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Abstract. Public Sensing (PS) is a recent trend for building large-scale
sensor data acquisition systems using commodity smartphones. Limiting
the energy drain on participating devices is a major challenge for PS, as
otherwise people will stop sharing their resources with the PS system.
Existing solutions for limiting the energy drain through model-driven
optimizations are limited to dense networks where there is a high prob-
ability for every point of interest to be covered by a smartphone. In this
work, we present an adaptive model-driven PS system that deals with
both dense and sparse networks. Our evaluations show that this approach
improves data quality by up to 41 percentage points while enabling the
system to run with a greatly reduced number of participating smart-
phones. Furthermore, we can save up to 81 % of energy for communica-
tion and sensing while providing data matching an error bound of 1 ◦C
up to 96 % of the time.

1 Introduction

Public Sensing (PS) is a recent trend for building flexible and large-scale sensor
data acquisition systems, facilitated by the proliferation of commodity smart-
phones [3]. Modern smartphones feature various sensors such as camera, light
intensity, and positioning sensors like GPS. In addition, they offer capabilities for
processing and communicating sensor data. Thus, sensor data can be obtained
without having to support a fixed sensor network.

In building such PS systems, we face several challenges. On the device side,
the main issue is a limited energy supply. While smartphone batteries are fre-
quently recharged, keeping the energy consumption for PS minimal, i.e., ensuring
that the battery still makes it through a whole day, is a key requirement as other-
wise participants may be unwilling to support PS. On the data side, problems are
to specify tasks and to deliver data with sufficient quality. Due to node mobility,
it is likely that each time data is requested, a different device is best suited to
take readings for the task at hand. However, if we want to minimize the energy
consumption on participating devices, querying all smartphones for readings or
even proactively collecting location information for all devices is prohibitive.
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These challenges require careful planning which smartphones should take read-
ings where and when to ensure that useful data of sufficient quality is delivered
to a client of the system while keeping the energy consumption minimal.

To address the problem of how to specify interesting data and thus enable
flexible PS systems, the concept of virtual sensors (v-sensors for short) was intro-
duced [12]. V-sensors provide a mobility-transparent abstraction of the PS sys-
tem. They are configured to report a set of readings at a client-defined sampling
rate at a given position, thus presenting a view on a static sensor network. The
PS system then selects nearby smartphones to provide readings for a v-sensor.

However, due to node mobility, some v-sensors may not have any smartphone
nearby and may thus be unable to report data readings. Model-driven approaches
can be used to fill these gaps with a value inferred from available data [10] and
to improve the energy consumption by leaving out v-sensors where values can
be inferred with sufficient accuracy [13], thus making large-scale PS viable.

However, these approaches are tailored towards dense networks where most
v-sensors are well covered (and thus available), e.g., in a busy city center or
a business area at lunchtime. For model-driven approaches to provide accu-
rate inferred readings, a minimum set of input data from available v-sensors is
required. Collecting this minimum set of data is a problem in (partially or com-
pletely) sparsely populated areas, e.g., business areas during off-hours or housing
areas during business hours, where the density of smartphones is overall low, or
when the most interesting v-sensors are unavailable while many less interesting
v-sensors are available.

We address this challenge by presenting an approach for optimized model-
driven PS that works in both dense and sparse networks. To this end, we extend
our previous model-driven approach. The basic idea is to derive knowledge on
v-sensor availability from ongoing query executions. This knowledge is then used
in a multi-round approach to iteratively refine the set of v-sensors to query.

In detail, the main contributions of this paper are: (1) An approach for
building knowledge on v-sensor availability without extra energy cost. (2) An
adaptive query execution model that exploits this knowledge to compensate
for unavailable v-sensors, thus making optimized PS viable in both dense and
sparse networks. (3) Evaluations analyzing the performance of our approach and
showing significant improvements compared to previous approaches.

The quality of data obtained by our system is improved by up to 41 percent-
age points while at the same time useful data can be provided with a greatly
reduced number of participating smartphones. Furthermore, we show that we
can save up to 81 % of energy for communication and sensing while providing
inferred readings matching an error bound of 1 ◦C up to 96 % of the time. As a
by-product, our system is privacy-friendly, i.e., it provides data readings of good
quality without tracking the position of individual smartphones.

The remainder of this work is structured as follows. Section 2 presents the
system model and problem statement. In Sect. 3 we present the model-driven PS
system before we describe the extensions for sparse networks in detail in Sect. 4.
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Fig. 1. Overview of sensing task execution

Evaluation results for our system are discussed in Sect. 5. Section 6 compares our
approach to related work while Sect. 7 concludes this work.

2 System Model and Goals

First, we present our system model and formulate the problem to be solved by
our enhanced PS system.

2.1 System Model and Architecture

Following the general design of PS systems, our system consists of two kinds
of components: mobile smartphones and a gateway server (see Fig. 1). Each
smartphone features a positioning sensor such as GPS, has constant Internet
access, e.g., via 3G, and has access to a set of environmental sensors (sound,
temperature, air pollution, etc.) that may be built-in or connected via Bluetooth.
We assume that each smartphone has access to all sensors necessary to satisfy
any request posted to the system. Users of mobile smartphones are assumed
to be walking with no further assumptions about their mobility. The gateway
server, located on the Internet, serves as an interface for clients to request data
from the system and redistributes these requests to the smartphones. Note that
for scalability the gateway may be implemented as a distributed service.

To request data, clients submit a query Q = (V, p,QoS) to the gateway,
consisting of a set of virtual sensors Q.V , a sampling period Q.p, and a set of
quality parameters Q.QoS. The sampling period dictates the interval at which
readings for all v-sensors should be provided. The quality parameters control the
operation of our algorithm and will be explained in the corresponding sections.
Virtual Sensors are attributed with a type of reading v.type and a position
v.loc, thus specifying where to take data readings. Furthermore, each v-sensor
has a coverage area v.area defined relative to its location. When a smartphone
is located in v.area, it may take a reading for v and we say that v is available.
Otherwise, v is unavailable. Coverage areas of v-sensors in a query v ∈ Q.V must
be pairwise disjoint to ensure a unique mapping of smartphones to v-sensors, but
may otherwise be chosen arbitrarily.

Each v-sensor v can provide either an effective reading or an inferred reading.
An effective reading is taken by a smartphone in v.area whereas an inferred reading
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is computed at the gateway using a data-driven model without interaction with
any device.

2.2 Problem Statement

Our goal is to efficiently provide sensor data on spatially distributed environmen-
tal phenomena according to a client-defined quality bound Q.QoS, independent
of the current distribution of smartphones in the observed area. We want to
minimize the number of requested effective readings while at the same time
compensating for unavailable v-sensors and maximize the number of v-sensors
|V ′| for which the quality constraints are fulfilled.

3 Optimized Query Execution in Dense Systems

In this section we first introduce the multivariate Gaussian distribution model
used by our approach. We then present the basic model-driven execution for
energy-efficient PS systems (DrOPS), based on [13], that will be extended with
adaptive algorithms for compensating for unavailable v-sensors in later sections.

3.1 Multivariate Gaussian Distribution

Multivariate Gaussian Distributions (MGD) have been shown to be a suitable
model for inferring values for spatially distributed phenomena, e.g., in [4,5,10].
Their advantage over other methods, e.g., spatial interpolation approaches such
as linear interpolation, is that they capture the correlation of observed values
rather than relying on indirect criteria, e.g., spatial distance. Note that other
types of phenomena, e.g., discrete events, may require a different model. In our
system, an MGD model is used in two ways: Inferring missing values from a set
of incomplete observations and selecting the best set of v-sensors to observe.

Given a model MGDV over a set V of v-sensors and a vector of effective
readings Veff at v-sensors Veff ⊂ V , we can infer the most likely current values
μu|PVeff

at (currently unobserved) v-sensors u ∈ Vinf = V \ Veff as

μu|PVeff
= μu + Σu,VeffΣ

−1
Veff ,Veff

(PVeff − μVeff ) (1)

σ2
u|Veff

= σ2
u − Σu,VeffΣ

−1
Veff ,Veff

ΣVeff ,u (2)

where μV is the vector of mean values for all v ∈ V and ΣV,V is the matrix
of (co)variances between all v-sensors in the model. The output is a Gaussian
distribution where σ2

u|Veff
indicates whether the observations Veff were a good

choice for inferring μu|PVeff
.

To optimize the operation of our system, we strive to minimize the size of Veff

while ensuring good data quality, i.e., limiting σ2
u|W to a client-defined thresh-

old Q.QoS.σ2
max. Finding the smallest Veff that still achieves a given quality

of inferred values is an NP hard problem, for which the near-optimal heuristic
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Greedy algorithm was proposed [8]. Greedy iteratively selects a fixed number
of v-sensors. Initially, Vinf = V . In each iteration, the v-sensor v with the max-
imum mutual information is moved to Veff , i.e., the v-sensor that reduces the
uncertainty about the values at v-sensors in Vinf \ {v} the most. For a detailed
discussion of this algorithm and the mutual information criterion, see [8].

To adapt the algorithm to selecting a set of v-sensors based on the requested
result quality rather than a predetermined fixed number, we change the termi-
nation criterion: in our system, ModifiedGreedy adds v-sensors to Veff until
∀u ∈ Vinf : σ2

u|Veff
≤ Q.QoS.σ2

max.
Note that the achievable degree of optimization depends on the magnitude

of the correlations found in the data. If only weak correlations exist, Modified-
Greedy will select Veff = V . Furthermore, the accuracy of the selection as well
as the inference relies on the accuracy of the MGD. As we will show, our system
ensures that the MGD in use always reflects current data.

3.2 Model-Driven Query Execution

Next, we look at how to apply the model-based optimization in a PS system.
The operation of DrOPS is driven by the gateway. Given a query Q =

(V, p,QoS), in each sampling period, the gateway creates a sensing task T =
(Veff , QoS), Veff ⊆ V as depicted in Fig. 1. T is then broadcast to all smart-
phones. On receiving T, each smartphone samples its position and determines
whether it is located in the coverage area of any v-sensor v ∈ Veff . If so, it takes
a reading of the requested type and returns the reading along with the identity
of the v-sensor to the gateway. Should there be more than one effective reading
reported for a v-sensor v, only the reading that was taken closest to v.loc is
retained. All other readings for v are discarded.

To optimize data acquisition, DrOPS alternates its operation between two
phases. In Basic Operation Phases, Veff is equal to V , i.e., no optimization is
performed. Data is gathered to build or update an MGD model of the phenom-
enon observed in this query and only effective readings for available v-sensors are
reported to the client. To keep the optimized operation phase short, an online
learning algorithm is used [13]. When an MGD model is available, the system
switches to an Optimized Operation Phase. In this phase, ModifiedGreedy
is used to minimize the size of Veff and inferred readings are provided for all
v-sensors v ∈ Vinf ∪ unavailable v-sensors, i.e., where no effective reading was
taken. In parallel, an online model validity check algorithm determines whether
the current MGD has become inaccurate and if so, switches the system back to
a basic operation phase.

4 Alternate Virtual Sensor Selection for Sparse Networks

The optimized query execution presented in the last section assumes, that most
or all of the v-sensors are constantly available. This assumption does not hold in a
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Require: V, MGDV , Vunav, Vavl, Q.QoS.σ2
max

Veff = Vavl, Vinf = V \ Veff
while ∃v ∈ V : σ2

v|Veff
> Q.QoS.σ2

max and Veff = V \ Vunav do
u = argmaxu∈Vinf\Vunav mutualInformation(u, V , MGDV , Veff )

Veff = Veff ∪ {u}, Vinf = Vinf \ {u}
end while
return Veff

Fig. 2. AdaptiveGreedy algorithm

sparse network setting, which is characterized by a low probability for each indi-
vidual v-sensor to be available. Therefore, we begin by introducing the Adap-
tiveGreedy algorithm that includes knowledge about the (un)availability of
v-sensors in the selection. Finally, we present how to use AdaptiveGreedy in
our Round-based Alternate V-Sensor Selection to extend DrOPS to compensate
for unavailable v-sensors.

4.1 Adaptive Greedy Algorithm

Compared to the previously described ModifiedGreedy algorithm, Adap-
tiveGreedy depicted in Fig. 2 takes two additional parameters: A set of v-
sensors known to be unavailable Vunav ⊆ V and a set of v-sensors known to
be available Vavl ⊆ V, Vavl ∩ Vunav = ∅. The availability of v-sensors not con-
tained in Vavl ∪ Vunav is unknown. Using an optimistic strategy, AdaptiveG-
reedy assumes these v-sensors to be available, although they may turn out to
be unavailable during task execution. A pessimistic strategy would need to probe
the availability of all v-sensors beforehand by querying all smartphones for their
position. This would cause the PS system to use as much energy as an approach
without any optimization just for probing v-sensor availability, thus voiding the
entire optimization approach.

Given these parameters, AdaptiveGreedy computes a new selection of
v-sensors Veff analogous to ModifiedGreedy under the additional constraints
that no v-sensor known to be unavailable is selected and that all v-sensors known
to be available are selected, i.e., Veff∩Vunav = ∅ and Vavl ⊆ Veff . Forcibly selecting
all of Vavl is warranted by the fact that in our system detecting the availability of
v-sensor v coincides with getting an effective reading for v (see Sect. 4.2). Thus,
not selecting all of Vavl would be a waste of effort.

4.2 Round-Based Alternate Virtual Sensor Selection

We now introduce the Round-based Alternate V-Sensor Selection, depicted in
Fig. 3, where the gateway subdivides each sampling period into a number of
Q.QoS.rounds rounds. The duration of each round is Q.p

Q.QoS .rounds . At the begin-
ning of each round we first update our knowledge about current v-sensor avail-
ability. Based on this knowledge, we then select a new set of v-sensors for which
effective readings should be acquired. Note that for long sampling periods Q.p,
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Require: V, MGDV , Q.QoS
Vavl = ∅, Vunav = ∅, E0 = ∅, Veff,0 = ∅
for i = 1..Q.QoS.rounds do

Vavl = Vavl ∪ Ei−1, Vunav = Vunav ∪ (Veff,i−1 \ Ei−1)

Veff,i = AdaptiveGreedy(V , MGDV , Vunav, Vavl, Q.QoS.σ2
max)

Veff,i = Veff,i \ i−1
j=1 Veff,j

if Veff,i = ∅ then
return i−1

j=1 Ej

end if
Ei = executeTask(Veff,i, Q.QoS)

end for
return Q.QoS.rounds

j=1 Ej

Fig. 3. Round-based alternate v-sensor selection

round duration should be limited to, e.g., 5 s each to ensure that smartphones
cannot move too much between individual rounds. Otherwise, the availability of
v-sensors may significantly change during each round, thus voiding the knowl-
edge on v-sensor availability built so far. For the same reason, we do not carry
over knowledge from past sensing periods, as nodes may have moved significantly
between sensing periods.

In the first round, Vavl = ∅ = Vunav, thus we assume all v-sensors to be
available. Therefore, the initial selection of Veff,1 is identical to using Modified-
Greedy as in the non-adaptive system. In fact, when setting Q.QoS.rounds = 1,
the system behaves exactly as previously presented in Sect. 3. The resulting sub-
task T1 is distributed to the smartphones. For all v-sensors in Veff,1 that are
actually available an effective readings will be reported to the gateway. All read-
ings received in this round are stored in set E1.

In subsequent rounds i = 2 . . .Q.QoS.rounds, we first update our knowl-
edge on v-sensor availability by setting Vavl = Vavl ∪ Ei−1 and Vunav = Vunav ∪
(Veff,i−1 \ Ei−1). Thus, all v-sensors for which a reading was requested but no
effective reading was received are known to be unavailable for the remainder
of the sampling period. Based on this new knowledge we then compute a new
selection Veff,i using AdaptiveGreedy. A new subtask Ti = (Veff,i\

⋃i−1
j=1 Veff,j)

is then distributed to the smartphones. We repeat this process until either the
maximum number of rounds has been reached or no additional v-sensors were
selected. At this point, inferred readings are computed from all effective readings
that have been collected.

5 Evaluation

We evaluated our approaches based on real-world environmental measurements
and generated mobility traces. In the following, we will first present the setup
of our evaluation before discussing the results in detail.

5.1 Simulation Setup

We evaluate our algorithms in a simulated PS system, implemented using
Omnet++, driven by two real-world datasets containing temperature
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measurements: LAB data from 50 fixed sensors deployed in an indoor lab [5] and
LUCE data from over 100 fixed sensors from an outdoor deployment [11]. Using
real-world data readings is important to make the performance of the model-
driven optimization comparable to that of a real deployment of our system, i.e.,
to observe realistic correlations of individual v-sensors. Queries are generated by
replicating the fixed sensors of each data set as v-sensors in order to generate a
temperature map of the observed area. For our PS system, we generated mobil-
ity traces for a varying number of smartphones, following the available paths in
each deployment area. Energy cost is modeled using empirical energy models for
communication [2] and sensing [14]. We do not consider energy for positioning,
as it is amortized over other location-based applications frequently running on
a smartphone. Each simulation runs for 6 simulated hours with a time offset
between simulations increasing in steps of 3 h from the start of each data set.
Quality parameters are set to Q.QoS.σ2

max = 0.1 for the AdaptiveGreedy
algorithm and Q.T = 1 ◦C as an absolute acceptable error threshold for the
model validity check algorithm.

We analyze the performance of our system under three metrics: Quality, Bro-
ken Queries, and Relative Energy Consumption. We compare the performance
of our system to a naive algorithm without optimization, i.e., Veff = V always,
and the original DrOPS system for dense networks.

5.2 Quality

The Quality metric, depicted in Fig. 4, is defined as the fraction of queries in
which the QoS-constraints are met out of all queries for which at least one
effective reading was received, thus characterizing the data quality a client can
expect from the system. Values are averaged over all simulation runs for each
number of mobile smartphones.
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Fig. 4. Results for quality metric. Fraction of queries in which the QoS constraints are
met.
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Under the DrOPS system, quality is good at just under 90 % for both datasets
in a dense system, i.e., when using the maximum number of smartphones, but
quickly degrades to under 60 % for 100 smartphones or less. Using our adaptive
approach, the quality increases to over 90 % in a dense system. Furthermore, it is
far more robust to a decreasing number of smartphones. In the LUCE data, for
example, using 3 rounds we can still provide 81 % quality using 50 smartphones,
whereas using DrOPS requires 400 smartphones to match this quality.

5.3 Broken Queries

Next, we analyze results for the broken queries metric, denoting the fraction
of queries for which no effective readings were received at the gateway, i.e.,
characterizing how both approaches perform at finding available v-sensors.

Evaluation results are depicted in Fig. 5. Again, values are averaged over all
simulation runs for each number of smartphones. Similar to the quality metric,
the number of broken queries using DrOPS drastically increases for a decreasing
number of smartphones, while our extended algorithm is much more robust.
Under the LAB data, for a single round the fraction of broken queries increases
to 5 % for 140 smartphones whereas using 3 rounds, we can provide 7 % of broken
queries with only 40 smartphones. For the LUCE data, DrOPS cannot match
the fraction of broken queries when using 3 rounds and at least 100 smartphones.

5.4 Relative Energy Consumption

Finally, we use the relative energy consumption (REC) metric to characterize
the energy consumption. As the absolute energy consumption varies greatly for
different time offsets, e.g., due to a varying number of sensing tasks, the REC is
computed by normalizing the energy consumption for each node in a simulation
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readings were obtained.
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Fig. 6. Cumulated relative energy consumption, LAB data

by the average energy consumption per node using the naive algorithm for the
same simulation parameters. Figure 6 shows the cumulated average REC per
simulation for the LAB data. Results for the LUCE data are similar and thus not
shown due to space constraints. Note that the energy drain is nearly uniformly
distributed among all nodes in a simulation. The maximum difference between
nodes in a simulation was 14.4 percentage points.

We see that additional communication for additional rounds increases the
energy consumption. The difference is greatest in a sparse setting, where few
effective readings are collected in early rounds, i.e., most work is done in later
rounds. In a denser setting, the difference diminishes, as later rounds add fewer
readings and thus less energy is used in later rounds. Note the sharp increase
in REC for DrOPS in Fig. 6a. For about 90 % of simulations, hardly any data
is collected, i.e., only few available v-sensors are found and thus little energy
is spent (cf. Figs. 4a, 5a), whereas for the few cases where available v-sensors
are found, only a weak model can be derived, i.e., Veff is very large. As the
round-based approach is better at finding available v-sensors, it does not exhibit
this behavior. Using our round-based approach, we still can save up to 77 % of
energy (compared to 81 % for DrOPS). When the system contains at least as
many smartphones as v-sensors, energy consumption is at most that of the naive
approach. When fewer smartphones are present, the round-based approach may
use up to 6 % more energy.

In summary, using our round-based alternate v-sensor selection strategy will
vastly improve the robustness of the system regarding a reduced number of
participating devices by increasing the number of opportunities to gather data.
Thus, it allows for operation in sparse networks. Even in a dense network, the
quality of results returned to the client is improved. Furthermore, in a sparse
network much of the energy consumed by DrOPS goes to waste, as no data
is obtained for that energy. In the round-based approach, the increased energy
consumption results in many more useful data readings and thus less wasted
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energy. Finally, robustness and result quality further increase when using addi-
tional rounds, while the energy cost for using additional rounds only increases
when the additional rounds provide an actual benefit.

6 Related Work

The idea of Public Sensing (PS) has spawned a growing research interest over the
last few years [3]. To address hardware and software systems challenges, several
prototype architectures have been proposed, e.g., [6,7]. However, none of these
systems deals with possible optimizations of the data acquisition process.

Reddy et al. analyze past mobility and participation of smartphones to rec-
ommend which devices to query in the future [15]. While this might be feasible in
sparse networks, it requires long setup times and manual operator intervention.

Several works explored how to increase the efficiency of PS systems. An
approach for location-centric task execution at a single v-sensor is proposed by
Lu et al. [9] while in our previous work we show how to efficiently sample fixed
sensors using mobile smartphones [16] and extend this idea to task execution at
multiple v-sensors in parallel [12]. Furthermore, there are extensions for sampling
along road segments [17] and updating road-maps [1]. Optimizations presented
in these works are targeted at densely populated systems and are limited to
individual v-sensors. Mendez et al. showed how a model-driven approach, a well-
researched topic in fixed sensor networks [5,8], can improve result quality [10]
while we presented how to use the model to optimize large-scale data acquisition
in PS [13]. All of these approaches assume densely populated networks. Krause
[8] presents an algorithm for selecting most informative v-sensors in the presence
of unavailable v-sensors. This algorithm assumes that only a true subset of the
selected v-sensors is unavailable, which does not hold in a sparse PS system.

7 Conclusion

In this work, we presented an adaptive extension for a model-driven public sens-
ing system to enable operation in sparse networks, where most v-sensors are
unavailable. Model-driven data acquisition systems can reduce the energy con-
sumption of PS systems by requiring fewer effective readings. However, to provide
sufficient result quality, a minimum number of effective readings is required. With
our extended round-based v-sensor selection algorithm, we can find the required
readings even when the majority of v-sensors is unavailable.

Our evaluations show that we can enable the system to work with a greatly
reduced number of smartphones and that result quality is improved by up to 41
percentage points. Furthermore, we can save up to 81 % of energy for sensing
and communication while providing inferred readings matching an error bound
of 1 ◦C up to 96 % of the time.

In future work we plan to further evaluate our algorithm in a real-world
deployment and to extend our approach by including a hybrid 3G/WiFi ad-hoc
routing scheme to further reduce energy for communication.
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13. Philipp, D., Stachowiak, J., Alt, P., Dürr, F., Rothermel. K.: DrOPS: model-driven
optimization for public sensing systems. In: IEEE International Conference on
Pervasive Computing and Communications, San Diego, CA, USA, March 2013,
pp. 185–192. IEEE Computer Society (2013)

14. Priyantha, B., Lymberopoulos, D., Liu, J.: Eers: Energy efficient responsive sleep-
ing on mobile phones. In: International Workshop on Sensing for App Phones,
Zurich, Switzerland (2010)

15. Reddy, S., Estrin, D., Srivastava, M.: Recruitment framework for participatory
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