
Types in Their Prime: Sub-typing of Data
in Resource Constrained Environments

Klaas Thoelen(B), Davy Preuveneers, Sam Michiels, Wouter Joosen,
and Danny Hughes

iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium
klaas.thoelen@cs.kuleuven.be

Abstract. Sub-typing of data improves reuse and allows for reasoning at
different levels of abstraction; however, it is seldom applied in resource
constrained environments. The key reason behind this is the increase
in overhead that is caused by including hierarchical information in data
types as compared to a flat list. Where hierarchical data typing is used, it
is often represented using verbose textual identifiers or numerical encod-
ings that are suboptimal with regards to space. In this paper, we present
an encoding function for hierarchically typed information, based on the
properties of prime numbers. It provides a compact representation of
types, fast subsumption testing even on resource constrained platforms
and support for the evolution of the data type hierarchy. We demon-
strate the feasibility of our approach on two representative communica-
tion models in constrained environments; a publish/subscribe event bus
and a RESTful application protocol. We evaluate the performance of our
encoding function and show that it has limited overhead compared to a
flat list of data types and that this overhead is outweighed by reduced
memory and communication overhead once applied.

Keywords: Sub-typing · Constrained environments · Prime numbers

1 Introduction

Resource constrained networked systems that operate in dynamic environments
often require frequent discovery and updating of information flows. Consider an
environmental comfort level app on a smart phone that integrates with a smart
office environment. For every change of room, the app needs to discover and
connect to locally available sensor data sources. In current systems, these data
sources are typically typed using a flat-list ordering (e.g. temperature, humidity,
CO2), which requires the individual discovery and use of each data source. An
alternative practice is to arrange these types into a hierarchy that specifies is-a
relationships (i.e. subsumption) between its constituent elements. This allows
for reasoning over groups of elements, called sub-types, which are collectively
represented by a more abstract element, called a super-type. Discovery and data
retrieval can consequentially be simplified; e.g. by specifying the more abstract

c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014
I. Stojmenovic et al. (Eds.): MOBIQUITOUS 2013, LNICST 131, pp. 250–261, 2014.
DOI: 10.1007/978-3-319-11569-6 20

Sub-typing in Constrained Environments 251

sensor data type during discovery instead of the aforementioned specific data
types. As such, this results in a reduction of required configuration actions as
they can be grouped on a more abstract level. Additionally, it relieves the devel-
oper from the full details of the often complex data flows and more clearly reveals
the general principles and goals of the application.

The nature of resource constrained environments however poses some require-
ments as to how sub-typing is provided. First, resource constraints require a
compact and efficient solution: (i) storage of sub-typing information should be
limited to only locally relevant information, (ii) exchange of that information
should occur in a compact manner, and (iii) sub-type testing should require
limited computation. Secondly, in order to accomodate changes to applications
running on a long-term infrastructure, it is necessary that changes to the hierar-
chy can be made with as little overhead and disruption as possible. Specifically,
adding new types should not cause changes to the encoding of existing types
already in use as this requires that type system updates be sent to all nodes in
the network, an expensive and highly disruptive process.

The current state-of-the-art in typing of messages in constrained environ-
ments either provides no support for sub-typing [1–4] or sub-optimal support
for sub-typing based upon textual identifiers [5,6] or simple numerical encoding
techniques [7–9]. The verbosity of current approaches holds little advantage in
constrained machine-to-machine environments.

Inspired by the encoding proposed in [8], we present an hierarchical type
encoding function that is optimized for Class 1 [10] constrained devices (∼10 kB
RAM, ∼100 kB Flash). The encoding function exploits the properties of prime
numbers and has been specifically re-designed to work within the mentioned
constraints. Specifically, we (i) increase the compactness of type encodings,
(ii) simplify subsumption testing and (iii) reduce the amount of in-network infor-
mation needed to perform those tests. We demonstrate the general applicability
of sub-typing in both a distributed publish/subscribe based event bus and on
top of a RESTful application protocol. Evaluation of the encoding function and
both applications show that the encoding has limited overhead compared to a
flat list of data types and that this overhead is outweighed by reduced memory
and communication overhead once applied.

The remainder of this paper is structured as follows. We describe the encod-
ing function in Sect. 2 and evaluate it in Sect. 3. Two exemplary applications
are described and evaluated in Sect. 4. Section 5 discusses related work and we
conclude in Sect. 6.

2 Arranging Data in a Hierarchy

The structure of data hierarchies and the encoding function need to be well
adapted to the dynamics and constraints of the environments under scope. E.g. in
smart offices, the deployed infrastructure often hosts multiple concurrent appli-
cations which are subject to changing requirements. This drives evolution of the
data hierarchy which therefore needs to provide meaningful abstraction levels

252 K. Thoelen et al.

with future extensions of the data set in mind. Driven by both our experience in
building sensor network applications [11,12] and restrictions imposed by under-
lying systems [5], we restrict the data hierarchies we support to single-inheritance
structures only. As in practice this has shown to be sufficiently expressive, we
trade-off its support and expressiveness with increased compaction.

Once a hierarchy is in place, an encoding function is used to represent the
hierarchical information to allow efficient subsumption testing. With resource
constraints in mind, we highlight the following requirements for such a function:

– Compact representation. A compact representation means that a data
identifier must contain all necessary sub-typing information in an encoding
that uses the least amount of bytes possible.

– Efficient subsumption testing. Subsumption testing should require
(i) minimal computation and (ii) minimal storage of hierarchical information.

– Conflict-free incremental encoding. Incremental encoding allows the
addition of new data into the hierarchy at any time without requiring the
recomputation of existing data identifiers.

To meet these requirements, we adapt our previous encoding function pre-
sented in [8]. By restricting the hierarchies to single-inheritance structures, we
drastically increase the compaction. This results in reduced memory and com-
munication overhead and simplifies subsumption testing; as our encodings fit
standard supported integer types, we can use standard operations and no longer
require additional logic for subsumption testing as in our prior work.

2.1 Prime Number Assignment and Encoding

Our encoding function is based on the multiplication of prime numbers. As shown
in Fig. 1, a prime number is assigned to each data item or vertex in the tree.
Once this is done, the vertex’s identifier is set to the multiplication of its own
prime with the primes of its ancestors; or consequentially, the multiplication of
its own prime with the identifier of its parent. Following from the definition of
prime numbers, this causes the identifiers to be divisible (i.e. without remainder)
only by the identifiers of their ancestors. The subsumption test that we apply
to test whether vertex A subsumes vertex B (B <: A) is thus to check whether
the modulo operation of their two identifiers is equal to zero. More formally:

B <: A ⇔ idB mod idA = 0

By restricting the hierarchy to a single-inheritance tree, we can introduce a
number of optimizations to the original prime number assignment in [8]. Primar-
ily, we reuse prime numbers in the various sub-trees of the hierarchy. This means
that more often identifiers are factorizations of the lower-value prime numbers
and consequentially have a lower value themselves. Secondly, as there is only a
single root, we can assign its prime the value of 1. Although not a prime number
by definition, for our purposes this is of no concern whilst again increasing the
compactness of the encoding.

Sub-typing in Constrained Environments 253

A
p = 1
id = 1

B
p = 2
id = 2

C
p = 3
id = 3

D
p = 5
id = 5

E
p = 7

id = 14

F
p = 11
id = 22

H
p = 7

id = 21

I
p = 7

id = 35

J
p = 11
id = 55

Legend:

G
p = 13
id = 26

X = vertex name
p = prime number

= identifierid

Fig. 1. Hierarchy encoding with reuse of prime numbers.

The prime number assignment algorithm works as follows. Starting at the
root of the tree, we assign each vertex a prime number in a top-down and
breadth-first manner. The children of each vertex are assigned prime numbers
that follow the largest prime number used by that vertex or its siblings. In gen-
eral, primes are thus reused across disjunct sub-trees, like the ones rooted by B,
C and D in Fig. 1. As a result will each subtree contain the only identifiers which
are divisible by its root’s identifier. In Fig. 1 for instance, only the descendants
of node B have identifiers which yield zero for modulo two.

We can prove that our prime number assignment algorithm conserves the
subsumption relationships as follows. Assume a set of vertices in a hierarchy
χ = {C1, C2, ..., Cn}. We define Γ (Ci) as the union of Ci’s assigned prime and the
set of primes it inherits from its ancestors. The encoding function that determines
a vertex’ identifier can then be written as:

γ(Ci) =
∏

j

pj with pj ∈ Γ (Ci) (1)

As proven in [8], the subsumption relation between two vertices C1 and C2

can then be defined as:

C1 subsumes C2 ⇔ γ(C2) mod γ(C1) = 0 (2)

Now, by definition of subsumption; C1 can only subsume C2 if there is a
subtree rooted at C1 which contains C2 (possibly as root). Given our prime
number assignment algorithm, this means that:

Γ (C1) ⊂ Γ (C2) (3)

By definition of the encoding function (1), each vertex’s identifier is a multiple
of each element in the set of primes it inherits. Under single inheritance, reusing
primes thus does not influence the correctness of the subsumption test, as it
will succeed only in case the set of primes of the more abstract vertex C1 is a
subset of the set of primes of the other vertex C2, as stated in (3). However,
under multiple inheritance and reuse of prime numbers, this equation would
not hold. In that case the set of primes of a multiple inheriting vertex can also

254 K. Thoelen et al.

be a superset of a vertex that only inherits from one of its ancestors, hereby
breaking the correctness of the subsumption test under multiple inheritance.
Consequentially, our adapted encoding function can be safely applied, yet to the
intended single inheritance hierarchies only.

2.2 Incremental Encoding

Once a hierarchy is encoded, new vertices can be added without the need to
fully re-encode the hierarchy. To support evolution, we apply an append-only
strategy in which new leafs can always be added to the hierarchy, yet existing
vertices are never removed from it. The primary reason for this strategy, is that
removing deprecated vertices also releases their primes. Reusing those primes
for new vertices could lead to false positives during subsumption testing when
running applications still refer to the deprecated vertices. Therefore, we abandon
the deprecated vertices by no longer using them, but retain them as a placeholder
for previously used primes. By exception, a hierarchy can be fully re-encoded to
eliminate deprecated vertices. This should however not be done frequently as it
requires an expensive update of all software referring to the hierarchy.

When adding a new leaf, some guidelines as to prime number assignment
have to be respected to guarantee the subsumption relations. Two cases can be
distinguished:

1. As a sibling to siblings without offspring. This is the easiest case as we
only need to take the siblings into account. The prime to be assigned is the
prime that follows the largest prime of the siblings. E.g. in Fig. 1, adding a
new leaf K as a child of D will be assigned 13 as prime.

2. As a sibling to siblings with offspring. In this case, we need to take the
offspring of the siblings into account. E.g. in Fig. 1, a new vertex K as a child
of A, and thus a sibling to B, C and D, will be assigned 17 as prime.

Such an addition might thus involve a tree-traversal phase to determine the
set of primes used in a certain subtree. However, as this is performed outside of
the resource constrained environment, it is of a lesser concern. Adding a leave
thus does not require a recomputation of other identifiers and the new hierarchy
is fully backwards compatible with the old one.

2.3 Knowledge Distribution of the Hierarchical Structure

During operational use, the full hierarchy and its encoding remain off-line rep-
resentations that are created, maintained and referenced to in the more resource-
rich back-end. Inside the constrained network, each node only requires hierarchical
information about the data that it uses and thus does not require full knowledge
of the hierarchy.

We furthermore reduced the information required for subsumption testing to
only the identifiers. The original encoding function still results in large identifiers

Sub-typing in Constrained Environments 255

(> 8 bytes), requiring custom support for efficient modulo calculation. There-
fore, it uses a more elaborate subsumption test, which uses both the identifiers
and primes to first rule out subsumption based on a number of theorems before
actually performing the modulo operation. The increased compaction however
does allow the use of the standard modulo operation on most platforms and
thus eliminates the primes from subsumption testing. Besides reducing process-
ing overhead, this also reduces memory and communication overhead as only
identifiers and not primes need to be stored and exchanged.

3 Evaluation of the Encoding Function

We evaluate our encoding function by (i) showing its improved compaction, and
(ii) the limited processing overhead of the subsumption test.

We evaluate the compaction of our encoding function by comparing the num-
ber of bytes it requires to encode identifiers with those required by the original
encoding function. We generated artificial hierarchies of 0 up to 8 levels, with
each vertex having 0 up to 8 children. Figure 2 shows the number of bytes that
were needed to encode each tree’s largest identifier. The lower inclination of the
graphs in Fig. 2b clearly show that by reusing prime numbers, identifiers can be
encoded more compact. While the original encoding requires up to 14 bytes, our
version only needs 6 bytes at the most. On average, the identifiers of all tested
hierarchies require 5 bytes for the original encoding and only 3 bytes in the
adapted version; a substantial benefit in constrained environments with small
payload sizes and limited memory.

The increased compaction is confirmed by the encoding of the more realistic
hierarchy used in the smart-office scenario discussed in Sect. 4.1. Table 1 shows
the reduction in primes used, compared to the original encoding. This ultimately
results in more compact encoded identifiers. Also the density, i.e. the percentage
of integers used as identifiers up to the largest identifier, is higher.

We evaluated the performance of subsumption testing on a Zigduino-r1
sensor node (16 MHz, 128 kB Flash, 16 kB RAM) [13]. Pair-wise subsumption

Fig. 2. The adapted encoding function substantially reduces the number of bytes
required to encode identifiers.

256 K. Thoelen et al.

Table 1. Comparison of the encoding functions for the smart office hierarchy.

Nr of vertices Nr of primes Largest id Avg nr of bytes per id Density

Original 112 112 4481481 3 0,002 %

Adapted 112 24 30914 2 0,36 %

testing among all identifiers in the smart-office hierarchy resulted in an average
of 22,3µs per test. This included deserialization from a variable-length byte-
array representation. Pair-wise equality testing, as would be performed using
a flat-list ordering, resulted in an average of 4,1µs per test. This increase in
processing time is considered acceptable as it is less than an order of magnitude
and is accompanied with the benefits of sub-typing as discussed in the following
section.

4 Sub-typing in Exemplary Applications

We applied the proposed encoding function on two representative communica-
tion models used in constrained environments. The benefits are distinct in each
case. On top of a publish/subscribe event bus, sub-typing results in decreased
configuration overhead; while a RESTful application protocol primarily benefits
from the compact representation achieved by encoding.

4.1 Sub-typing in a Publish/Subscribe Event Bus

In the Loosely-coupled Component Infrastructure (LooCI) [4] sub-typing can be
applied to identify events exchanged over a publish/subscribe event bus. LooCI’s
runtime reconfigurable event bus allows to establish bindings between the inter-
faces of components. Those bindings are persisted as entries in binding tables
which guide the dispatching of published events as shown in Fig. 3. Distributed
bindings between components on different nodes consist of two sub-bindings;
one on the publisher’s side and one on the subscriber’s side. As LooCI uses a
flat list of event types, each type of event that needs to be exchanged between
components requires a separate binding entry.

Node A

Comp.
1

Comp.
2

Outgoing Binding Table
Event Src. Comp. Dst. Node

X 1 B

Node B

Comp.
1

Comp.
2

Incoming Binding Table
Event Src. Comp. Src. Node

...
Dst. Comp.

...
... X 1 A 2

Fig. 3. Conceptual drawing of LooCI’s event dispatching based on distributed binding
tables.

Sub-typing in Constrained Environments 257

The benefit of applying event sub-typing in LooCI is in the reduction of bind-
ing actions. Using sub-typing, bindings can be created on a more abstract level,
allowing groups of similar events to be dispatched based on a single binding. This
is important as every binding action results in messages that are disseminated
in the network to update the binding tables of the respective nodes; one message
for a local binding, two messages in case of a distributed binding.

Evaluation. Specifically, we applied sub-typing to a smart-office application.
This features an office in which desks, doors and windows are equipped with
sensor nodes that monitor the environment and presence of people. Data is
collected and pre-processed on sensor nodes and forwarded to a back-end for
further processing. PC and smartphone clients subscribe to the back-end for
updates about the working comfort and security conditions (air quality, unau-
thorized access, etc.) in the office. Due to space limitations we refer to [14] for
more details about the application’s composition and event type hierarchy.

As shown in Table 1, the smart-office event type hierarchy includes 112 event
types, with the largest identifier being 30914. On average this requires 2 bytes for
encoding, which we precede by a one byte length indicator to support variable-
length encoding. The resulting average of 3 bytes per identifier is close to the
fixed 2 bytes LooCI uses by default to represent flat-listed even types. This small
increase is more than outweighed by the resulting decrease in binding actions
that are needed to compose the smart-office application. Using default LooCI,
55 binding commands were needed, which by applying sub-typing is reduced to
only 35. This is a 36 % reduction in messages disseminated into the network
to configure event dispatching. This reduction is substantial and subject to a
multiplication effect due to frequent reconfiguration in dynamic networks.

The described results are of course application specific and bigger applica-
tions might lead to larger event hierarchies and thus larger identifiers. On the
other hand, we expect larger applications to benefit more from sub-typing. In
Sect. 3 we already showed that the accompanying overhead of large hierarchies
remains practical. While the reduction of binding commands depends on the
hierarchy’s structure, overall, sub-typing will never increase the number of bind-
ing commands required and when applied sensibly can reduce the amount of
commands extensively.

4.2 Sub-typing on Top of a RESTful Application Protocol

In RESTful protocols, the proposed encoding function can be used to more com-
pactly identify hierarchically organized sources of information, called resources.
Resources are typically identified using a Uniform Resource Identifier (URI) that
contains a hierarchically structured node-local path to the resource, formatted as
a human-readable string. We propose to more compactly encode these resource
paths using our prime-based encoding.

Designed for constrained environments, the Constrained Application Proto-
col (CoAP) [5] aims at realizing a REST architecture for the most constrained

258 K. Thoelen et al.

[aaaa::1] (1, 1)

|- /.well-known (2, 2)

| |- /core (7, 14)

|- /sensor (3, 3)

| |- /temp (7, 21)

| |- /light (11, 33)

|- /button (5, 5)

[Legend: resource (prime, id)]

(a)

Client Server

| |

| CON [0xbc90] |

| GET /sensor/temp |

+----------------->|

| |

| ACK [0xbc90] |

| 2.05 Content |

| "22.5 C" |

|<-----------------+

| |

(b)

Fig. 4. A hierarchy of resources on a CoAP server with address aaaa::1 (a), and a
GET request for the /sensor/temp resource with matching response (b).

devices in machine-to-machine (M2M) applications. Figure 4a presents an exam-
ple set of resources deployed on a sensor node. To interact with these, COAP
supports the four traditional REST methods: GET, POST, PUT, DELETE.
E.g. a GET method with URI coap://[aaaa::1]/sensor/temp can be issued
to request temperature data from a CoAP server (see Fig. 4b).

We can make two important observations with regards to resource paths:

1. The string representations of resource paths form excessive identifiers that
cause considerable memory and communication overhead. While practically
beneficial, human-readable strings are not vitally important in a M2M envi-
ronment where direct human interaction is not a primary concern.

2. Hierarchically organizing CoAP resources brings structure and thus allows
super -resources to delegate requests to their sub-resources. The hierarchical
information contained in the resource path is thus of practical importance.

Both observations motivate the application of our encoding function on CoAP
resource paths. While retaining hierarchical information, resource paths can be
represented much more compactly. This reduces memory overhead since each
resource no longer involves storage of a lengthy human-readable resource path.
Communication overhead is primarily reduced during intensive interactions such
as CoAP resource discovery. This is executed using block-wise transfer of the
description of all primary resources on a node. In case the description does not
fit in a single block, subsequent blocks are requested individually. By reduc-
ing the representation of resource paths, the number of blocks can be reduced,
thus eliminating not only their transmission, but also those of their respective
requests.

Once resource paths are encoded, as in Fig. 4a, the numerical identifiers can
be used in two ways. In the first one, a string-formatted representation of the
identifier replaces the original human-readable path. E.g. the URI
coap://[aaaa::1]/sensor/temp becomes coap://[aaaa::1]/21. The benefit
of this variant is that no adaptations to CoAP are required. In the second variant,

Sub-typing in Constrained Environments 259

Table 2. Comparison of the original and encoded representation sizes of the CoAP
resource paths defined in the IPSO Application Framework.

Path representation Total nr of bytes Avg nr of bytes per path

Original 499 9,24

Encoded (string) 158 2,93

Encoded (uint) 84 1,53

more compact uint-formatted identifiers are used. As this is not compatible with
string-formatted URI Paths, a new Option is needed in the CoAP specification
that indicates the use of uint-formatted resource path identifiers.

Evaluation. We encoded the set of resource paths specified by the IPSO Appli-
cation Framework [6], which defines the interfaces of 47 REST resources. Table 2
compares the original human-readable resource paths with our two encoded vari-
ants. We evaluate the total number of bytes required to represent all resources
and the average number of bytes per resource this results in. While the resource
paths in [6] are already fairly compact and only partially human-readable, encod-
ing them still results in an extensive reduction in representation size; 68 % for
the string-formatted representation and 83 % for the uint variant.

The added benefit of this reduction becomes apparent during CoAP resource
discovery. E.g. human-readable versions of all resource paths consume 49 bytes
in a discovery reply by the server in Fig. 4a. In contrast, using the averages in
Table 2, only 16 bytes and 12 bytes are needed when using string- and uint-
formatted encodings, respectively. This optimization can lead to considerable
reduction in communication in dynamic resource constrained environments.

5 Related Work

We discuss related work in terms of alternative encoding functions and the appli-
cation of sub-typing in publish/subscribe systems and RESTful protocols for
constrained environments.

Sub-typing and related encoding functions have been studied in many areas
like programming languages, database management, knowledge representation,
policy enforcement, etc. For a detailed discussion, we refer to a survey of exist-
ing techniques in our prior work [15]. The solutions presented there support
multi-inheritance hierarchies and often lack (efficient) support for incremental
encoding. Based on our experience, we traded-off multi-inheritance support for
increased compactness, as discussed in Sect. 2.

The publish/subscribe messaging pattern is often used in distributed com-
puting in both constrained and traditional environments. While in traditional
environments sub-typing of messages is a regular feature [16–18], it is typically
implemented by reuse of language-provided inheritance (e.g. Java), ill-suited for
constrained environments. Most related work concerning constrained environ-
ments does not discuss message typing [2,3,19]; suggesting a flat list ordering.

260 K. Thoelen et al.

DSWare [20] does apply the notion of event hierarchies, but in a different man-
ner; higher-level compound events (e.g. explosion event) are inferred from the
detections of a set of lower-level atomic events (e.g. sensor observations). The
event hierarchy is thus purely functional and does not represent typing of events.
In our prior work [21], we used sub-typing to reduce the energy consumption of
event routing based on semantic event information. This solution uses our orig-
inal encoding function, which is significantly optimized in this paper.

Like the IPSO Alliance [6], the Open Mobile Alliance (OMA) [9] has specified
templates of CoAP resources and their organization in a hierarchy. While IPSO
uses compact human-readable resource paths, OMA makes use of numerical
resource paths that identify resources registered with the OMA Naming Author-
ity (OMNA). While the latter shares our application of non-human-readable
resource identifiers, both solutions use less compact resource identifiers than can
be realized with our encoding function.

6 Conclusion

As resource constrained environments continue to integrate with the Web and
become first-class citizens in mobile and ubiquitous applications, they will be
subject to higher degrees of interaction. To facilitate discovery and use of their
data sources, sub-typing can be applied to allow reasoning on higher levels of
abstraction. Yet, in contrast to the resource constraints at hand, sub-typing
implies overhead to represent the hierarchical relations between types of data.

In this paper, we presented an encoding function for hierarchically typed
data that is designed with resource constraints in mind. This encoding function
features low overhead both in representation of hierarchical information and sub-
sumption testing. However, this overhead is outweighed by the benefits that are
achieved once sub-typing is applied. While on the one hand sub-typing results
in reduced reconfiguration overhead in LooCI’s publish/subscribe event bus. On
the other hand, our encoding allows for more compact representations than the
human-readable resource identifiers commonly used in CoAP’s RESTful interac-
tions. We can thus conclude that when realized efficiently, the added benefits of
sub-typing can be extremely useful in more resource constrained environments.

Acknowledgement. This research is partially supported by the Research Fund, KU
Leuven and iMinds (a research institute founded by the Flemish government). The
research is conducted in the context of the COMACOD and ADDIS projects.

References

1. Buonadonna, P., Hill, J., Culler, D.: Active message communication for tiny net-
worked sensors. In: Proceedings of the IEEE Conference Infocom 2001 (2001)

2. Souto, E., Guimarães, G., Vasconcelos, G., Vieira, M., Rosa, N., Ferraz, C., Kelner,
J.: Mires: a publish/subscribe middleware for sensor networks. Pers. Ubiquitous
Comput. 10(1), 37–44 (2005)

Sub-typing in Constrained Environments 261

3. Hauer, J.-H., Handziski, V., Köpke, A., Willig, A., Wolisz, A.: A component frame-
work for content-based publish/subscribe in sensor networks. In: Verdone, R. (ed.)
EWSN 2008. LNCS, vol. 4913, pp. 369–385. Springer, Heidelberg (2008)

4. Hughes, D., Thoelen, K., Maerien, J., Matthys, N., del Cid Garcia, P.J., Horré,
W., Huygens, C., Michiels, S., Joosen, W.: Looci: the loosely-coupled component
infrastructure. In: 11th IEEE International Symposium on Network Computing
and Applications (NCA), pp. 236–243, August 2012

5. Shelby, Z., Hartke, K., Bormann, C.: Constrained Application Protocol (CoAP).
http://tools.ietf.org/html/draft-ietf-core-coap-18

6. Shelby, Z., Chauvenet, C.: The IPSO Application Framework. http://www.ipso-
alliance.org/wp-content/media/draft-ipso-app-framework-04.pdf

7. Kovacevic, A., Ansari, J., Mähönen, P.: Nanosd: a flexible service discovery pro-
tocol for dynamic and heterogeneous wireless sensor networks, pp. 14–19. IEEE
Computer Society, Los Alamitos (2010)

8. Preuveneers, D., Berbers, Y.: Encoding semantic awareness in resource-constrained
devices. IEEE Intell. Syst. 23(2), 26–33 (2008)

9. OMA LWM2M. http://technical.openmobilealliance.org/Technical/
release program/lightweightM2M v1 0.aspx

10. Bormann, C., Ersue, M., Keranen, A.: Terminology for Constrained Node Net-
works. http://tools.ietf.org/html/draft-ietf-lwig-terminology-05

11. Hughes, D., Thoelen, K., Horré, W., Matthys, N., del Cid Garcia, P.J., Michiels, S.,
Huygens, C., Joosen, W., Ueyama, J.: Building wireless sensor network applications
with looci. Int. J. Mobile Comput. Multimedia Commun. 2(4), 38–64 (2010)

12. Thoelen, K., Hughes, D., Matthys, N., Fang, L., Dobson, S., Qiang, Y., Bai, W.,
Man, K.L., Guan, S.-U., Preuveneers, D., Michiels, S., Huygens, C., Joosen, W.:
A reconfigurable component model with semantic type system for dynamic wsn
applications. J. Internet Serv. Appl. 3(3), 277–290 (2012)

13. Zigduino-r1. http://logos-electro.com/zigduino-r1/
14. http://people.cs.kuleuven.be/∼klaas.thoelen/mob2013
15. Preuveneers, D., Berbers, Y.: Prime numbers considered useful: ontology encoding

for efficient subsumption testing, Department of Computer Science, K.U.Leuven,
Leuven, Belgium, CW Reports CW464, October 2006

16. Esper. http://esper.codehaus.org/index.html
17. Java Messaging Service. http://www.oracle.com/technetwork/java/index-jsp-

142945.html
18. Corba Notification Service. http://www.omg.org/spec/
19. Russello, G., Mostarda, L., Dulay, N.: A policy-based publish/subscribe middle-

ware for sense-and-react applications. J. Syst. Softw. 84(4), 638–654 (2011)
20. Li, S., Son, S.H., Stankovic, J.A.: Event detection services using data service mid-

dleware in distributed sensor networks. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003.
LNCS, vol. 2634, pp. 502–517. Springer, Heidelberg (2003)

21. Preuveneers, D., Berbers, Y.: µc-semps: energy-efficient semantic publish/
subscribe for battery-powered systems. In: Proceedings of the 7th International
ICST Conference on Mobile and Ubiquitous Systems: Computing, Networking and
Services, pp. 1–12, December 2010

http://tools.ietf.org/html/draft-ietf-core-coap-18
http://www.ipso-alliance.org/wp-content/media/draft-ipso-app-framework-04.pdf
http://www.ipso-alliance.org/wp-content/media/draft-ipso-app-framework-04.pdf
http://technical.openmobilealliance.org/Technical/release_program/lightweightM2M_v1_0.aspx
http://technical.openmobilealliance.org/Technical/release_program/lightweightM2M_v1_0.aspx
http://tools.ietf.org/html/draft-ietf-lwig-terminology-05
http://logos-electro.com/zigduino-r1/
http://people.cs.kuleuven.be/~klaas.thoelen/mob2013
http://esper.codehaus.org/index.html
http://www.oracle.com/technetwork/java/index-jsp-142945.html
http://www.oracle.com/technetwork/java/index-jsp-142945.html
http://www.omg.org/spec/

	Types in Their Prime: Sub-typing of Data in Resource Constrained Environments
	1 Introduction
	2 Arranging Data in a Hierarchy
	2.1 Prime Number Assignment and Encoding
	2.2 Incremental Encoding
	2.3 Knowledge Distribution of the Hierarchical Structure

	3 Evaluation of the Encoding Function
	4 Sub-typing in Exemplary Applications
	4.1 Sub-typing in a Publish/Subscribe Event Bus
	4.2 Sub-typing on Top of a RESTful Application Protocol

	5 Related Work
	6 Conclusion
	References

