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Abstract. Distance bounding (DB) emerged as a countermeasure to the
so-called relay attack, which affects several technologies such as RFID,
NFC, Bluetooth, and Ad-hoc networks. A prominent family of DB pro-
tocols are those based on graphs, which were introduced in 2010 to resist
both mafia and distance frauds. The security analysis in terms of dis-
tance fraud is performed by considering an adversary that, given a vertex
labeled graph G = (V, E) and a vertex v ∈ V , is able to find the most
frequent n-long sequence in G starting from v (MFS problem). How-
ever, to the best of our knowledge, it is still an open question whether
the distance fraud security can be computed considering the aforemen-
tioned adversarial model. Our first contribution is a proof that the MFS
problem is NP-Hard even when the graph is constrained to meet the
requirements of a graph-based DB protocol. Although this result does
not invalidate the model, it does suggest that a too-strong adversary
is perhaps being considered (i.e., in practice, graph-based DB protocols
might resist distance fraud better than the security model suggests.) Our
second contribution is an algorithm addressing the distance fraud secu-
rity of the tree-based approach due to Avoine and Tchamkerten. The
novel algorithm improves the computational complexity O(22n+n) of the
naive approach to O(22nn) where n is the number of rounds.

Keywords: Security · Relay attack · Distance bounding · Most frequent
sequence · Graph · NP-complete · NP-hard

1 Introduction

Let us consider a little girl willing to compete with two chess grandmasters, say
Fischer and Spassky. She agrees with both on playing by post and manages to
use opposite-colored pieces in the games. Once the little girl receives Fisher’s
move she simply forwards it to Spassky and vice versa. As a result, she wins
one game or draws both even though she might know nothing about chess. This
problem, known as the chess grandmaster problem, was introduced by Conway
in 1976 [7] and informally describes how relay attacks work.

In a relay attack, an adversary acts as a passive man-in-the-middle attacker
relaying messages between the prover and the verifier during an authentication
protocol. In case the adversary is active, the attack is known as mafia fraud [8]
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014
I. Stojmenovic et al. (Eds.): MOBIQUITOUS 2013, LNICST 131, pp. 289–302, 2014.
DOI: 10.1007/978-3-319-11569-6 23



290 R. Trujillo-Rasua

and succeeds if the prover and the verifier complete the authentication protocol
without noticing the presence of the adversary.

With the widespread deployment of contactless technologies in recent years,
mafia fraud has re-emerged as a serious security threat for authentication schemes.
Radio Frequency IDentification (RFID), Near Field Communication (NFC), and
Passive Keyless Entry and Start Systems in Modern Cars, have been proven to be
vulnerable to mafia fraud [10,13]. Other contactless technologies such as smart-
cards and e-voting are also threatened by this attack [9,16].

The most promising countermeasure to thwart mafia fraud is distance bound-
ing (DB) [4], that is, an authentication protocol where time-critical sessions allow
to compute an upper bound of the distance between the prover and the veri-
fier. However, this type of protocols is vulnerable to another type of fraud, the
distance fraud [4]. Contrary to mafia fraud, distance fraud is performed by a
legitimate prover, who aims to authenticate beyond the expected and allowed
distance.

In 2010, graph-based DB protocols aimed at being resistant to both mafia and
distance frauds were introduced [19]. This type of protocols is flexible in the sense
that different graph structures can be used so as to balance memory requirements
and security properties. However, neither the graph-based approach in [3] nor
the one in [19] have computed their actual distance fraud security. Indeed, this
analysis was left as an open problem in [19].

Contributions. In this article we address the open problem of computing the
distance fraud resistance of graph-based DB protocols. We first reformulate the
security model provided in [19] and define it in terms of, to the best of our
knowledge, two new problems in Graph Theory. The Most Frequent Sequence
problem (MFS problem) and its simplified version the Binary Most Frequent
Sequence problem (Binary MFS problem).

We then provide a polynomial-time reduction of the Satisfiability problem
(SAT) to the Binary MFS problem, proving that both the Binary MFS and the
MFS problems are NP-Hard. This result suggests that a too-strong adversary is
perhaps being considered by the security model, unless P = NP . However, the
implications of our reduction goes beyond that. It also provides a clue of how to
design graph-based DB protocols resistant to distance fraud.

Our next contribution is a novel algorithm to compute the distance fraud resis-
tance of the tree-based DB protocol proposed by Avoine and Tchamkerten [3].
Our algorithm significantly reduces the time complexity of the naive approach
from O(22n+n) to O(22nn) where n is the number of rounds. This paves the way
for a fair comparison of graph-based proposals with other state-of-the-art DB
protocols.

Organization. The rest of this article is organized as follows. Section 2 intro-
duces graph-based DB protocols and the new problems Binary MFS and MFS.
Related works close to the MFS problem are reviewed in Sect. 2 as well. Section 3
contains proofs on the hardness of the Binary MFS problem. The algorithm
for computing the distance fraud resistance of the tree-based DB protocol is
described and analyzed in Sect. 4. The discussion and conclusions are drawn in
Sect. 5.
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2 Preliminaries

2.1 Graph-Based Distance Bounding Protocols

Graph-based DB protocols were introduced in [19] aimed at resisting both mafia
and distance frauds, yet requiring low memory to be implemented. The idea is
to define a digraph G = (V,E) and a starting vertex v ∈ V . Then, a challenge-
response protocol (see Fig. 1) is executed where the challenges define a walk in
G according to an edge labeling function �E : E → {0, 1} and the responses are
stored on the vertices according to a vertex labeling function �V : V → {0, 1}.

Algorithm 1. Graph-based distance bounding protocol

Verifier Prover
(Secret x) (Secret x)

(Digraph G = (V, E)) (Digraph G = (V, E))
(Starting vertex v ∈ V ) (Starting vertex v ∈ V )

Pick a random NV Pick a random NP
NV−−−−−−−−−−−−−−−→
NP←−−−−−−−−−−−−−−−

On input PRF (K, NP , NV )
Create �V and �E

v′
0 = v

On input PRF (K, NP , NV )
Create �V and �E

v0 = v
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

for i = 1 to n
Pick ci ∈R {0, 1}

Start Timer
ci−−−−−−−−−−−−−−−→

Look for vi such that

Stop Timer
�V (vi)←−−−−−−−−−−−−−−− �E(vi−1, vi) = ci

Look for v′
i such that

�E(v′
i−1, v

′
i) = ci

Check that Δti ≤ tmax and
�V (v′

i) = �V (vi)

As shown by Fig. 1, prover and verifier exchange two nonces and use a pseudo-
random function (PRF (.)) with a shared private key to compute two labeling
functions �V : V → ∑

and �E : E → ∑
where

∑
= {0, 1}. For �E it must

hold that �E(u, v) �= �E(u,w) for every pair of different edges (u, v) and (u,w) in
E. By contrast, �V is chosen randomly. After labeling the graph, n rounds of time-
critical sessions are executed. At the ith round, the verifier sends the binary chal-
lenge ci. Then, the prover answers with �V (vi) where vi holds that (vi−1, vi) ∈ E
and �E(vi−1, vi) = ci. Note that v0 is the starting vertex v. At the end of the n
time-critical sessions, the verifier checks all prover’s responses (�V (vi)) and the
round-trip-times (Δti), which should be below some threshold tmax. Intuitively,
the lower tmax the closer the prover to the verifier is expected to be.

Two graph-based DB protocols exist; the tree-based approach [3] and the
Poulidor protocol [19]. As suggested by its name, the former uses a tree of depth
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Fig. 1. Graph structures used by the tree-based and Poulidor approaches. Vertices of
both graphs have been randomly labeled.

n and 2n+1−1 nodes (see Fig. 1(a)). By contrast, Poulidor uses a graph structure
with 2n nodes only in order to reduce memory requirements (see Fig. 1(b)). Both
have proven to resist mafia fraud better than other DB protocols such as [12,20].
Its resistance to distance fraud, however, is still an open problem.

There exist other DB protocols, more computationally demanding, based on
signatures and/or a final extra slow phase [4,21]. Others simply could be plugged
into most DB protocols such as [22,23]. The interested reader could refer to [2]
for more details.

2.2 Distance Fraud Security Analysis

The security analysis in terms of distance fraud is usually performed within a
well-known framework proposed by Avoine et al. [2]. In this framework, a dis-
tance fraud adversary uses the early-reply strategy to defeat the DB protocol.
This strategy consists on sending the bits answer in advance (i.e., before receiv-
ing the challenges.) Doing so, the adversary simulates to be closer than really is,
and its success probability is lower-bounded by 1/2n.

In [19], the best early-reply strategy against what they called a family of DB
protocols is defined. This family includes graph-based DB protocols. However,
their definition is too generic to be used for simply analyzing graph-based DB
protocols. Therefore, we reformulate it here in terms of a new problem in Graph
Theory. The problem is named Binary MFS problem (see Definition 2) and is
based on its more general version MFS problem (see Definition 1).

Definition 1 (The most frequent sequence problem (MFS problem)).
Let G = (V,E) be a vertex-labeled digraph where Σ and � : V → Σ are the set
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of vertex labels and the labeling function respectively. For a label sequence t =
t1t2...tk, occGv (t) denotes the number of walks v1v2...vk in G such that v1 = v and
∀i ∈ {1, ..., k} (�(vi) = ti). The MFS problem consists on finding, given the triple
(G, v, k), the most frequent sequence of size k defined as arg maxt∈Σk(occGv (t)).

Definition 2 (Binary MFS problem). The Binary MFS problem is an MFS
problem where G is constrained to use a binary vertex set (

∑
= {0, 1}) and the

out-degree of every vertex should be at most 2.

Example. Either the graph in Fig. 1(a) or the one in Fig. 1(b) can be the input
of the Binary MFS problem. Assuming k = 4 and the starting vertex as the
top one, the most frequent sequences for the tree in Fig. 1(a) is 0010 (occurs 3
times), and for the graph in Fig. 1(b) is 0101 (occurs 4 times).

To successfully apply a distance fraud attack against a graph-based DB pro-
tocol with n time-critical sessions, the best adversary’s strategy consists of: (i)
solving the Binary MFS problem defined by the triple (G, v, n + 1) and finding
the most frequent sequence t0t1...tn, (ii) sending t1...tn in advance to the verifier
as the responses to the n verifier’s challenges. By this strategy, the adversary’s
success probability is maximized to occGv (t)

2n [19]. Coming back to the previous
example, the adversary success probability of the tree-based approach defined
by Fig. 1(a) is 3/8, which is higher than the expected lower bound 1/8.

Definition 3 (Distance fraud success probability). Let
∏

be a graph-based
DB protocol with n time-critical sessions that uses the vertex-labeled digraph
G = (V,E) and v ∈ V as the starting vertex. Let MG,v,n be a random variable
on the sample space of all labeling functions � : V → Σ that outputs the maximum
value max(occGv (t)) where t ∈ {0, 1}n+1. The distance fraud success probability
of an adversary against

∏
is defined as E(MG,v,n)

2n where E(MG,v,n) represents
the expectation of the random variable MG,v,n.

Note that, following the design of graph-based DB protocols, Definition 3
considers that G is randomly labeled at each execution of the protocol.

To the best of our knowledge, computing distance fraud security according
to Definition 3 has been only addressed in its seminal work [19]. Apparently, the
problem is one of those problems that remain intractable even if P = NP because
all, or almost all, the labeling functions should be considered. For this reason, an
upper bound was proposed in [19] and the exact distance fraud security was left
as an open problem. We have shown that this problem depends on a problem
named the MFS problem and, in particular, on the Binary MFS problem. Below,
we review some work related to them.

2.3 Review on Frequent Sequences Problems

Sequential Pattern Mining is a well-studied field introduced by Agrawal and
Srikant [1] in 1995. Given a databases of transactions (e.g., customer transac-
tions, medical records, web sessions, etc.) the problem consists on discovering all
the sequential patterns with some minimum support. The support of a pattern is
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defined as the number of data-sequence within the database that are contained
in the pattern.

The sequential pattern mining problem is #P -complete [24] and several vari-
ants of it exist. For instance, Mannila et al. say that two events are connected if
they are close enough in terms of time [15]. They define an episode as a collection
of connected events and the problem is to find frequently occurring episodes in
a sequence. A simpler variant, known as the most common subsequent problem,
was introduced by Campagna and Pagh [5]. The most common subsequent prob-
lem does not consider time-stamped events. Instead, it aims to find all the label
sequences in a vertex-labeled acyclic graph that appear more often. Other vari-
ants have arisen from complex applications namely, telecommunication, market
analysis, and DNA research. We refer the reader to [6] for an extensive survey
on this subject.

Frequent paths on a graph have also been used to define Kernel functions [17,
18]. Kernel functions has applicability in chemoinformatics and bioinformatics
where objects are mapped to a feature space. In this case, the feature space
representation is the number of occurrences of vertex-labeled paths and the
problem is to infer the graph from such a feature vector. This problem has been
proven to be NP-Hard even for trees of bounded degree [18].

It can be seen that the MFS problem is different to the sequential pattern
mining problems and its nature is obviously different to the one of Kernel meth-
ods. On one hand, sequential pattern mining is an enumeration problem while
MFS is just a search problem. On the other hand, the MFS problem requires
all walks to begin from a given vertex and the size of the sequences should be
equal. As in [5], the time dimension is not considered.

3 On the Hardness of the Binary MFS Problem

Binary MFS is a search problem that looks for the most frequent sequence
of length k in a vertex-labeled digraph G starting from a given vertex v (see
Definition 2). Intuitively, all or almost all the walks in G starting from v should be
analyzed in order to find such a sequence, which means that Binary MFS might
not be in the complexity class P . However, we cannot even state that Binary MFS
is in NP − P since it is not trivial how to check a solution in polynomial time.
Nevertheless, we prove in this Section (see Theorem 1) that the general Boolean
Satisfiability problem (SAT) reduces to Binary MFS. Therefore, Binary MFS can
be considered NP-Hard even thought it may not even be in NP [11].

Definition 4 (SAT). Let x = (x1, x2, ..., xn) be a set of boolean variables and
c1(x), c2(x), ..., cm(x) be a set of clauses where ci(x) is a disjunction of lit-
erals. The Boolean satisfiability problem (SAT) consists on deciding whether
there exists an assignment for the boolean variables x such that the function
fSAT = c1(x) ∧ c2(x) ∧ ... ∧ cm(x) = 1.

Algorithm 2 shows our reduction from SAT to an instance of the Binary
MFS problem. First, it creates a binary tree T of depth �log m� with m leafs
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c1, c2, ..., cm
1, and a graph G′ = (V ′, E′) where V ′ = {u2

0, v
2
0 , ..., un

0 , vn
0 } and

E′ = {(x, y)|∃k ∈ {2, ..., n − 1}(x ∈ {uk
0 , vk

0} ∧ y ∈ {uk+1
0 , vk+1

0 })}. The graph
G = (V,E) is initialized with the two connected components T and G′. In
addition, V is increased with the vertices uj

i and vj
i where i ∈ {1, ...,m} and

j ∈ {1, ..., n}. Then, for each clause ci and each variable xj (j < n), the vertex
uj
i is connected with uj+1

0 and vj+1
0 if xj ∈ ci(x), with uj+1

i and vj+1
i otherwise.

Similarly, the vertex vj
i is connected with uj+1

0 and vj+1
0 if ¬xj ∈ ci(x), with

uj+1
i and vj+1

i otherwise. Finally, for every i ∈ {1, ...,m}: (i) the vertices un
i

and vn
i are removed together with their incident edges, (ii) the edges (un−1

i , un
0 )

and (vn−1
i , un

0 ) are added if xn ∈ ci(x), (iii) if ¬xn ∈ ci(x) the added edges
are (un−1

i , vn
0 ) and (vn−1

i , vn
0 ). The vertex-label function is simply defined as a

function that outputs 0 on input vj
i for every i ∈ {0, 1, ...,m} and j ∈ {1, ..., n},

outputs 1 otherwise.
To better illustrate Algorithm 2, Fig. 2 shows an example of its output for a

given SAT instance. Note that, Algorithm 2 does not consider tautologies such
as the empty clause or one containing x ∨ ¬x.

Algorithm 2. Reduction from the SAT problem
Require: A SAT instance where x = (x1, x2, ..., xn) are the boolean variables and

c1(x), c2(x), ..., cm(x) are the set of clauses
1: Let G = (V, E) be a digraph with just one vertex named root
2: From the root, a directed binary tree with m leafs is created such that all the leafs

are at the same depth. The leaf vertices are denoted as c1, c2, ..., cm

3: Let G′ = (V ′, E′) be a digraph where V ′ = {u2
0, v

2
0 , ..., un

0 , vn
0 } and E′ =

{(x, y)|∃k ∈ {2, ..., n − 1}(x ∈ {uk
0 , vk

0} ∧ y ∈ {uk+1
0 , vk+1

0 })}
4: Set G = G ∪ G′

5: for all vertex ci do
6: Set V = V ∪ {u1

i , v
1
i , u2

i , v
2
i , ..., un

i , vn
i }

7: Set E = E ∪ {(ci, u
1
i ), (ci, v

1
i )}

8: for all j ∈ {1, 2, ..., n − 1} do
9: if xj ∈ ci(x) then

10: Set E = E∪{(uj
i , u

j+1
0 ), (uj

i , v
j+1
0 )} and E = E∪{(vj

i , uj+1
i ), (vj

i , vj+1
i )}

11: else if ¬xj ∈ ci(x) then
12: Set E = E∪{(uj

i , u
j+1
i ), (uj

i , v
j+1
i )} and E = E∪{(vj

i , uj+1
0 ), (vj

i , vj+1
0 )}

13: else
14: Set E = E∪{(uj

i , u
j+1
i ), (uj

i , v
j+1
i )} and E = E∪{(vj

i , uj+1
i ), (vj

i , vj+1
i )}

15: Remove un
i and vn

i from G
16: if xn ∈ ci(x) then Set E = E ∪ {(un−1

i , un
0 ), (vn−1

i , un
0 )}

17: if ¬xn ∈ ci(x) then Set E = E ∪ {(un−1
i , vn

0 ), (vn−1
i , vn

0 )}
18: Create vertex-label function �V (.) such that ∀i ∈ {0, 1, ..., m}, j ∈

{1, ..., n}(�V (vj
i ) = 0), �V (.) outputs 1 otherwise.

19: Return G and �V as result.

1 The leafs are intentionally labeled by using the same clause names.
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root

c1 c2 c3

u1
1

v11 u1
2 v12 u1

3 v13

u2
1 v21 u2

2 v22 u2
3

v23
u2
0 v20

u3
0 v30

u2
0 v20

u3
0 v30 u3

0 v30

Fig. 2. The resulting graph when applying Algorithm 2 on input the boolean formula
(x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3). For the sake of a good visualization some
nodes have been “cloned”, however, they actually represent a single node in the graph.
Such “cloned” nodes can be easily identified as the ones with dashed incident edges.

Lemma 1. The longest walk in G starting from the root vertex has length n +
�log m� and ends either at un

0 or vn
0 .

Proof. Let w = w0...wk be a walk in G = (V,E) starting from the root ver-
tex. Let us assume that w is maximal in the sense that wk does not have out-
going edges. According to Algorithm 2, wk does not have out-going edges only
if wk ∈ {un

0 , vn
0 } or wk ∈ {un−1

1 , vn−1
1 , un−1

2 , vn−1
2 , ..., un−1

m , vn−1
m } (see Step 15 of

Algorithm 2). Therefore, either the longest walk ends at un
0 or vn

0 and its length
is n+ �log m� or its length is n− 1+ �log m�. The proof concludes by remarking
that there must exist at least one walk ending at un

0 or vn
0 unless all the clauses

are empty, which is a tautology not-considered in SAT. ��
Lemma 2. Let s = s0s1...sn+�logm� and t = t0t1...tn+�logm� two different max-
imal length walks in G that start from the root vertex. Then, ∀k ∈ {0, ..., n +
�log m�}(�V (sk) = �V (tk)) ⇒ ∃i �= j(ci ∈ s ∧ cj ∈ t).

Proof. According to Algorithm 2, there exist i, j ∈ {1, ...,m} such that
ci = s�logm� and cj = t�logm�. In addition, every vertex sk (resp. tk) where
�log m� < k < n + �log m� is either u

k−�logm�
i (resp. u

k−�logm�
j ) or v

k−�logm�
i

(resp. v
k−�logm�
j ).

Now, according to the vertex-label function �V , if ∀k ∈ {0, ..., n−1+�log m�}
(�V (sk) = �V (tk)), then ∀k ∈ {�log m�+1, ..., n−1+�log m�}(sk = v

k−�logm�
i ⇔

tk = v
k−�logm�
j ). Similarly, if �V (sn+�logm�) = �V (tn+�logm�) then sn+�logm� =

vn
0 ⇔ tn+�logm� = vn

0 (see Lemma 1). Therefore, i = j ⇒ s = t, which is a
contradiction. ��
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Theorem 1. The Binary MFS problem is NP-Hard.

Proof. Let
∏

be an instance of the SAT problem and let G be the graph obtained
by applying Algorithm 2 on input

∏
. Let

∏′ be the problem of finding the most
frequent sequence of length n + 1 + �log m� in G starting from the vertex root.
Given a solution s for

∏′, our aim is to prove that a true assignment for
∏

exists (and can be found) in polynomial time if and only if s appears m times in
G. Doing so,

∏
is proven to be polynomially reducible to

∏′, which is a Binary
MFS problem.

First, let us assume that the most frequent sequence s = s0s1...sn+�logm� in G
occurs exactly m times. Let w0w1...wn+�logm� be a walk such that ∀i ∈ {0, ..., n+
�log m�}(�V (wi) = si). By Algorithm 2, there must exist i ∈ {1, ...,m} such that
w�logm� = ci. Let wk+�logm� be the vertex such that wk+�logm� /∈ {uk

0 , vk
0} and

wk+1+�logm� ∈ {uk+1
0 , vk+1

0 }. Note that, such a vertex exists due to Lemma 1
and Algorithm 2. According to such an algorithm, either wk+�logm� = uk

i and
ci(x) contains the literal xk or wk+�logm� = vk

i and ci(x) contains the literal
¬xk. Therefore, if wk+�logm� = uk

i then xk = sk+�logm� = �V (uk
i ) = 1 satisfies

the clause ci(x), otherwise xk = sk+�logm� = �V (vk
i ) = 0 does. Consequently,

the assignment xj = sj+�logm� ∀j ∈ {1, ..., n} satisfies ci(x).
Considering that s appears m times, then by Lemma 2 we can conclude that

all the clauses are satisfied by such assignment, whereupon we finish the first
part of this proof.

Now, let x = (y1, ..., yn) be a true assignment for
∏

. Let us consider the
induced sub-graph Gi formed by the vertex ci and all the other vertices reachable
from ci. By design of Algorithm 2, there exists a walk w = w0w1...wn−1 in Gi

such that ∀k ∈ {1, ..., n − 1}(yk = �V (wk)) and w0 = ci. In addition, if yj
satisfies clause ci(x) (i.e., yj = 1 ∧ xj ∈ ci(x) or yj = 0 ∧ ¬xj ∈ ci(x)), then
according to Algorithm 2 either (xj ∈ ci(x) ∧ {(uj

i , u
j+1
0 ), (uj

i , v
j+1
0 )} ∈ E) or

(¬xj ∈ ci(x) ∧ {(vj
i , u

j+1
0 ), (vj

i , v
j+1
0 )} ∈ E). Consequently, it must hold that

wn−1 ∈ {un−1
0 , vn−1

0 } if and only if (x1, ..., xn−1) = (y1, ..., yn−1) satisfies ci(x).
If (y1, ..., yn−1) does satisfies ci(x), the walk w = w0w1...wn−1wn where wn = un

0

if yn = 1 and wn = vn
0 if yn = 0 holds that ∀k ∈ {1, ..., n}(yk = �V (wk)). On the

other hand, if (y1, ..., yn−1) does not satisfies ci(x), then yn = 1 ⇒ xn ∈ ci(x)
and yn = 0 ⇒ ¬xn ∈ ci(x). According to Steps 18 and 20 of Algorithm 2, w =
w0w1...wn−1wn where wn = un

0 if yn = 1 and wn = vn
0 if yn = 0 is a walk holding

that ∀k ∈ {1, ..., n}(yk = �V (wk)). As a conclusion, for every i ∈ {1, ...,m} there
exists a walk passing through ci that generates the sequence 11...11︸ ︷︷ ︸

�logm�+1

y1...yn. This

result together with Lemma 2 conclude that such a sequence repeats exactly m
times. ��
Corollary 1. The MFS problem is NP-Hard.
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4 Distance Fraud Analysis for the Tree-Based Approach

In this section, the problem of computing the distance fraud resistance of the
tree-based DB protocol [3] is addressed. A naive algorithm to solve this problem
consists on analyzing all the labeling functions for a full binary tree of depth n
and then computing the most frequent sequence for each labeling function (see
Definition 3). This results in a time-complexity of O(22n+n), which is unfea-
sible even for small values of n. We propose an algorithm that reduces this
time-complexity to O(22nn). Although still exponential, it might be used up to
reasonable values of n (e.g., n = 32).

For the sake of clarity, we first adapt Definition 3 to the context of the tree-
based proposal.

Problem 1. [Tree-based distance fraud problem] Let
∏

be a tree-based DB
protocol with n time-critical sessions that uses the full binary tree T = (V,E)
and root ∈ V as the starting vertex. Let Mn be a random variable on the
sample space of all labeling functions � : V → {0, 1} that outputs the maximum
value max(occTroot(t)) where t ∈ {0, 1}n+1. The tree-based distance fraud problem
consists on finding the expectation of the random variable Mn.

Theorem 2. Let m and n be two positive integers. Let Tm
n be a tree such that:

(i) the root has 2m children and (ii) each root’s children is the root of a full
binary tree of depth n − 1. Let Mm

n be the random variable on the sample space
of all binary vertex-labeling functions over Tm

n that outputs the maximum value
max(occT

m
n

root(t)). The expectation of the random variable Mn can be computed as
follows:

E(Mn) = E(M1
n) =

2n
∑

i=1

(
Pr(M1

n < i + 1) − Pr(M1
n < i)

)
i.

where

Pr(Mm
n < x) =

2m∑

i=0

(
2m
i

)

22m

(
Pr(M i

n−1 < x) Pr(M2m−i
n−1 < x)

)
.

and

Pr(Mm
n < x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if x = 1
0 if n = 1 ∧ m > x

1
22m

(
(
2m
m

)
+ 2

x−1∑

i=m+1

(
2m
i

)
)

if n = 1 ∧ m ≤ x ≤ 2m

1 if n = 1 ∧ 2m < x
1 if m = 0

Proof. A full binary tree of depth n can be denoted as T 1
n and the random vari-

able Mn is equivalent to M1
n. Therefore, in what follows, we focus on computing

the expectation of the random variable Mm
n .
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Let us consider now a labeling function � over Tm
n . Let V0 and V1 be the set of

children of the Tm
n ’s root labeled with 0 and 1 respectively. Let C0

1 , C0
2 , ..., C0

2|V0|
and C1

1 , C1
2 , ..., C1

2|V1| be the subtrees rooted in the children of the vertices in
V0 and V1 respectively. Let X be a labeled tree whose root is labeled with 0
and the root’s children are the full binary trees C0

1 , C0
2 , ..., C0

2|V0|. In the same
vein, Y is defined as a labeled tree whose root is labeled with 1 and the root’s
children are the full binary trees C1

1 , C1
2 , ..., C1

2|V1|. It can be noted that, if a
sequence t = t1...tn occurs exactly k times either in X or Y , then the sequence
t = t0t1...tn where t0 is the label of Tm

n ’s root also appears exactly k times in
Tm
n . Therefore, taking into account that X = T

|V0|
n−1 and Y = T

|V1|
n−1, the following

recurrent result can be obtained:

Pr(Mm
n < x) =

2m∑

i=0

Pr(|V0| = i)
(
Pr(M i

n−1 < x) Pr(M2m−i
n−1 < x)

)

=
2m∑

i=0

(
2m
i

)

22m

(
Pr(M i

n−1 < x) Pr(M2m−i
n−1 < x)

)
. (1)

Equation 1 shows that Pr(Mm
n < x) could be computed recursively. To do

so, stop conditions must be found as follows:

Pr(Mm
n < x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if x = 1
0 if n = 1 ∧ m > x

1
22m

(
(
2m
m

)
+ 2

x−1∑

i=m+1

(
2m
i

)
)

if n = 1 ∧ m ≤ x ≤ 2m

1 if n = 1 ∧ 2m < x
1 if m = 0

(2)

Let us analyze Pr(Mm
1 < x), which is the less trivial stop condition in Eq. 2.

Since Tm
1 has depth 1 and 2m children, Tm

1 generates 2m sequences, p of them
ending with 0 and q with 1. Consequently, Mm

1 = max(p, q) ≥ m and thus,
Pr(Mm

1 < x) = 0 if x < m. Similarly Mm
1 ≤ 2m, which implies that Pr(Mm

1 <
x) = 1 if x > 2m. Finally, let us assume that m ≥ x ≥ 2m. In this case, Mm

1 < x

holds if Mm
1 ∈ {m,m + 1, ..., x − 1}, therefore, Pr(Mm

1 < x) =
x−1∑

i=m

Pr(Mm
1 = i)

where Pr(Mm
1 = i) = (2mm )

22m if i = m, otherwise Pr(Mm
1 = i) = 2(2mi )

22m . This yields

to Pr(Mm
1 < x) = 1

22m

(
(
2m
m

)
+ 2

x−1∑

i=m+1

(
2m
i

)
)

if m ≥ x ≥ 2m.

The proof concludes by using the definition of expectation for a discrete
variable together with Eqs. 1 and 2. ��
Time-complexity analysis. The result provided by Theorem 2 can be imple-
mented by a dynamic algorithm, meaning that a three-dimensional matrix will
dynamically store the values of Pr(Mm

n < x) and will use them when needed.
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In the worst case, the algorithm requires to fill the whole matrix, which results
in a time-complexity of O(2n × n × 2n) = O(22nn).

5 Discussion and Conclusions

Before the introduction of graph-based DB protocols, computing resistance to
distance fraud was not a big issue (e.g., Hancke and Kuhn [12] and Kim and
Avoine [14] proposals.) Actually, the well-known early-reply strategy used to
analyze distance fraud security implicitly assumes that the adversary is able to
compute the best answer without knowing the challenges and within a “reason-
able” time frame. In this article, however, we have shown that this assumption
might not hold for graph-based DB protocols by proving that the Binary MFS
problem is NP-Hard. This opens two interesting research questions: (i) What
instances of the Binary MFS problem are actually hard to solve? (ii) In a practi-
cal setting, does the adversary have enough time to solve a probably exponential
problem between the end of the slow phase and the beginning of the fast phase?
(iii) What kinds of heuristics can be used and what would the implications be?

Even though we do not give answers to those questions, we provide a clue of
how to build graph-based DB protocols resistant to distance fraud. As indicate
our reduction from the SAT problem, a good strategy is to label the vertices of
G as follows: if the vertices u and v have incident edges from the same vertex,
then ∀b ∈ {0, 1}(�V (u) = b ⇔ �V (v) = b ⊕ 1). Doing so, G is likely to generate
all the sequences {0, 1}n just once, in which case its resistance to distance fraud
achieves the lower bound 1/2n. As a consequence, we conjecture that the best
graph DB protocol in terms of mafia fraud constrained to have no more than
certain number of nodes, is also the best in terms of distance fraud. Note that,
this conjecture becomes trivial if no limit on the size of the graph is considered.

This article has also addressed the problem of computing the distance fraud
security of the tree-based DB proposal [3]. This is an inherent exponential prob-
lem since a graph with N nodes can be labeled in 2N different ways. The tree-
based proposal uses a tree with 2n nodes and thus 22n

labelling functions exists.
However, we provide an algorithm that avoids considering all the labelling func-
tions and has a time complexity of O(22nn), which is significantly better than
the naive approach with O(22n+n). This result makes realistic the challenge of
computing the distance fraud security of the two graph-based DB protocols pro-
posed up-to-date; the tree-based approach [3] by using the proposed algorithm
(O(22nn)), and the Poulidor protocol [19] by simply using a brute-force algorithm
(O(23n)). Doing so, both can be fairly compared with other state-of-the-art DB
protocols. Such a challenge is out of the scope of this article and is left as future
work, though.
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