
Protecting Movement Trajectories Through
Fragmentation

Marius Wernke(B), Frank Dürr, and Kurt Rothermel

Institute of Parallel and Distributed Systems (IPVS), University of Stuttgart,
Universitätsstraße 38, 70569 Stuttgart, Germany

{marius.wernke,frank.duerr,kurt.rothermel}@ipvs.uni-stuttgart.de

Abstract. Location-based applications (LBAs) like geo-social networks,
points of interest finders, and real-time traffic monitoring applications
have entered people’s daily life. Advanced LBAs rely on location services
(LSs) managing movement trajectories of multiple users in a scalable
fashion. However, exposing trajectory information raises user privacy
concerns, in particular if LSs are non-trusted. For instance, an attacker
compromising an LS can use the retrieved user trajectory for stalking,
mugging, or to trace user movement. To limit the misuse of trajectory
data, we present a new approach for the secure management of trajecto-
ries on non-trusted servers. Instead of providing the complete trajectory
of a user to a single LS, we split up the trajectory into a set of frag-
ments and distribute the fragments among LSs of different providers.
By distributing fragments, we avoid a single point of failure in case of
compromised LSs, while different LBAs can still reconstruct the trajec-
tory based on user-defined access rights.

In our evaluation, we show the effectiveness of our approach by using
real world trajectories and realistic attackers using map knowledge and
statistical information to predict and reconstruct the user’s movement.

Keywords: Location management · Fragmentation · Trajectories ·
Privacy

1 Introduction

Nowadays, most people carry a mobile device with an integrated positioning
system such as GPS. In combination with cheap and fast mobile communication
technologies, location-based applications (LBAs) like geo-social networks and
points of interest finders have entered people’s daily life.

LBAs can be classified into two categories: LBAs using single user positions,
and LBAs using movement trajectories. The first category considers individual
positions, for instance, provided when a user is “checking-in” to a restaurant, to
show friends his current position. The second category considers LBAs relying
on movement traces of mobile objects. Examples are applications for sharing
jogging paths, community-based mapping, and real-time traffic monitoring.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014
I. Stojmenovic et al. (Eds.): MOBIQUITOUS 2013, LNICST 131, pp. 303–315, 2014.
DOI: 10.1007/978-3-319-11569-6 24

304 M. Wernke et al.

Advanced LBAs rely on location services (LSs), which manage a huge num-
ber of mobile object positions and allow for sharing positions between multiple
applications. LSs provide functionalities for spatial queries and relieve mobile
objects from sending their position individually to multiple LBAs.

While the position of a mobile object is essential for many applications, shar-
ing position information may raise serious privacy concerns. As shown in [13],
55 % of the 1.500 survey participants using LBAs were worried about loss of pri-
vacy. For instance, an attacker can determine habits, interests, or other sensitive
information by analyzing movement trajectories. Furthermore, an attacker can
misuse position information for stalking, mugging, or to trace user movement.

Existing privacy approaches protecting trajectories usually rely on a trusted
third party (TTP). For instance, k-anonymity approaches [8] protecting the user
identity rely on a location anonymizer to collect positions of different users to
generate areas fulfilling the user-defined k-anonymity level. Mix zones [2] use
a trusted middleware to change user pseudonyms within a predefined spatial
region. Advanced obfuscation approaches [3] protecting the user trajectory use
a TTP to calculate cloaked spatial regions. However, as shown by many inci-
dents [5], even service providers that were deemed to be trusted could be com-
promised. Therefore, no service provider can guarantee to perfectly protect its
stored information. Consequently, we have to consider that LSs are non-trusted.

To protect movement trajectories of mobile users without using a trusted
third party, we present our novel Trajectory Fragmentation Algorithm (TFA).
The general idea of our approach is to split up a user’s trajectory into a set
of smaller fragments that are distributed to different LSs of different providers.
Thus, each LS stores only a part of the trajectory and no LS knows the com-
plete movement trace of the user. Therefore, an attacker compromising an LS
has only limited knowledge about the user’s movement. To prevent an attacker
compromising multiple LSs from correlating the retrieved fragments, TFA uses
different pseudonyms for the fragments. Different clients of the LSs, for instance,
different LBAs can access the trajectory of the user by querying fragments from
multiple LSs based on the known pseudonym used for the corresponding LS.

In this paper, we make the following contributions: (1) A concept for dis-
tributing trajectory fragments among a set of LSs to avoid that a single LS can
reveal the complete user trajectory. (2) An optimized algorithm that calculates
a minimum number of fragments under the constraint of fulfilling a given level
of privacy. (3) A privacy evaluation with attackers of different strength showing
the effectiveness of our approach.

The rest of the paper is structured as follows: In Sect. 2, we present related
work. In Sect. 3, we introduce our system model. Then, we formalize our problem
statement and present TFA in Sects. 4 and 5. In Sect. 6, we present our privacy
and performance evaluation. Finally, we conclude the paper in Sect. 7.

2 Related Work

Existing location privacy approaches can be classified based on their protection
goal and whether they focus on single positions or movement trajectories. For an

Protecting Movement Trajectories Through Fragmentation 305

overview of existing location privacy attacks and approaches we refer to [15]. For
single positions, k-anonymity [6] can be used to protect the identity of the user by
making the user indistinguishable from k − 1 other users. Spatial obfuscation [4]
protects the position of the user by decreasing the precision of the position
provided to an LS. Position sharing [14] allows for providing different precision
levels to different LBAs while LSs only manage positions of limited precision.
However, all these approaches focus on singular positions instead of trajectories.

Trajectory k-anonymity [8] protects the identity of a user by making the user
indistinguishable from k−1 other users for the complete trajectory. Mix zones [2]
protect the identity of a user by changing pseudonyms within an area where
no user provides position information to an LBA. Trajectory obfuscation [3]
uses a group-based approach to collect positions of multiple users to calculate
obfuscated areas for the complete trajectory. However, all of these approaches
require a TTP, while we do not rely on a TTP.

Dummy approaches [12] provide false trajectories to the LS in addition to the
real user trajectory such that the LS cannot distinguish the received trajectories.
However, since identifying dummy trajectories is possible [10], user privacy can
be decreased. The approach presented in [1] protects the start and the destina-
tion of a trajectory without assuming a TTP. With our approach, we focus on
protecting the complete trajectory rather than only its start or destination.

3 System Model

The components of our system are depicted in Fig. 1. The mobile object (MO)
has an integrated positioning system such as GPS that is used to determine
the MO’s current position π. The MO executes a local software component that
provides π to a set of different location servers (LSs), which store and manage
trajectories of several MOs. LSs provide an access control mechanism to manage
access to the stored positions. Different clients, for instance, different LBAs get
access to the positions on different LSs based on their access rights.

The MO’s position π is defined by its longitude and latitude values. Since
MOs usually travel on streets, we map π to a graph representing the road net-
work by using existing map-matching approaches. As shown in Fig. 2, the road

Mobile object Location servers Clients

TFA

Fig. 1. System components

v9v7

Node Edge Position update Trajectory

Fig. 2. Graph and trajectory example

306 M. Wernke et al.

network can be modeled as graph G = (V,E) consisting of a set of nodes V
and a set of edges E. Each node vi ∈ V represents a junction or an inter-
mediate node that models the shape of the road. Each edge ej ∈ E repre-
sents a road segment between two nodes. The MO’s movement trajectory T =
{(πstart, tstart), . . . , (πend, tend)} represents a set of consecutive position fixes πi

where the MO is located at time ti. An example for T is shown in Fig. 2. We
assume that the destination πend of T is already known at time tstart because
the MO typically knows its movement destination.

4 Problem Statement

Since we have to consider that LSs are non-trusted, an attacker can compromise
an LS with a certain probability greater than zero. In this case, the part of the
trajectory provided to the LS is revealed. Thus, our goal is to protect the MO’s
trajectory by minimizing the revealed information of an attack on an LS.

We use a distributed approach to store and manage the MO’s trajectory T .
Our trajectory fragmentation algorithm splits up T into a set F = {f1, . . . , fn}
of n trajectory fragments (or fragments for short). The number n of generated
fragments corresponds to the number of used LSs to store the fragments and
is either predefined by the MO or calculated by the fragmentation algorithm.
While traveling, the MO uses the fragmentation algorithm to update its position
over time on different LSs. Each position is provided to exactly one LS and each
LS receives only the positions of a single fragment.

To measure the information exposed to an LS, we use weight function Φ(fj)
assigning each fragment fj the value of its exposed information. More precisely,
we measure the length of the trajectory that is revealed to an attacker, called
the revealed trace length Φ(fj).

The revealed trace length Φ(fj) is defined as the distance an attacker compro-
mising fragment fj can trace the MO. The value of Φ(fj) = ΦC(fj) + ΦF (fj) +
ΦP (fj) is calculated as the sum of the following three parts (cf. Fig. 3): The first
part of Φ(fj) is the length of the current fragment ΦC(fj), i.e., the length of

Past mov. P(fj) Current mov. C(fj) Future mov. F(fj)

v9v7

fj

e3 e5

Fragment Possible paths Split position

Φ Φ Φ

Fig. 3. Different information parts

e3 e5

v9

e10

e11e12

v7
v10

e20

e21
e22

fj

pr(e11| fj)=33.33% pr(e21| fj)=11.11%

F(fj)=pr(e11| fj)* length(e11) + pr(e21| fj)* length(e21)Φ

Fig. 4. Calculation of ΦF (fj)

Protecting Movement Trajectories Through Fragmentation 307

all edges ei ∈ fj . The second part of Φ(fj) is the length of the predicted future
movement ΦF (fj). This length is a probability measure, since multiple possible
future paths exists. The probability that the MO travels along edge ei after
traveling on fj is pr(ei|fj). Then, ΦF (fj) is calculated as the length of all edges
ei of the predicted future trajectory T weighted by the probability pr(ei|fj).
We assume that the probability pr(ei|fj) is given for each edge ei, for instance,
by a statistical movement analysis, or by using map knowledge assuming a uni-
form distribution for all edges. An example to calculate ΦF (fj) based on map
knowledge is shown in Fig. 4. The probability pr(e11|fj) is 33.33%, since three
alternatives exists to continue traveling after fj . The probability pr(e21|fj) is
11.11% taking also pr(e11|fj) into account. The third part of Φ(fj) is the length
of the reconstructed past movement ΦP (fj). Here, ΦP (fj) is calculated as pre-
sented for ΦF (fj) by considering the past instead of the future movement.

In order to find a fragmentation of trajectory T such that each fragment has
a minimum revealed trace length Φ(fj), we have to minimize the maximum value
of Φ(fj). This means, no matter which LS is compromised, only the maximum
trace length Φ(fj) can be revealed. Formally, we have to solve the following
optimization problem:

minimize max
j∈[1;n]

(Φ(fj))

subject to
⋃

j∈[1;n]

fj = T

Additionally, we want to answer the question of how many LSs are required to
protect trajectory T from revealing a larger trace length than specified by a MO-
defined maximum trace length ΦMO

max. This means, we consider the problem of
minimizing the number n of required LSs for ΦMO

max. Formally, this optimization
problem is defined as

minimize n

subject to max
j∈[1;n]

(Φ(fj)) ≤ ΦMO
max

⋃

j∈[1;n]

fj = T

5 Trajectory Fragmentation Algorithm

In this section, we present our trajectory fragmentation algorithm TFA. We start
with an overview of TFA and present the individual steps of TFA afterwards.

5.1 Process Overview

The concept of TFA consists of two parts: The trajectory fragmentation per-
formed by the MO and the trajectory reconstruction performed by clients.

308 M. Wernke et al.

The trajectory fragmentation first calculates the MO’s predicted trajectory
T based on the given destination. Secondly, it splits up T into a set of fragments.
Thirdly, each fragment is assigned to an LS. While traveling, the MO updates
its position on the LSs based on the calculated fragmentation. If the predicted
trajectory deviates from the real trajectory, a new fragmentation is initiated
using a new set of LSs.

The process of TFA is shown in Algorithm 1. Since MOs normally travel on
fastest paths to reach their destination as fast as possible, we predict the MO’s
trajectory T at time tstart as the fastest path from the current position πstart

to the known destination πend. Then, we split up T into set F = {f1, . . . , fn} of
n fragments, one for each LS, by using function fragment(T ,n) = {f1 , . . . , fn},
introduced below. For each fragment fj ∈ F , we calculate a new pseudonym of
the MO and select an LS to store fj . The LS storing the positions of fragment fj
is denoted as LSj . We use the notation πi ∈ fj to denote that position πi is part
of fj . As formalized in Sect. 4, the goal of function fragment(T ,n) is to minimize
the maximum revealed trace length Φ(fj). To solve the presented optimization
problem, we use a dynamic programming approach presented below.

After calculating fragmentation F , the MO updates its position πi ∈ fj to
LSj while traveling on fj . As soon as a new position πi is part of fj+1, the MO
changes the LS storing πi from LSj to LSj+1. Furthermore, the used pseudonym
is changed from idj to idj+1. In case the MO leaves the predicted trajectory T
at position πk /∈ T , a new calculation of TFA is initiated for the new initial
position πstart = πk and the destination πend using a new set of LSs.

The trajectory reconstruction allows different clients to access the MO’s real
trajectory T by querying the LSs using the provided pseudonyms of the MO.

Algorithm 1. TFA: Process overview
Function: TFA(n, πend)
1: πstart ← getPosition()
2: T ← FP (πstart, πend)
3: F [1, . . . , n] ← fragment(T, n)
4: ID[1, . . . , n] ← getIDs(F)
5: πi ← πstart

6: while πi ∈ T do
7: fj ← getFragment(πi)
8: LSj ← getLS(fj)
9: idj ← getID(fj)

10: update(πi, LSj , idj)
11: πi ← getPosition()
12: end while

Algorithm 2. TFA: fragmentation
Function: fragment(T, n)
1: GF ← getGraph(T)
2: M ← getAdjacencyMatrix(GF)
3: L ← n
4: ML ← maxMatrixMult(M, L)
5: Φmax ← ML[0, m]
6: Mmax ← trimEdges(M, Φmax)
7: ML

max ← maxMatrixMult(Mmax, L)
8: P ← calculateAllPaths(ML

max, L)
9: S ← getRandomPath(P)

10: F [1, . . . , n] ← getFragments(S)
11: return F [1, . . . , n]

5.2 Trajectory Fragmentation

Next, we present function fragment(T ,n) calculating set F = {f1, . . . , fn} of
fragments in Algorithm 2. As introduced, each fragment fj ∈ F defines to which

Protecting Movement Trajectories Through Fragmentation 309

LSj position πi ∈ fj should be sent. The part of T belonging to fragment fj
is the part of T between two split positions. For example, fragment fj in Fig. 3
is defined by the split positions of junction v7 and v9. We split up the MO’s
predicted trajectory T at nodes representing junctions instead of splitting up T
within an edge or at an intermediate node. This approach has the advantage that
all positions belonging to the same edge ei are assigned to the same fragment
which is stored by only one LS.

The problem is now how to find set S = {s0, . . . , sn} of split positions for T
such that the corresponding set of fragments F is optimal considering the max-
imum revealed trace length Φ(fj). To solve the proposed optimization problem,
we first calculate the fragmentation graph GF = (VF , EF) as defined next: The
set of nodes VF = {vi ∈ T} consists of all possible split positions of T , i.e., the
set of nodes representing a junction on T . The set of edges EF is generated by
calculating for each node vi ∈ VF an edge to each node vj ∈ VF if the MO will
visit the junction of vi before visiting the junction of vj . The generated edge from
vi to vj is denoted as eij ∈ EF . The weight of eij is Φ(f(vi, vj)) representing the
revealed trace length of the fragment that is defined by the split position vi and
vj . Then, we calculate the adjacency matrix M of GF , which is of size m×m with
m = |VF |. Each value M [i; j] = Φ(f(vi, vj)) defines the weight of edge eij . Since
we aim for an optimal fragmentation using n LSs, we have to find a path in GF

consisting of n edges from the first split position s0 to the last split position sn
minimizing the maximum edge weight. The L-th power of the adjacency matrix
M is denoted as ML and calculated using matrix multiplication. For each possi-
ble node vk, we calculate the maximum value of ML−1[i; k] and M1[k; j]. Then,
we select the minimum value from all possible nodes vk and store the determined
maximum value in ML[i; j]. Thus, ML[i; j] is the minimized maximum revealed
trace length of a single fragment on the path of length L that leads from vi to
vj . The maximum value for a path of length n from split position s0 to sn is
the value of Mn[0,m]. This value is then stored in Φmax and used to remove all
edges in M with a higher value than Φmax. The resulting adjacency matrix is
Mmax. To calculate all possible paths of length L = n with a maximum single
edge value below Φmax, we incrementally calculate ML

max using the introduced
matrix multiplication. The nodes of the calculated paths represent the possible
split positions for an optimal fragmentation. We randomly select one of all possi-
ble paths that were calculated and store the corresponding split positions in set
S. Finally, we determine set F of fragments using the calculated split positions.

5.3 Minimizing the Number of Required LSs

After solving the problem of how to find an optimal fragmentation for trajectory
T , we consider now the problem of minimizing the number n of required LSs
to achieve a MO-defined maximum revealed trace length ΦMO

max. To solve this
problem, we adapt Algorithm 2 as follows. Instead of using a fixed value of L = n
to calculate Φmax, we stepwise increment L. As soon as ML[0,m] ≤ ΦMO

max, the
minimum path length L and thus the minimum number of required LSs is found
that can provide a maximum value of ΦMO

max. After setting Φmax to ΦMO
max we can

310 M. Wernke et al.

further use Algorithm 2 without modification. If L reaches a value above Lmax,
which represents the maximum number of available LSs, no solution could be
found for T and ΦMO

max. Then, the MO has either to adjust ΦMO
max or to use

Algorithm 2 to find an optimal fragmentation using n = Lmax LSs.

6 Privacy and Performance Evaluation

In this section, we evaluate the provided privacy of TFA and present our perfor-
mance evaluation. Next, we introduce our attacker model and privacy metric.

6.1 Attacker Model

Nowadays, map knowledge is widely available, for instance, provided by the
OpenStreetMap project [9]. Therefore, we assume that an attacker has map
knowledge and knows the used fragmentation algorithm. In case an attacker
compromises a client, all positions provided to the client are revealed. To limit
the revealed information of a client, the MO can individually specify which part
of the trajectory should be accessible for each client by defining access rights on
the LSs. Because the access control mechanisms do not prevent that the stored
information of an LS is revealed to an attacker compromising the LS, we further
consider that an attacker compromises a single or multiple LSs. If an attacker
compromises an LS, all positions assigned to the stored fragment are revealed.

The goal of an attacker is to derive as much information as possible from its
known positions. Therefore, we consider attackers using state of the art move-
ment prediction methods to predict and reconstruct the MO’s trajectory. More
precisely, we use the first order Markov model presented in [7] to simulate attack-
ers using different turn probability estimations. First, we consider attacker ANC

that cannot correlate fragments that were provided to different LSs using differ-
ent pseudonyms. Secondly, we consider attacker AAC that can correlate adjacent
fragments based on their spatiotemporal properties. That is, AAC analyses the
positions of two fragments and merges both fragments if the positions belong to
two adjacent edges.

In addition to the ability of correlating fragments, we distinguish two attack-
ers which are of different strength based on their known information. The first
attacker AMAP uses map knowledge to determine the MO’s trajectory from his
known positions. To this end, AMAP estimates at each junction a uniform proba-
bility distribution where the MO probably came from or where the MO is proba-
bly going to. For instance, if three alternatives exist at a junction where the MO
can continue traveling, AMAP assigns each edge the probability of 33.33 %. Then,
AMAP predicts and reconstructs the trajectory by selecting step by step adjoining
edges to his known fragments based on the calculated probability distribution.
The second attacker ASMI uses statistical movement information gained from a
road network traffic analysis from trajectories of other MOs. The goal of ASMI

is to improve its prediction by using more accurate turn probabilities.

Protecting Movement Trajectories Through Fragmentation 311

6.2 Privacy Metric

To measure the provided privacy of fragmentation F , we analyze the maxi-
mum revealed trace length ΦA

max an attacker can derive from its compromised
positions. For an attacker who is able to correlate adjacent fragments even if
different pseudonyms are used, the maximum revealed trace length ΦA

max is in
the worst case equal to the length of the complete trajectory. Therefore, we ana-
lyze also the probability Pr(ΦA

max ≤ τ) that the maximum revealed trace length
ΦA
max is below or equal to a threshold value τ . The probability that attacker A

successfully compromises the k LSs storing the k fragments of set FC ∈ F is
α(FC) = pk ∗ (1 − p)n−k, where p ∈ (0, 1] is the probability that A can compro-
mise a single LS and FC is the set of compromised fragments. Then, we calculate
for a given value τ the cumulated probability Pr(ΦA

max ≤ τ) as the sum of the
probability values α(FC) for all sets FC ∈ F fulfilling ΦA

max ≤ τ .

6.3 Privacy Evaluation

We analyze the success of different attackers in predicting and reconstructing
the MO’s movement trajectory based on the compromised fragments by using
current state of the art movement prediction methods. In our evaluation, we use
the real-world dataset provided by [11], which consists of the traces of about
500 taxis collected for 30 days in the San Francisco Bay Area. The used map
information is derived from the OpenStreetMap project [9]. The turn probabil-
ities of attacker AMAP consider a uniform distribution for all possible paths at
each junction. For attacker ASMI, we performed a road network traffic analy-
sis where we analyzed the movement behavior of all taxis for a complete day
(2008/06/01) and derived for each junction the corresponding turn probability
distribution. For our evaluation, we selected from the next day (2008/06/02) a
short trajectory of 4.49 km length within the city (denoted as city) and a long
trajectory of 17.04 km length mainly using highways (denoted as highway). We
assume a probability of p = 10% that a single LS is compromised and calculate
the probability that multiple LSs are compromised as presented above. Next, we
evaluate attacker ANC and continue afterwards with attacker AAC .

Attacker ANC: Since attacker ANC does not use fragment correlation, the
cases that ANC compromises multiple LSs is identical to the case that ANC

compromises a single LS. To show the success of protecting trajectories against
ANC when using fragmentation, we measure the maximum revealed trace length
ΦA
max that is revealed to attacker ANC

MAP and ANC
SMI for the introduced trajecto-

ries. The results are shown in Figs. 5 and 6. For the city trajectory, ΦA
max of

ANC
MAP decreases to 498m (11.07 %) when using 15 LSs. By considering statis-

tical movement information in addition to the map knowledge, ΦA
max of ANC

SMI

decreases to 1148m (25.55 %). For the highway trajectory, ΦA
max decreases to

5601m (32.86 %) respectively 9283m (54.64 %). As we can see, each trajectory
has a limiting value of ΦA

max such that even when increasing n, the maximum
revealed trace length known to the attacker does not decrease any more. This is

312 M. Wernke et al.

based on the fact that ΦA
max cannot decrease below the maximum revealed trace

length of a single road segment on the considered trajectory.
By comparing the relative values of ΦA

max from the highway trajectory with
the city trajectory, ANC

SMI receives a higher value of ΦA
max for the highway tra-

jectory. This is based on the fact that the prediction of ANC
SMI works well on the

highway due to a high statistical probability that the MO stays on the highway
for longer times. For the city trajectory, many junctions exists with approx-
imately equal turn probabilities for alternative roads such that the attacker
cannot precisely predict the MO’s movement.

Next, we analyze the minimum number of LSs that is required to reveal
at most a trace length of ΦMO

max to a single LS. Figure 7 shows which values of
ΦMO
max can be provided using the map based and the statistical movement based

fragmentation. By decreasing ΦMO
max from the maximum length of the considered

trajectory, the minimum number n of required LSs to provide ΦMO
max increases.

Again, each trajectory has a limiting minimum value of ΦMO
max such that smaller

values of ΦMO
max cannot be provided even when increasing n as presented before.

 0

 1000

 2000

 3000

 4000

 5000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Φ
A m

ax
 [m

]

Number of used LSs

ASMI
NC

AMAP
NC

Fig. 5. City trajectory evaluation

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Φ
A m

ax
 [m

]

Number of used LSs

ASMI
NC

AMAP
NC

Fig. 6. Highway trajectory evaluation

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 3000 6000 9000 12000 15000

M
in

im
um

 r
eq

ui
re

d
LS

s

ΦMO
max [m]

TFA: MAP (city)
TFA: SMI (city)

TFA: MAP (highway)
TFA: SMI (highway)

Fig. 7. Minimum n for trajectories

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1500 3000 4500

Pr
(Φ

A m
ax

≤
τ)

τ [m]

ANC
MAP

ANC
SMI

Fig. 8. Cumulated probability distrib-
ution for attacker ANC

Protecting Movement Trajectories Through Fragmentation 313

To show that attacker ANC cannot derive a higher revealed trace length than
specified by the MO in ΦMO

max, we analyze for the city trajectory the cumulated
probability distribution Pr(ΦA

max(FC) ≤ τ) using the fragmentation generated
by optimizing n. We select a value of ΦMO

max = 1.5 km, which leads to n = 4 LSs
for the map based fragmentation and n = 5 for the statistical movement based
fragmentation. As shown in Fig. 8, the probability that ANC

MAP and ANC
SMI can

derive a maximum revealed trace length above ΦMO
max is zero such that the defined

privacy requirement is fulfilled and TFA prevents that an attacker can derive a
higher revealed trace length than ΦMO

max. Altogether, we can state that TFA
effectively prevents that attacker ANC can trace the MO over longer distances.

Attacker AAC: The powerful attacker AAC can correlate adjacent fragments
based on the spatio-temporal properties of the compromised positions as pre-
sented in Sect. 6.1. If AAC can compromise all used LSs, the complete trajectory
of the MO is revealed. This results in a maximum revealed trace length of ΦA

max

equal to the length of the trajectory. To better understand this kind of strong
attacker, we show the success of AAC to trace the MO over a certain distance τ
by analyzing the cumulated probability that AAC receives a maximum revealed
trace length of τ by compromising a certain set of LSs. Figure 9 shows for the
city trajectory the cumulated probability that attacker AAC

MAP can derive a max-
imum value ΦA

max of τ for different values of n. As we can see, increasing the
number of generated fragments increases the probability that a small part of
the trajectory is revealed, whereas the probability that longer parts are revealed
decreases. For instance, AAC

MAP can trace the MO for a value of τ = 1km, which
represents 22.27% of the trajectory, only with a probability of 1.08 % when using
15 LS. Therefore, we can state that TFA can be used to prevent attacker AAC

from tracing the MO over longer distances with a high probability.

6.4 Performance Evaluation

Next, we evaluate the performance of TFA by measuring its runtime on a state
of the art mobile device (HTC Desire HD). We measure the required time to

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1000 2000 3000 4000 5000

Pr
(Φ

A m
ax

≤
τ)

τ [m]

1 LS
2 LS
5 LS

10 LS
15 LS

Fig. 9. Cumulated probability distrib-
ution for attacker AAC

MAP

 0

 1

 2

 3

 4

 5

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ca
lc

ul
ati

on
 ti

m
e

[s
]

Number of used LSs

City trajectory

Fig. 10. Runtime performance

314 M. Wernke et al.

calculate for the city trajectory the corresponding fragmentation using n LSs.
As shown in Fig. 10, the calculation time stays below 3 s even for a larger number
of fragments. The runtime of TFA for optimizing the number of required LSs
for the introduced value of ΦMO

max = 1.5 km also stays below 1.4 s. Recall that the
fragmentation is only calculated initially at the start of the MO’s movement or
if the MO leaves the predicted trajectory. While traveling, TFA only performs a
simple lookup of the current position against the corresponding fragment before
sending the position to the LS. Therefore, we can state that TFA supports real-
time position updates and that the fragmentation time is reasonable.

7 Conclusion and Future Work

In this paper, we presented a novel approach to protect the user’s movement
trajectory in a non-trusted system environment. The basic idea of our approach
is to split up the user’s trajectory into a set of trajectory fragments that are dis-
tributed among LSs of different providers. In case an LS gets compromised, only
the positions of the stored fragment are revealed instead of the complete trajec-
tory. In our evaluation, we used real world trajectories to show the effectiveness
of our approach to protect trajectories against attackers using map knowledge
and statistical movement information. In future work, we will analyze how we
can improve our approach by considering LSs of different trust levels.

References

1. Ardagna, C., Livraga, G., Samarati, P.: Protecting privacy of user information
in continuous location-based services. In: IEEE 15th International Conference on
Computational Science and Engineering, pp. 162–169 (2012)

2. Beresford, A.R., Stajano, F.: Location privacy in pervasive computing. IEEE Per-
vasive Comput. 2(1), 46–55 (2003)

3. Chow, C.-Y., Mokbel, M.F.: Enabling private continuous queries for revealed user
locations. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol.
4605, pp. 258–275. Springer, Heidelberg (2007)

4. Damiani, M., Silvestri, C., Bertino, E.: Fine-grained cloaking of sensitive positions
in location-sharing applications. Pervasive Comput. 10(4), 64–72 (2011)

5. DATALOSSDB, June 2013. www.datalossdb.org
6. Kalnis, P., Ghinita, G., Mouratidis, K., Papadias, D.: Preventing location-based

identity inference in anonymous spatial queries. IEEE Trans. Knowl. Data Eng.
19(12), 1719–1733 (2007)

7. Krumm, J.: A Markov model for driver turn prediction. In: Society of Automotive
Engineers (SAE) World Congress (2008)

8. Nergiz, M.E., Atzori, M., Saygin, Y., Güç, B.: Towards trajectory anonymization:
a generalization-based approach. Trans. Data Priv. 2(1), 47–75 (2009)

9. OpenStreetMap, June 2013. www.openstreetmap.org
10. Peddinti, S.T., Saxena, N.: On the limitations of query obfuscation techniques for

location privacy. In: Proceedings of the 13th International Conference on Ubiqui-
tous Computing (2011)

http://www.datalossdb.org
http://www.openstreetmap.org

Protecting Movement Trajectories Through Fragmentation 315

11. Piorkowski, M., Sarafijanovoc-Djukic, N., Grossglauser, M.: A parsimonious model
of mobile partitioned networks with clustering. In: The First International Confer-
ence on COMmunication Systems and NETworkS, pp. 1–10 (2009)

12. Shankar, P., Ganapathy, V., Iftode, L.: Privately querying location-based services
with sybilquery. In: Proceedings of the 11th International Conference on Ubiquitous
Computing (2009)

13. Webroot, June 2013. http://www.webroot.com/us/en/company/press-room/
releases/social-networks-mobile-security

14. Wernke, M., Dürr, F., Rothermel, K.: PShare: ensuring location privacy in non-
trusted systems through multi-secret sharing. Pervasive Mob. Comput. 9, 339–352
(2013)

15. Wernke, M., Skvortsov, P., Dürr, F., Rothermel, K.: A classification of location
privacy attacks and approaches. Pers. Ubiquit. Comput. 16, 1–13 (2012)

http://www.webroot.com/us/en/company/press-room/releases/social-networks-mobile-security
http://www.webroot.com/us/en/company/press-room/releases/social-networks-mobile-security

	Protecting Movement Trajectories Through Fragmentation
	1 Introduction
	2 Related Work
	3 System Model
	4 Problem Statement
	5 Trajectory Fragmentation Algorithm
	5.1 Process Overview
	5.2 Trajectory Fragmentation
	5.3 Minimizing the Number of Required LSs

	6 Privacy and Performance Evaluation
	6.1 Attacker Model
	6.2 Privacy Metric
	6.3 Privacy Evaluation
	6.4 Performance Evaluation

	7 Conclusion and Future Work
	References

