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Abstract. By leveraging sensors embedded in mobile devices, partici-
patory sensing tries to create cost-effective, large-scale sensing systems.
As these sensors are heterogeneous and low-cost, regular calibration is
needed in order to obtain meaningful data. Due to the large scale, on-
the-fly calibration utilizing stationary reference stations is preferred. As
calibration can only be performed in proximity of such stations, uncali-
brated measurements might be uploaded at any point in time. From the
data quality perspective, it is desirable to apply backward calibration for
already uploaded values as soon as the device gets calibrated. To protect
the user’s privacy, the server should not be able to link all user mea-
surements. In this paper, we therefore present a privacy-preserving cali-
bration mechanism that enables both forward and backward calibration.
The latter is achieved by transferring calibration parameters to already
uploaded measurements without revealing the connection between the
individual measurements. We demonstrate the feasibility of our approach
by means of simulation.

Keywords: Participatory sensing · Mobile sensing · On-the-fly
calibration

1 Introduction

Today, mobile phones already include an increasing set of embedded sensors.
Currently available phones come with built-in accelerometers and gyros, as well
as location, audio, and image sensors. With this development, mobile phones
evolve from standard phones, intended for personal communication only to ubiq-
uitous sensing devices that are globally distributed. These devices can be utilized
to form a new kind of sensor network, so-called participatory sensing networks
(PSN) (also referred to as mobile phone sensing [1] or people-centric sensing net-
works [2]), where people serve as carriers for mobile phone-based sensing devices.
PSNs allow for large-scale, global data collection and real-time information dis-
play. In future, they could be used, e.g., to monitor environmental pollution,
temperature or the noise intensity of urban areas. The main advantage of PSNs
is that data can be collected on a large-scale with automatically deployed and
virtually always-on, consumer-paid and continuously recharged sensor nodes.
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Leveraging the sensors built into mobile phones as information source typi-
cally entails two main problems: On the one hand, those sensors are heteroge-
neous, due to the great number of different manufacturers and device models.
On the other hand, sensors embedded in mobile phones Consequently, calibra-
tion is necessary in order to obtain meaningful data and poses a crucial aspect
for the success of PSNs. In general, there a two types of calibration: manual and
on-the-fly. The former is typically performed by field experts and is used for high
precision instruments, especially if manageable amounts of sensors have to be cal-
ibrated. On-the-fly calibration describes an online process, in which sensors are
automatically calibrated while being deployed and running. It is done by utiliz-
ing stationary reference stations, whose measurements are used as ground-truth.
For large-scale PSNs, manual calibration is too elaborate and time-consuming,
and thus on-the-fly calibration is preferred.

A calibration process can only be performed if a mobile phone user comes
sufficiently close to one of those reference stations. As the mobility of users can-
not be controlled, this can lead to the upload of uncalibrated measurements,
especially in case of long intervals without a user’s encounter with a reference
station. Hence, in order to improve the system’s overall quality of information, it
is desirable that the server can apply backward calibration for already uploaded
values, as soon as the calibration process is carried out for a client, i.e., the server
adjusts previously uploaded measurement values with the newly determined cal-
ibration parameters. In order to protect the user’s privacy, though, the server
should not be able to link all conducted measurements of a client, as this could
reveal the user’s entire mobility trace. In other scenarios, this could be achieved
by using changing pseudonyms in combination with MIX networks [3] to avoid
the traceability of users and their measurements. But the quasi uniqueness of the
calibration parameters would allow to link calibrated measurements of a user.

In this paper, we present a privacy-preserving calibration mechanism that
enables both forward and backward calibration, while protecting a participating
user’s privacy. The latter is achieved by transferring calibration parameters to
already uploaded measurements in a way that completely blurs the connection
between the individual measurements.

The remainder of this paper is organized as follows. Section 2 discusses related
work. In Sect. 3, we introduce the calibration model, followed by the description
of our privacy-preserving calibration system in Sect. 4. Then, we evaluate our
approach in Sect. 5 and finally conclude in Sect. 6.

2 Related Work

There is a lot of research work related to participatory sensing. Most work focuses
on approaches and techniques that enable data collection with mobiles phones
[1,2,4], but neglect calibration issues. In addition, there is also a wide range of
work dealing with sensor calibration in general. Those approaches often cannot
be applied to participatory sensing, as dense networks of static and resource-
constrained nodes are assumed [5].
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Miluzzo et al. proposed CaliBree [6], a distributed self-calibration system for
mobile wireless sensor networks. Mobile sensors compare their data with those
of ground-truth nodes when they experience the same environment, i.e., upon
reception of locally broadcasted ground-truth information. As their nodes do
not possess any positioning capabilities, they are dependent on the broadcasted
information. In our approach, we assume that mobile phones are able to deter-
mine their position (e.g., using GPS), which allows for a more precise determina-
tion of whether nodes should experience the same environment. Furthermore, no
direct wireless communication link between ground-truth stations and sensors is
necessary, thereby facilitating the integration of already existing measurement
stations and avoiding investments in new hardware. In contrast to the distrib-
uted CaliBree calibration, Honicky [7] presented an centralized approach, where
the automatic calibration of sensors embedded into mobile phones is achieved
by using Gaussian process regression. Through the cloud-based approach, global
information about all of the sensors in the system can be integrated into the
calibration process. Hasenfratz et al. [8] introduced new calibration algorithms,
i.e., backward and instant calibration for on-the-fly calibration of low-cost gas
sensors. The focus of the paper lies on applying the algorithms on actual data
and no mechanisms for the exchange of data between the entities is described.

These approaches either neglect the privacy aspect as a central instance
knows about all measurements of the nodes [7] or do not take into account that
nodes pass by reference stations infrequently. The latter leads to the upload of
possibly uncalibrated measurements. To the best of our knowledge, our approach
is the first that preserves the users’ privacy and allows for backward and forward
calibration.

3 Calibration Model

We assume mobile phones to be equipped with low-cost gas sensors, which we
aim to calibrate with our system. In this section, we therefore introduce the
underlying calibration model.

PSNs can be seen as a special type of sensor network. Sensor networks usually
aim to monitor one or multiple phenomena of interest. In order to be able to
detect a phenomenon P , there needs to be a measurable signal p : T → D
that arises from P , with T ⊆ R

+ being the time and D ⊆ R being the value
domain. Let ms(ti) be the measurement of a sensor s at time ti ∈ T , and p(ti)
the actual value of the phenomenon at that time. If sensor s is a perfect sensor,
ms(ti) = p(ti) is true for any point in time and no calibration is necessary.

However, sensors are typically not behaving perfectly, and especially for low-
cost gas sensors there is a significant precision loss due to sensor aging [9] and
influencing contextual settings (e.g., humidity) [10]. Calibration of sensors can
hence be described as the process of minimizing the deviation of the measured
values ms(ti) from the actual values p(ti), which is achieved by applying a cal-
ibration curve φ to the measured values. We use a polynomial of order k as a
representation of φ : R

k+1 × D → D with a vector of calibration parameters
c = (c0, c1, ..., ck) ∈ R

k+1 and x as the measurement input:
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φ(c, x) =
k∑

n=0

cn ∗ xn. (1)

As a sensor can be calibrated several times, we denote ω : T → R
k+1 as the

function returning the effective calibration parameters at a certain point of time.
As a result, the calibrated value m̃s(ti) of a sensor s at time ti is

m̃s(ti) = φ(ω(ti),ms(ti)) =
k∑

n=0

ω(ti)n ∗ ms(ti)n. (2)

For a perfect sensor s that needs no calibration, it is ∀ti ∈ T : ω(ti) =
(0, 1, 0, 0, ..., 0) ∈ R

k+1 and ms(ti) = p(ti). By means of calibration we aim for
perfectly calibrated sensors that behave like perfect sensors from a point tc in
time onwards, so that ∀ti ≥ tc, t ∈ T : ω(ti+1) = ω(ti) and m̃s(ti) = p(ti).
This ideal state is typically not reached, as sensors continuously degrade and
thus do not remain perfectly calibrated. However, by continuously repeating the
calibration process an approximation of the ideal state can be reached.

In order to determine the above introduced calibration curve φ, a set C (with
|C| ≥ (k + 1)) of calibration tuples (ms(ti), p(ti)) is needed, i.e., for a certain
number of measurements we need to know the actual value of the phenomenon of
interest. For this purpose, we utilize stationary reference stations, as we assume
those sensors to be perfectly calibrated at any point. For each measurement
ms(ti) and actual value p(ti), we store the time ti and the location li of the
mobile phone, respectively of the reference station, so that we have a set of
measurements M , consisting of tuples of the form (t,ms(t), l(t)), and a set of
actual values S, consisting of tuples of the form (t, p(t), l(t)). To access the
different parts of these tuples, we use the dot notation, e.g., m.l for the location
of a tuple m ∈ M . Hence, the set of calibration tuples C can be written as:

s ∈ S,m ∈ M : C = {(s.p,m.ms)||s.t − m.t| ≤ δt ∧ |s.l − m.l| ≤ δl}. (3)

δt and δl are parameters describing the temporal and spatial distance between
ground-truth and mobile measurements, which have to be adapted according to
the phenomenon of interest.

4 Privacy-Preserving Calibration System

In this section, we will describe our Privacy-Preserving Calibration System
(PPCS). Overall, we assume that users conduct measurements using their mobile
phones and upload their data to a server, which is responsible for storing all
measurements. The upload is done via MIX networks with users utilizing self-
generated pseudonyms for communicating their measurements and change those
on a regular basis. Users can even use a new pseudonym for each measure-
ment. These pseudonyms are necessary in order to be able to reference specific
measurements within the backward calibration process. PPCS is an on-the-fly
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Fig. 1. Calibration pipeline showing the two calibration phases

calibration system, i.e., it calibrates sensors while they are in use by utilizing
stationary reference stations providing ground-truth data. Many cities already
deployed stationary sensor stations measuring the air quality in use. For instance,
Zurich has four stations1, and in Munich there are even 10 stations deployed2.
We assume such reference stations to be available and that their measurements
are accessible through well-defined web service interfaces.

Figure 1 illustrates the calibration pipeline of our system. By comparing ref-
erence measurements to the user’s measurement data, instant forward calibration
can be performed. Forward calibration refers to the process of determining a cal-
ibration curve on a user’s mobile device that is applied to future measurements
before uploading those. In contrast, backward calibration refers to the process
of adjusting previous measurements by applying a newly determined calibra-
tion curve to already uploaded data. In order to instruct the server to per-
form backward calibration for concerned measurements, users have to transfer
the freshly acquired calibration parameters in combination with the previously
used pseudonym to the server. In the following, the two calibration phases are
described in more detail.

4.1 Forward Calibration

In the forward calibration process, a calibration curve is determined based on
the comparison of recent measurements of both the mobile phone and a reference
station. First, the user’s device (hereafter referred to as the client) needs to be
aware of any reference stations within its area. Therefore, the server provides
a list of reference stations together with their locations and the accessible data
interface for the reference measurement retrieval. This list is requested as soon
as the client enters an unknown area, and is refreshed by periodical updates.
Knowing the locations of nearby reference stations, the client checks for each
measurement, whether it is in proximity of one of those. If so, the reference
measurements are retrieved. As mentioned in the previous section, the temporal
1 http://www.ostluft.ch/
2 http://maps.muenchen.de/rgu/luftmessstationen

http://www.ostluft.ch/
http://maps.muenchen.de/rgu/luftmessstationen
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and spatial ranges stating what is to be considered as “proximity” depend on
the phenomena of interest and have to be specified by adapting the parameters
δl and δt in Eq. 3.

The locally recorded measurements and the reference measurements are then
combined and the calibration tuples are formed through a temporal and spatial
filtering process (cf. Sect. 3). Basically, this step combines measurements that were
taken at approximately the same time and location. These calibration tuples are
then used to determine a calibration curve that is specific to the current state of
a mobile user’s sensing equipment. In order to avoid distorted or premature cali-
brations, PPCS takes the following countermeasures: First, forward calibration is
only performed if a predefined minimal number of calibration tuples (CMinCount)
exist in order to reduce the impact of possible outliers within the calibration tuples.
Second, calibration is only started if a certain value range within the calibration
tuples is covered (CMinRange), to avoid a calibration optimized for a limited value
range. Third, in order to avoid unnecessary calibrations, the calibration process
is only started if a certain timeout has been exceeded since the last calibration
(CTimeout). The actual determination of the calibration curve parameters is done
by polynomial regression. The model is fitted using the method of least squares,
which minimizes the sum of the squares of the deviations between reference and
mobile sensor measurements. The determined calibration tuples are then used to
correct future measurements before uploading them (see Fig. 2b). In a discretized
form, they are also used during backward calibration to correct already uploaded
measurements.

4.2 Backward Calibration

In the backward calibration process, already uploaded measurements should be
adjusted with a newly determined calibration curve. As already mentioned, users
change their pseudonyms on a regular basis in order to protect their privacy. As
a result, only the users themselves know which pseudonyms the calibration curve
should be applied to. Thus, a client that has locally determined a new calibration
curve has to inform the server about the pseudonyms and the calibration para-
meters. A naive approach would be to send tuples consisting of the pseudonym
to be adjusted and the calibration vector c. However, this would naturally lead
to a breach of the user’s privacy: as the exact calibration parameter vector typ-
ically differs from phone to phone, sending c could reveal the link between the
different pseudonyms of a user (see Fig. 2a).

In PPCS, this is counteracted by incorporating the concept of k-anonymity
[11]. To obfuscate the exact calibration parameter, the client discretizes the
calibration parameters before uploading them to the server. By this, the prob-
ability of having the same calibration vector c as other clients and achiev-
ing k-anonymity is increased. For this process, a discretization function ψ :
R

k+1 ×R
k+1 → R

k+1 is used, which returns a discretized (and thereby general-
ized) calibration vector c̃:
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Fig. 2. (a) Applying exact backward calibration parameters (here: c1 and c2), can
reveal the link between uploaded measurements (indicated with diamonds). (b) Exam-
ple excerpt of simulated and calibrated measurements of a node over time.

c̃ = ψ(c, d) =

⎛

⎜⎝


 c0
d0∗θ(c)� ∗ (d0 ∗ θ(c))

...

 ck

dk∗θ(c)� ∗ (dk ∗ θ(c))

⎞

⎟⎠ , (4)

where d ∈ R
k+1 is the discretization vector that is known system-wide (i.e., all

clients use the same d) and 
x� denotes the rounding function to the nearest
integer. θ describes a factor for adjusting the discretization granularity to the
extent of the deviation δ of c from the perfect sensor s: θ(c) = 2max(�lg δ(c)−ϕ�,0),
with δ being the degree of deviation δ(c) = ||c − s||2 = (

∑k
n=0(

cn−sn

dn
)2)

1
2 , and

ϕ being a constant for determining the steps of adjustment. To clarify this step,
we illustrate the discretization with an example: We assume a calibration vector
c = (9.3292, 0.8567) and a discretization vector d = (2.0, 0.1) with ϕ = 2. This
leads to δ(c) = 4.8798 and θ(c) = 2, and finally to the discretized calibration
vector c̃ = (8.0, 0.8).

Naturally, as c is distorted, the discretization process leads to a loss of pre-
cision, with the amount of distortion depending on d. However, the error intro-
duced should be relatively small compared to the gain of precision achieved
by calibrating and adjusting ms(ti) to m̃s(ti), even with deliberately distorting
the calibration parameters. Furthermore, as c̃ is only used within the backward
calibration process, the error does not propagate to future measurements.

To avoid privacy attacks based on the upload time, backward calibration
parameters are only uploaded at certain specified times, resulting in so-called
“calibration bursts”. By this, all users that want to apply backward calibration
to their measurements, upload their parameters for the total interval since the
last calibration burst. As done before, the upload of c̃ to the server is carried out
via a MIX network, so that the updates cannot be linked to the physical device.

The last step is the weighted correction of former measurements by the server.
This is done by applying the received calibration parameters and calculating a
new measurement value. Ideally, this new value and the former value should be
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combined to a corrected measurement value by using weights that depend on
the point of time within the last calibration period of the corresponding node.
Measurements closer to the calibration point at which the backward calibration
parameters have been determined should be stronger affected by the correction
than measurements closer to the previous calibration point. The idea behind this
is that it is typically not reasonable to alter measurements that have just been
(forward) calibrated by applying a much later determined backward calibration.
However, as the server does not know the actual calibration times of a node, only
an approximation can be calculated. Instead of using the actual calibration times,
the server uses weights that depend on the point of time within the calibration
burst. The corrected value m̃s(ti) is calculated with the following formula

m̃s(ti) =
(ti − cbn−1) ∗ φ(ω(cbn),ms(ti))

cbn − cbn−1
+

(cbn − ti) ∗ φ(ω(cbn−1),ms(ti))
cbn − cbn−1

,

(5)
where cbn and cbn−1 denote the times of the current calibration burst and the
previous calibration burst respectively. As this might heavily deviate from the
ideal weighted correction, the client calculates the ideal weighted correction
m̂s(ti) itself before uploading the backward calibration parameters

m̂s(ti) =
(ti − ctn−1) ∗ φ(ω(ctn),ms(ti))

ctn − ctn−1
+

(ctn − ti) ∗ φ(ω(ctn−1),ms(ti))
ctn − ctn−1

, (6)

with ctn and ctn−1 denoting the actual calibration times of that node. Only
if a backward calibrated value is closer to the ideally corrected value, i.e., if
|m̂s(ti)−ms(ti)| > |m̂s(ti)−m̃s(ti)|, the client uploads the calibration parameters
and initiates the backward calibration process.

5 Evaluation

We evaluated our concept by means of simulation. As ground truth data for our
simulated measurements, we used real ozone measurements of 14 days collected
at stationary stations in Munich (cf. Footnote 2). We interpolated this data in
the time domain to increase the resolution from 1/hour to 1/minute, as well as
in the spatial domain, in order to have a ground truth value for each position
within the simulation area. For the latter, we employed Shepard’s method for
Inverse Distance Weighting [12] with the power parameter p = 2.

To simulate the deviation of mobile sensors, we used the model for ozone
measurements presented in [8]: the authors deployed sensors with MiCS-OZ-
47 ozone sensing heads, and found that the measurement errors are normally
distributed, if they are only initially calibrated. They observed a normal distri-
bution N (μ, σ2) with μ ∼ U(−9, 9) ppb and σ ∼ N (3, 1) ppb over the period
of a day. For our simulations, we applied this model to generate artificial data,
i.e., based on this model we determined an error curve for each sensor node. The
error curve was set to an order of 1, i.e., a polynomial of the form a∗x+b, where
a was set to a random value ranging from [−8.0, 8.0] and b to a value ranging
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Table 1. Simulation setup

No. of nodes 1000, 1500, 2000 Simulation time 14 days

Mobility model Random Walk Max. speed 8.33 m
s

Measurement frequency 4x per hour No. of reference stations 5

δl 250 m CMinCount 5

CMinRange 30 ppm CTimeout 5 days

from [−0.2, 0.2], as those values closely modeled the mentioned behavior. We
also integrated an aging factor of 0.2 ppm/day (as in [8]) to account for the loss
of precision over time. As a result, a measurement was simulated by applying the
error curve on the ground truth value, adding the deviation arising from sensor
aging, and finally adding some noise from the aforementioned distribution.

We then conducted simulations with the setup stated in Table 1. The back-
ward calibration was performed once per week. The calibration curve φ was set
to an order of 1, thus c, c̃, and d ∈ R

2. In our evaluations we used the follow-
ing discretization parameters: d0 = {1.0, 1.5, 2.0}, d1 = {0.05, 0.1, 0.15, 0.2}, and
ϕ = {2, 3, 4}, resulting in 36 different discretization combinations. In the follow-
ing, discretization parameter combinations are written in the form d0, d1;ϕ.

5.1 K-Anonymity

In a first step, we analyzed our approach regarding the level of k-Anonymity. We
therefore run simulations with each of the above mentioned discretization com-
bination and analyzed how often k-Anonymity was reached for k = {2, 3, ..., 10}.

Figure 3a–c show the achieved k-Anonymity for 1000 nodes. It is obvious
that more fine-grained discretization vectors, i.e., vectors with small discretiza-
tion steps (such as 1.0, 0.05; 4.0) perform worse than more coarse-grained vectors
(such as 2.0, 0.2; 2.0). It can be seen that especially the discretization parameter
d1 is decisive, and that discretizations with d1 = 0.15 or d1 = 0.2 reached the
desired k-Anonymity level significantly more often. The results also show that
smaller values for ϕ have a more positive impact on the anonymity level than
larger values, as the discretization parameters are adapted more rapidly and thus
become more coarse-grained. For k = 5, the k-Anonymity level was reached in
more than 80 % of the time with 28 out of the 36 discretization combinations. For
k = 10, 23 discretization combinations reached the specified level in more than
60 % of the time. We then selected the worst and the best performing discretiza-
tion from the former results and simulated it with varying node numbers, i.e.,
#nodes = {1000, 1500, 2000}. The results are shown in Fig. 3d. It can be seen
that especially in the worst case, the increase of participating nodes significantly
increases the percentage of achieved k-Anonymity.
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Fig. 3. Achieved average k-Anonymity level for varying discretization parameters over
the simulated 14-day period.

5.2 Discretization Error

In a next step, we analyzed the error introduced by discretizing the calibration
parameters in the backward calibration process. In this step, we only considered
discretization parameters that achieved a k-Anonymity level of 10 at least 60 %
of the time. Figure 4a, b show the average discretization error in relation to the
average calibration gain (the average was calculated only over the amount of
nodes that performed a calibration). For the former, we compared the results
using the discretized calibration vector c̃ with those using the exact calibration
parameters c (in relation to the ground truth value). The calibration gain is the
average gain in precision when applying the discretized calibration curve c̃, com-
pared to results without calibration. Here, the results are obviously orthogonal
to the aforementioned results: the most fine-grained discretization results in the
lowest error and the highest gain. It can be seen again that especially the choice
of d1 and ϕ are decisive for the result. Even though a few exceptions resulted in a
negative backward calibration gain, i.e., the discretization of the calibration lead
to a worse result than without the calibration, with most parameters a positive
result was achieved.

We further examined the calibration gain for each calibration period, which is
the time interval between two calibration points, e.g., the first calibration period
(C1) is the time interval from the simulation start until the first calibration. More
precisely, we define the set of calibration periods as follows: {i ∈ 1, ..., n + 1 :
Ci = [tci−1 ; tci ]}, with {tc1 , tc2 , ...tcn} being the set of calibration times. As we
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Fig. 4. (a, b) Average backward calibration gain and discretization error for varying
discretization parameters over the simulated 14-day period. (c, d) Comparison of for-
ward and backward calibration gain per calibration period with varying aging factors.

set CTimeout = 5 for our simulations, a maximum of three calibration points was
possible and consequently a maximum of four calibration periods (C1 to C4).

The upper parts of Fig. 4c, d show the average calibration gain for the indi-
vidual calibration periods and the overall gain, whereas the lower parts show the
number of nodes that were calibrated in the individual round. In each figure,
the forward calibration gain was only plotted once, since forward calibration
does not depend on discretization parameters. We illustrated the results for
2000 nodes and chose those discretization parameters, whose backward calibra-
tion gain was higher than the discretization error (see Fig. 4a, b). In Fig. 4c, the
results with the aforementioned aging factor of 0.2 ppb/day are illustrated. In
period C1 no forward calibration gain is achieved, as forward calibration adapts
only future measurements, i.e., from tc1 onwards. But for the following rounds,
an increasing forward calibration gain can be observed, however, with a strongly
decreasing number of nodes. The backward calibration has the highest impact
in C1, as uploaded values in this period are completely uncalibrated. In the fol-
lowing rounds, the backward calibration is comparatively small and in the third
round even negative. This stems from the relatively short time interval between
the calibration points. In C3, the sensors have already been calibrated twice and
the aging factor does not distort the measurements strongly enough within this
calibration interval, so that the discretized backward calibration is not reason-
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able in this case. In Fig. 4d, we increased the aging factor to 1.2 ppb/day. This
simulates a stronger aging of the sensors, but can also be interpreted as longer
periods between the calibration points with a constant aging factor (i.e., 6 times
longer calibration intervals with an aging factor of 0.2 ppb/day). It can be seen
that both the forward and the backward calibration gain increased; the latter
now results in a positive gain in each round. As could be expected, this shows
that backward calibration is reasonable if the calibration interval is long enough
for the sensors to significantly deviate from their former calibration.

6 Conclusion

We presented a privacy-preserving calibration system that enables forward as
well as backward calibration, while simultaneously protecting the users’ privacy.
We proposed a pseudonym-based system that allows for transferring calibra-
tion parameters to other pseudonyms without revealing the connection between
those. Our analysis shows that we can achieve a high degree of anonymity, but
only at the price of sacrificing precision. More precisely, the anonymity level
and the backward calibration gain are negatively correlated, i.e., an increase of
the one leads to a decrease of the other. Our results show that there are sev-
eral discretization parameters that lead to promising results for both, however,
the “optimal” setting depends on the application scenario and the subsequent
weighting of anonymity in relation to precision. As the loss of precision is small
in relation to the overall gain, we believe that PPCS represents a valid concept
for privacy-preserving calibration in PSNs. In future work, we want to evalu-
ate our concept with more extensive simulations using a realistic urban simula-
tion environment and implement a prototype to evaluate the concept in real-life
settings.
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