
adding in additional participants’ context if they are not already represented
in the aggregate or by merging two aggregates if their contributor lists are dis-
joint. When participant i encounters participant j, to determine whether to share
the computed aggregate, i retrieves j’s trust value from the trust table. If the
size of the aggregate is larger than the trust value, then i sends the aggregate to
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j. If not, i sends nothing to j. This scheme is a generalization of Scheme 1, as
an aggregate of size one is simply the individual context information of partici-
pant i. On the receiving side, things are a bit more complicated when receiving
an aggregate than when receiving a piece of individual context. Because the
recipient may already store a partially computed aggregate, the recipient must
determine what to do with the new aggregate. In general, if there is an inter-
section in the contributors to the received aggregate and the stored aggregate,
the recipient can only keep one of the aggregates4. In Scheme 2, we keep the
originally stored aggregate. If there is not an intersection in the contributors to
the received and locally stored aggregates, the recipient merges the aggregates,
generating an even larger aggregate.

Scheme 3: Smart Aggregate Context. This third scheme differs from the
second only in that instead of the recipient keeping the original aggregate, it
keeps the larger of the two aggregates (i.e., the larger of the received aggregate
and the previously stored one). Intuitively, this scheme should perform better
with respect to the computation of the correct aggregate value; as we will see in
Sect. 4, this is not always the case.

Scheme 4: Mixed Information. The fourth scheme mixes aspects of the above
approaches. When participant i encounters j, i still uses its trust value for j to
determine what to send. However, in addition to sending the aggregate if the
aggregate size is larger than j’s trust value, if j’s trust value is 0 (i.e., i completely
trusts j), i also sends its individual context. Upon reception, j behaves like the
second scheme unless there is an intersection between i’s transmitted aggregate
and j’s stored aggregate. If there is no intersection, j just merges the two. If
there is an intersection, j instead simply merges i’s information into j’s stored
aggregate. At first glance, these seems to be an obvious addition, but this fourth
scheme does come with the disadvantage of exchanging extra information, which
comes at an increased cost of communication; in Sect. 4, we investigate whether
this effective doubling of the overhead achieves better results.

4 Experimental Results

To compare and contrast our schemes for context sharing subject to privacy con-
straints, we implemented the schemes in our Grapevine context framework [8].
Grapevine piggybacks context information (whether individual context or aggre-
gate information) on data packets transmitted in the course of other network
(application) traffic.

We implemented our approaches in the ONE network simulator [12]. Each
node was assigned a context value and given the task of attempting to find the
average of all of the context values in the network. We assume context values are
static; we discuss handling dynamic context values in Sect. 5. We measure the
4 Some aggregation functions are duplicate insensitive, and any aggregates can be

merged. We assume this is not the case, and address the issue of duplicate sensitive
aggregates instead.
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percent error of each node’s estimate of the global aggregate. The overheads of
our approaches are low (see [8] for a presentation of the overhead of piggybacking
context information in Grapevine). The approaches all generate the same amount
of extra data except for the Mixed Information scheme, which generates twice
the number of piggybacked bits.

Table 1. Simulation settingsWe first look at simple networks in
which a participant can have just one of
two levels of trust in another participant:
high (complete trust) or low (complete
distrust). Our second set of experiments
extends the complexity of the trust distri-
butions in the simple network. Our final
experiments explore more realistic deploy-
ments. We plot the average error in the computed aggregate over time; we
stopped the simulations when the aggregate had stabilized. Table 1 gives the
evaluation settings.

Binary Trust. In the first stage of our experiments, we used a small network and
highly control trust values to benchmark the behavior of our four schemes. These
networks consisted of 10 mobile participants. Grapevine does not generate its
own traffic; instead it piggybacks context (either the individual context value or a
computed aggregate) on top of these application-level packets. Each participant
generated a new packet for some other randomly selected participant, on average,
every five seconds. In general, this relatively high traffic load is beneficial to
context sharing since context information can spread more quickly. We provide
results for situations when each participant trusted 100 %, 70 %, 50 %, 30 %, or
just 10 % of the other participants.

Starting from the bottom of Fig. 2, we see that when the levels of trust
are high, nothing significantly outperforms just sharing individual data. Because
participants are able to directly collect the data that goes into the aggregate,
the aggregate’s error is very low. As we move to the mid-range of trust values,
the quality of the four schemes comes together. At 30 % trustworthy partici-
pants, we start to see that when the trustworthiness of the participants falls,
the aggregate schemes show the potential to outperform the individual scheme.
Finally, for the situation with very low trust, the quality of the aggregate falls
off precipitously, indicating that, when a participant trusts very few others, it is
difficult to share aggregate information with any quality.

Mixed Trust. In our second experiments, we explored these last two points
in more depth, attempting to identify trust distributions in which the aggre-
gate schemes excel (and thereby push the envelope of protecting privacy in
the face of untrustworthiness) and attempting to identify just how low we can
push the trustworthiness of participants and still achieve a reasonably low error
rate in the aggregate. We stay with our simple 10 participant network, but
we explore the trust distributions shown in Fig. 3, assigning a fraction of the
participants to be highly trustworthy (with whom a participant will share indi-
vidual data), a fraction to be of medium trustworthiness (with whom a partici-
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(a) 10% Trusted (b) 30% Trusted

(c) 50% Trusted (d) 70% Trusted

(e) 100% Trusted

Fig. 2. Average quality of computed aggregate with two trust values: high and low

pant will share a medium sized aggregate; in this example, an aggregate of size
5 or larger), and a fraction to be completely untrustworthy.

When there is a very low level of trust among the participants (Distribution 5
in Fig. 3 and the corresponding results in Fig. 4(d)), the quality of the aggregate
remains quite low. Further, when the trust levels are relatively high (Distribution
2 in Fig. 3 and the corresponding results in Fig. 4(a)), directly sharing individual
information remains the best option. Where the trust levels are more mixed
(Fig. 4(b) and (c)):, we see potential for aggregation to improve information
quality while adhering to participants’ privacy requirements.
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Fig. 3. Trust distributions

Random Trust. For our last experiments,
we evaluate how our schemes would per-
form “in the wild.” We increase the size
of the network to 50 mobile participants.
We assign a participant’s trust value for
another according to three different trust
distributions, shown in Fig. 5: Random, in
which the trust is chosen equiprobably from
10 possible trust values ranging from com-
pletely untrustworthy to completely trust-
worthy, More Trusted, in which the choice is
weighted toward the more trustworthy val-
ues, and Less Trusted, in which the choice is
weighted toward the less trustworthy values.

We highlight two key findings that demonstrate the benefits of using trust to
control the release of private information in dynamic networks. Figure 6 shows
that sharing aggregate information can significantly help distribute
context information, especially in situations of relatively low trust,
assuming a handful of highly trusted participants in the network . In
the More Trusted case (Fig. 6(a)), the benefits of sharing aggregates is marginal
compared to sharing individual context. Even in this scenario, however, sharing

(a) Distribution 2 (b) Distribution 3

(c) Distribution 4 (d) Distribution 5

Fig. 4. Average quality of computed aggregate with three trust values in distributions
from Fig. 3
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(a) Random (b) More Trusted (c) Less Trusted

Fig. 5. Random trust distributions

(a) Random trust weighted to high trust (b) Random trust weighted to low trust

Fig. 6. Average quality of computed aggregate with weighted randomly assigned trust
values

aggregates leads to a quicker assessment of the aggregate value (i.e., the curves
for the Aggregate and Mixed Information schemes lie to the left of the Individual
scheme). More strikingly, Fig. 6(b) shows that, for the Less Trusted distribution,
all three aggregate schemes drastically outperform the Individual scheme, both
in terms of the speed of assessing the aggregate and in the quality of the com-
puted aggregate. In the Individual scheme, there are simply not enough direct
contacts with highly trustworthy individuals to compute an accurate aggregate
from only individual information.

In Fig. 7, we use the Random trust distribution from Fig. 5; Fig. 7(a) uses
the same traffic generation rate as before: on average, each participant generates
a new application-level packet every 5 s. In Fig. 7(b), on average, each partic-
ipant generates a new application-level packet only every 50 s. Understanding
the behavior of our schemes under these lower traffic conditions is important
since reducing network overhead is essential in these dynamic networks that
rely almost exclusively on battery operated devices and wireless links. Figure 7
shows that, in situations when fewer opportunities are available for
piggybacking context, sharing aggregate information results in much
more rapid and higher quality computation of the global aggregate .



Trust-Based Context Aggregation and Sharing 327

(a) Random Trust
(1 packet per participant every 5 seconds)

(b) Random Trust
(1 packet per participant every 50 seconds)

Fig. 7. Average quality of computed aggregate with randomly assigned trust for dif-
ferent traffic

Figures 6(b) and 7(b) highlight another key benefit of Grapevine. In many
ubiquitous computing scenarios, users find themselves in situations where they
will choose not to share any of their context information because of the potential
sacrifice of their privacy. By enabling users to share their context information
within aggregates instead of only individually, Grapevine enables a much higher
degree of context sharing and learning, improving the experiences of all partici-
pants in the ubiquitous computing application.

5 Conclusions and Future Work

We explored using trust to influence how private context is shared in dynamic
mobile, ubiquitous computing applications. By incrementally computing aggre-
gate measures of context and basing how aggregates are shared on their size
relative to the trustworthiness of the recipient, our context sharing schemes con-
trol the release of private information. Both the degree of trustworthiness and the
desired quality of aggregate information are application-dependent; the results
in this paper give a foundational understanding that application designers could
use in making tradeoffs for their implementations.

For convenience, we used a linear correlation between trust values and aggre-
gate sizes to demonstrate the relationships between decreasing trust and increas-
ing aggregate sizes. While this gives important insights, the relationship between
trust and the size of the shared aggregate may not be linear. Studying alter-
native (i.e., non-linear) relationships and the ability of application developers
to tune them is future work. Further, when a participant shares individual con-
text, the recipient has complete control of that information and could potentially
share the individual data directly. This must be accounted for by conservatively
assigning trust; this is why the results in Fig. 6(b) are so important: even in sce-
narios weighted towards lower trust, having a small number of highly trustworthy
partners is sufficient for bootstrapping context sharing.
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Further, our approach “leaks” the identity information of the participants
in the aggregate measures. This information may be obfuscated (i.e., revealing
an anonymous but unique identifier may arguably release less personal informa-
tion), but nonetheless, there is potential to tie the identifier back to the identity
of the contributor. Future work will investigate how to further protect this iden-
tity information. Our approach computes an aggregate for a single snapshot of
participants’ context values. Other applications may need to allow participants
to change their context values and have those updates reflected in the computed
aggregate. Updating context values contained in an aggregate is non-trivial and
is the focus of our ongoing work.

Figures 6(a) and 7(a) show that the Smart Aggregate scheme often performs
worse than even the Aggregate scheme. It turns out that receiving a larger
number of smaller aggregates results in a higher information diversity, making
it more likely that the recipient can merge aggregates. This points to another
possible scheme, one in which a participant keeps and shares multiple smaller
aggregates, sending a recipient aggregates only as large as required by the trust
values. This also has potential benefits for updating context values, as updating
within a smaller aggregate is likely to be easier.

In summary, this work is the first of its kind to use trust to obfuscate pri-
vate context in mobile ubiquitous computing environments. This is feasible for
applications that compute aggregates of shared local context and can tolerate
a small error in that computation. Our schemes are particularly suited to cases
where the application traffic is low and there is generally low trust mixed with
a handful of highly trustworthy partners.
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