Crossroads: A Framework for Developing
Proximity-based Social Interactions

Chieh-Jan Mike Liang!®), Haozhun Jin?, Yang Yang?, Li Zhang?®,
and Feng Zhao!

! Microsoft Research, Beijing, China
{liang.mike,zhao}@microsoft.com
2 Tsinghua University, Beijing, China
{genezetta,geraint0923,zlfenyang}0gmail . com
3 USTC, Hefei, China

Abstract. Proximity-based Social Interaction (PSI) apps are emerging
on mobile platforms. While both industries and academic communities
have developed frameworks to simplify the PSI app development, our
framework, Crossroads, brings a set of features to balance the develop-
ment overhead and developer expressiveness. We argue that APIs with
application hints give developers the expressiveness, and core services
(such as virtual links over the star topology) simplify network mainte-
nance. Finally, PSI-specific primitives (such as presence beaconing with
interval decaying and group dissemination) improve the energy efficiency.
Evaluation results on real smartphones show the energy efficiency gain,
topology robustness, and lower group dissemination load.

1 Introduction

With rich connectivities and features, smartphones today are capable of extend-
ing our presence virtually. A simple example is the increasing popularity of social
apps [21]. Building on this momentum, a disruptive form of social interactions is
emerging on the market: Prozimity-based Social Interactions (PSI). With PSI,
people’s virtual interactions become more location-centric and tied to their cur-
rent physical neighborhood (typically <150 ft). This is different from the rather
static “friend lists” in typical online social interactions.

Industries and academic communities have developed several frameworks for
PSI app development [13,14,18]. These frameworks recognize device resource
management and network maintenance as the primary challenges. An example
is the rich choice of physical radios on modern mobile devices, which have a
wide range of characteristics (e.g., range, throughput, and energy). While exist-
ing frameworks represent a significant step forward, we argue that they lack a
set of well-defined APIs and services that balance the development overhead
and expressiveness. At one extreme, Windows 8’s Proximity API [14] abstracts
away many low-level intricacies, at the expense of app-specific tuning of certain
parameters such as device presence beaconing frequency. On the other hand,
Android exposes many low-level functionalities and controls, but the developers

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014
I. Stojmenovic et al. (Eds.): MOBIQUITOUS 2013, LNICST 131, pp. 168-180, 2014.
DOI: 10.1007/978-3-319-11569-6_14

Crossroads: A Framework for Developing PSI 169

[PStApp#1 | [PSIApp#2 | .. [PSIAppn |
discoverable discovered »
connect connected setReliabilityReq
send sendDone receive SetLatencyReq

[APIs with Application Hints

Peer List

Presence Delivery Group
Beaconing Reliability Dissemination

T~ Virtual Link
| Packet Queue and Scheduler Monitor

Fig. 1. Our PSI game — Big Doodle. Fig. 2. Crossroads framework architec-
ture.

are taxed with the burden to use them properly. While Qualcomm’s popular
AllJoyn [18] sits in between these two extremes, its fundamental designs do not
incorporate several mobile-specific optimizations.

The contributions of our work come from defining powerful PSI programming
abstractions, robust networked PSI device management, and efficient operating
system services. To this end, the paper presents our PSI framework, Cross-
roads. We drive design decisions from first-hand PSI app development expe-
rience and observations from existing frameworks. Crossroads has three main
differentiators. First, based on PSI-specific application hints, Crossroads aggre-
gates and schedules pending transmissions while matching the app requirement.
Second, Crossroads combines star topology and interval-decaying beacons to
better achieve link robustness and device efficiency. Finally, recognizing group
communication as an important PSI primitive, we designed a group dissemi-
nation protocol that addresses the problem of load hot-spots in many existing
solutions.

Evaluations on real smartphones show an energy reduction up to 66 % with
application hints, and a group dissemination completion time reduction by up to
50 %. Finally, Crossroads is able to fix network disconnections via physical radio
link migration within 3.5s.

Next, Sect. 2 first highlights the design patterns across PSI apps. Section 3
discusses design decisions and features of our framework, and Sect. 4 presents our
current implementation. Then, Sect.5 evaluates the performance of our frame-
work. Finally, we present related work in Sect. 6 and conclude in Sect. 7.

2 Background

Hundreds of PST apps [6,7,9,16,22] and games [1,20,23] are already available on
the market. We first present two PSI apps we have developed, and then discuss
the typical design patterns across most PSI apps to motivate our framework.

170 C.-J.M. Liang et al.

Table 1. Traffic requirement of the three types of messages in PSI apps.

Traffic volume | Frequency | Reliability requirement | Delay tolerant
Presence adv. | Low Periodic Low Yes
Handshake Low On-demand | Low No
Data transfer | High On-demand | High Maybe

2.1 Our Proximity-Based Apps

Big Doodle. Big Doodle (c.f. Fig. 1) explores the class of collaborative gaming,
where a group of people work together to accomplish a task. In our case, the goal
is to collaboratively doodle an object on a large virtual canvas. During the game
play, participants have limited real-time view of the canvas sections adjacent to
theirs. The result from cooperation without explicit coordination can usually be
unexpected and humorous.

SyncUp. Exchanging ideas forms the basis of meetings and rendezvous discus-
sions, and conversations can lead to impromptu sharing of files and documents.
In contrast to related solutions [8], SyncUp builds on-demand and ad-hoc con-
nections among participants, rather than relying on centralized back-end appli-
cation servers. This design removes both the dependency on the cloud and the
overhead of data transfer over the public Internet.

2.2 Traffic Patterns of Proximity-Based Apps

Our experience suggests that PSI apps typically exhibit similar design patterns:
presence advertisement, connection handshake, and data transfer. As similarities
realize a framework, we now look at their network requirement (c.f. Table1).

Presence Advertisement. PSI starts by discovering neighboring devices and
services. One approach is to periodically beacon on short-range radios to infer
the relative proximity. And, the reception of beacons would suggest the receiver
is near to the transmitter. The beacon frequency and range are tunable to satisfy
the requirement of discovery speed and neighborhood area.

Connection Handshake. Before app instances on two devices can exchange
data, they need to agree and establish a logical link. A logical link specifies
several parameters: the physical medium, end-point addresses, end-point roles,
delivery reliability, etc. We use the notion of logical link here to abstract away
many of the physical layer differences and intricacies. First, as most mobile
platforms support multiple radio options, apps are free to choose the one that
closely matches their requirement. Windows 8 Proximity API offers the option
of connecting over Wi-Fi Direct or Bluetooth. Second, some network mediums
assign different roles to each of the link end-points. For example, in the context
of Wi-Fi Direct, one node acts as the soft access point (AP), and other nodes
initiate the 802.11 association procedure to establish the link.

Crossroads: A Framework for Developing PSI 171

Data Transfer. Finally, bi-directional data exchange happens on the estab-
lished logical link. The data object can vary in size, delivery latency and relia-
bility, number of receivers, etc.

3 Architectural Design Overview

3.1 APIs with Application Hints

We now present the architecture of our Crossroads framework (c.f. Fig.2). One
challenge is to match the app requirement with system resources. At the extremes,
the framework can either infer the traffic semantics with a generic model for all
apps, or expose all the low-level network functionalities to apps. However, both
do not balance between developers’ burden and intention expressiveness. Cross-
roads adopts the approach of passing application-level hints via APIs to achieve
the sweet spot. As one contribution, we identify four key PSI hints below.

Destination(s). Knowing the destined group size allows optimizations for
application requirement, such as the delivery reliability. For point-to-point trans-
missions, a simple retransmission mechanism is sufficient to achieve delivery reli-
ability. However, for group dissemination, the same mechanism can overload the
sender with retransmission requests.

Delivery Reliability. As reliable transmissions have the cost of additional con-
trol transmissions, knowing the reliability requirement helps the framework to
avoid unnecessary overhead. An example is device presence beaconing, where one
missing reception does not significantly impact the overall operation. Under cer-
tain conditions, Crossroads can exploit data objects with low delivery reliability,
e.g., artificial packet drops on senders with low remaining battery life.

Delivery Latency. Latency represents room for the framework to schedule
packet transmissions for the benefit of amortizing some costs. An example is the
tail energy of many radios [2] (e.g., 3G, GSM, and Wi-Fi). Section 5 evaluates two
approaches in achieving this goal: piggy-backing onto existing radio operations,
and batch transfers.

Delivery Frequency and Transmission Range. These two properties mostly
define the behavior and the scope of neighborhood/service discovery. A higher
delivery frequency for beacons speeds up the device discovery. While the property
of transmission range can be used to set the radio transmission power, it can
also be a hint of the physical radio to use.

3.2 Network Topology Management

Star Topology. While many existing frameworks opt the bus topology, we
argue that the star topology better fits the PSI communication pattern.

In the bus topology, all devices within a neighborhood connect to a single
virtual bus. The virtual bus can span multiple hops via intermediate relay nodes.

172 C.-J.M. Liang et al.

The star topology shifts the focus from being bus-centric to node-centric. The
node-centric view implies that node a can send packets to node b only if there is a
physical link between them. We note that this link is a one-hop asymmetric link,
as most proximity-based interactions happen among direct neighbors. In cases
where the requirement on neighborhood size is relaxed, mobile devices already
support network mediums of large coverage, such as the cellular network.

We next elaborate the advantages of the star topology over the bus topology,
in the context of PSI apps. First, the star topology has a lower topology main-
tenance overhead, as star nodes need to maintain only a list of their directly
reachable neighbors. In contrast, bus nodes can address a packet to any other
node on the same virtual bus, even nodes being relayed. This implies that every
node require a globally consistent view of the virtual bus. While the bus topology
is manageable in static and wired networks, we believe the overhead represents
unnecessary costs in dynamic networks. Second, the lower topology maintenance
overhead also translates into topology robustness. In other words, maintaining
the neighbor list can be achieved by simply monitoring presence changes in the
neighborhood [17].

Persistent Virtual Links. The abstraction below topology is link, and Cross-
roads exposes the notion of virtual links to apps. Each virtual link sits on top
of multiple physical links, and it hides the complexities of managing multiple
radio interfaces. In addition, if the current physical link deteriorates, Cross-
roads can switch to another radio interface without interrupting the apps. This
automatic interface migration addresses the fact that mobility is inevitable on
mobile platforms, where network disconnection can happen if users move out of
the range of each other or some infrastructure. Although fixing on a long-range
radio mitigates the disconnection problem, radios typically have the trade-offs
among range, bandwidth and energy.

3.3 Group Dissemination Support

Group dissemination is a primitive, especially that many PSI apps function in
a group setting. The common approach for group dissemination is originator
centric, where only the originator is responsible for reliable delivery. However,
this puts a significant burden on the originator in terms of transmissions, and
the originator will consume energy much faster than the receivers. To this end,
our group dissemination protocol is based on the concept of peer-to-peer (P2P)!.

Packet loss is generally not uniform across a group of mobile platforms in
proximity. In an experiment where four Nokia N800 smartphones were connected
to the same 802.11g access point (AP), we instrumented one to stream 10,000
(unreliable) 1,500-byte multicast packets to the other three at an interval of
50 ms. While only 7.51 % of the packets were successfully received by all, 91.94 %

! While modern smartphones support a wide range of physical radios, we illustrate
with 802.11 networks for ease of discussion.

Crossroads: A Framework for Developing PSI 173

were received by at least one receiver. This suggests that originator is not the
only node capable of retransmissions, which motivates the P2P design.

Table 2. ProximityLink class.

Name Arguments Return values Type

discoverable {radio_types}, isDiscoverable, Method
initAdvInterval

discovered {device_IDs} Event

connect device_ID, radio_types ishandshakeStarted | Method

connected device_ID, radio_types Event

getConnected {deviceIDs} Method

send ProximityObj_ptr, device_ID Method

sendDone ProximityObj_ptr, Event
isSuccessful

setReliabilityReq | ProximityObj_ptr, Method
reliability_class

setLatencyReq | ProximityObj_ptr, Method
latency_seconds

receive ProximityObj_ptr, Event

Table 3. ProximityObj class.

Properties

Descriptions

objPtr

Pointer to the data object in memory

objSize

Size of the data object

latencyReq

Latency class of the data object

reliabilityReq

Reliability class of the data object

4 Current Implementation

4.1 Application-Hints APIs

ProximityLink and ProzimityObj class represent the logical link and the network
data object, respectively (c.f. Tables2 and 3). Every PSI app has an unique app
ID, and each app instance on a device first instantiates a copy of ProximityLink.

An app first calls discoverable to find neighboring devices of the same app
ID, with constraints on radio types and the initial presence beaconing inter-
val. The former constraint allows apps to specify the list of radio interfaces to
maintain virtual links, and the latter enables an energy-efficient discovery (c.f.
Sect.4.2). The discovered event is signaled as neighboring devices are found.

174 C.-J.M. Liang et al.

connect and connected allow an app to start the handshake with the found
app instance on another device, and be notified when a virtual link has been
established.

For data transfer, we support two common reliability classes: best-effort and
reliable. In addition, the latency requirement translates to maximum queuing
delay on the sending device.

4.2 Network Topology Management

Presence Beaconing with Interval Decaying. Calling discoverable trig-
gers beaconing all available app IDs on the device. In related work, all devices
typically beacon with a fixed frequency. Our interval decaying minimizes this
beaconing energy overhead. Considering the case of two devices, a discovery
happens when any one device can hear the beacons from the other. In other
words, it is theoretically feasible for only one of the two devices to beacon.
Unfortunately, this naive solution does not perform well as devices do not know
whether there is a neighbor actively beaconing.

Our basic idea is for all devices to slowly decrease their beaconing frequency.
The advantage is that, as the neighborhood stabilizes, all devices would bea-
con rather infrequently. The design does not add latency to discovering new
neighbors, as new devices would beacon at high frequency. The initial beaconing
interval is passed as an applicant hint to discoverable. Big Doodle uses an
initAdvInterval of one second to ensure fast multi-player discovery, and then
doubles the interval every five beacons.

Topology Maintenance. connect establishes the virtual link with a two-way
handshake between two devices, z and y. The information exchanged during the
handshake sets up both end points for physical link migration. The first message
from z declares the intent for virtual link establishment to y, with a list of radio
interfaces to use. Upon receiving this message, y acknowledges back if it can
support the requested link parameters. This acknowledgment then triggers x to
update its peer list to reflect the new virtual link. During data transmissions
over the virtual link, Crossroads translates destined device ID to the address of
the physical radio interface currently in use.

Crossroads actively maintains live virtual links by monitoring the quality of
underlying physical links. First, in the idle state, node x assumes a disconnected
virtual link if presence beacons from node y have not been heard for a period of
time. Second, during an active transfer, the sender assumes broken link if it does
not receive acknowledgment after several tries. For receivers, the condition is a
timeout since the last successful packet reception. Big Doodle sets the sender
threshold to be 10 tries (once per sec), and the receiver wait timeout to be 10s.

If the underlying physical link is no longer usable, Crossroads immediately
switches to a physical radio interface with longer range, if available. Big Doo-
dle prioritizes by the radio coverage: Cellular > Wi-Fi (infrastructure mode) >
Bluetooth. The challenge lies in the interface switching timing (c.f. Sect. 5.2).

Crossroads: A Framework for Developing PSI 175

80 100

Energy Reduction (%)
40 60

20

0 5 25

10 15 20 30
Batch Size (packets)

Fig.3. The energy reduction due to
batching on transmitting 600 UDP
packets over Wi-Fi at 1 Hz.

Total migration time: ~ 3347 msec

Wi-Fi AP ~ 2581 msec

Disconnection detection: First reception latency:
500 msec ~ 266 msec

Pkt Reception Interface

Bluetooth ~ Wi-Fi

0 500 1000 1500 2000 2500 3000 3500 4000
Time (msec)

Fig. 4. Virtual link switches to Wi-Fi
link after the Bluetooth link becomes
unavailable.

4.3 Group Dissemination

Crossroads divides the data object of size Sop; into fragments of size Spp:.
Each network packet includes the 32-bit data object ID and the 16-bit frag-
ment sequence number to identify the packet payload. After the dissemination
originator advertises the 32-bit unique data object ID, file name, and file size
(Sobj), it multicasts all fragments of the data object to the group. Then, the
network enters the recovery phase.

Reliable Packet Loss Recovery Phase. After a node stops hearing any mul-
ticast packet for some time, it scans received data for lost packets and broadcasts
a request packet, REQ. REQ is sent via multicast to reach all Crossroads nodes
in the group. Our current implementation sends each request three times to
compensate for the lower delivery reliability of multicast.

Upon receiving the first REQ, node z starts a 1-s delay timer for additional
REQs from other nodes. Then, by aggregating all requests, nodes can estimate
the network-wide reception ratio for each packet. After the delay timer fires,
node z compiles a list of requested packets that it can fulfill. The challenge is to
minimize the chance that multiple eligible nodes contribute to the same packet
recovery. Our duplication suppression mechanism implements two techniques.

First technique is the queue randomization. Each node randomizes the order-
ing of requested packets that it plans to fulfill. In contrast to the naive sequential
ordering, queue randomization minimizes the chance that two nodes send the
same packet at the same time. Second, through overhearing, nodes can learn
which data fragments have been sent on the network, and remove them from
their queue. This effectively suppresses any duplicated effort.

The group may go through multiple rounds of requests and retransmissions
before all nodes successfully receive the data object. After stopping receiving
any multicast packet for 1 sec, nodes return to the request phase and send a new
request packet with their current data reception summary.

176 C.-J.M. Liang et al.

5 Evaluations

5.1 Latency Hint

Relaxing the latency requirement allows the framework to delay pending trans-
missions until the energy cost is low, or when a duty-cycled radio is already up.
We use Wi-Fi for the purpose of this discussion. Modern smartphones reduce
energy consumption by putting energy-hungry radios to sleep whenever possi-
ble. An example is the Power Saving Mode (PSM) on Wi-Fi. When PSM is
enabled, smartphones periodically wake up to check whether the associated AP
has buffered packets destined to them?. As each wake-up incurs a fixed cost, we
evaluate the usefulness of latency hints with two approaches below.

The first approach is to delay pending transmissions until Wi-Fi radio’s peri-
odic wake-ups to listen for beacons from the associated AP. The experiment
consists of two Nexus S smartphones connecting to the same TP-Link 802.11g
AP, and one device sent one 1,500-byte UDP packet to another device at an
average interval of 30s for an hour. We connected the sender to the Monsoon
Power Monitor [15] for energy measurement. The comparison baseline is where
the sender transmits according to a random timer with a mean of 30s. Then, we
instrumented the same sender to delay each transmission until the Wi-Fi radio
is up. Results suggest the latter has an energy reduction of about 3 %, and this
improvement is from amortizing a fixed radio wake-up cost.

The second approach is to batch a set of delay-tolerant transmissions on
the device. We used the same setup as previous, and instrumented the sender
to generate packets at a rate of 1 Hz. However, the actual radio transmissions
do not take place until the number of pending packets reaches the predefined
batch size. Figure 3 shows that the energy reduction, as compared to the case
without batching transmissions. The interesting observation is that the reduction
can be significant even for small batches (e.g., 66 % for a batch size of three). In
addition, the energy reduction lowers as the batch size increases, which represents
a diminishing return on amortizing a fixed amount of the wake-up cost.

5.2 Topology Robustness

For the star topology, the topology robustness is mainly determined by how
stable the virtual link between app instances on two different devices is. In the
context of mobile platforms, mobility is a major factor contributing to poor link
quality and disconnections. Therefore, we evaluate the virtual link stability by
looking at how Crossroads mitigates these problems.

We experimented on two Nokia N800 smartphones connected via a virtual
link over both Bluetooth and office Wi-Fi network. One device transmitted a 30-
MB object over Bluetooth while we varied the inter-device distance at the (adult)
walking speed. The distance increased from ~1 m until the devices were beyond
the Bluetooth range. Then, after 10s, they were brought back to the initial
position.

2 The Wi-Fi beacon listen interval on smartphones is typically 200 ms.

Crossroads: A Framework for Developing PSI 177

@ Originator Node #2
B Node#1 [Node#3 Crossroads
Baseline
Crossroads
Baseline
Baseline Crossroads
o
=]
222 | I—

~100% ~ 80% ~60% ~100% ~ 80%
Observed link PRR Observed link PRR

Baseline
Crossroads

i Baselin:
Baseline. €rossroads
Crossroads

Packets
4000 8000 12000 16000

Packets
4000 8000 12000 16000

0
0

(a) Number of packet transmissions (b) Number of packet receptions

Fig. 5. The number of packet transmissions and receptions of each smartphone under
different observed link qualities.

Figure 4 shows the switch from Bluetooth to Wi-Fi. As the two devices moved
out of the Bluetooth range, the sender stopped receiving packet acknowledg-
ments, and the receiver stopped receiving packets. After a time-out of 500 ms,
both devices activated the Wi-Fi radio to reestablish the virtual link (~2581 ms).
We note that the IP addresses were exchanged during the connection handshake.
Finally, the first Wi-Fi packet arrived at the receiver after ~266 ms.

Switching back from Wi-Fi to Bluetooth took a much shorter time, as the
data transfer can continue on Wi-Fi while the sender probes for the receiver on
Bluetooth. Then, after the Bluetooth link is available, the sender immediately
stopped the transfer on Wi-Fi and then restarted it on Bluetooth. We observed
a delay of ~300 ms before the first Bluetooth packet arrived.

5.3 Group Dissemination

The evaluation of the group dissemination is based on the energy efficiency,
which is derived from two metrics: (1) The number of packet transmissions and
receptions on each node. (2) The group-wide dissemination completion time.

We evaluate our group dissemination on a local Wi-Fi network, given the
high bandwidth and native multicast support. All six Nokia N800 smartphones
connected to a single TP-Link 802.11g access point (AP). During each experi-
ment run, one node disseminated a 3-MB data object to the other five phones.
Each experiment was repeated three times at different time of the day to capture
any temporal variation.

The comparison baseline is the common originator-centric dissemination pro-
tocol. After each round of multicast flooding, all receivers report back their list of
missing data packets. With this report from all receivers, the sender then starts
another round of multicast flooding to retransmit only the missing packets.

Node Transmission Counts. Figs.5(a) and (b) show the amount of network
traffic generated by each node under different link quality. We controlled the
link packet reception ratio (PRR) by injecting artificial packet losses following
the Gilbert-Elliot model. As both packet transmission and reception consume a,

178 C.-J.M. Liang et al.

Table 4. The number of packets Table 5. Group dissemination comple-
injected into the network as the tion time under different link qualities.
group size changes.
Observed Total time (sec) Speedup

Group| Crossroads Baseline link PRR Baseline | Crossroads (%)
siee Originator | Node Originator | Node ~100 % 20 17 15

average average ~80 % 37 32 13
4 3516 306 3798 0 ~60 % 130 53 59
5 3633 255 4255 0
6 3477 165 7471 0

significant amount of energy, smaller values are desirable. There are two inter-
esting observations from Fig. 5. First, the Crossroads group collectively received
less packets than the baseline. This difference is due to the fact that Crossroads
switches to unicast if the number of intended receivers is one, which leverages
the relatively higher reliability of unicast. Second, from the network point of
view, Crossroads injects more packets than the baseline. In the worse case, this
difference is about 20 %. However, the break down in Fig. 5(a) reveals that half
of the originator’s load shifts to other nodes in the network.

Building on the discussion of load shifting, Table 4 suggests that, in the case
of Crossroads, the load of the originator decreases as the group size increases.
This observation is related to the decreasing probability of a packet not being
received by any node in the group. On the other hand, in the case of baseline,
the originator’s load increases with the group size.

Dissemination Completion Time. Table5 examines the dissemination com-
pletion time under different link quality in a six-node group. When the observed
link PRR is close to perfect, both the baseline and Crossroads finished very
closely to each other. This is because multicast packets were rarely dropped,
and the flooding can successfully deliver almost all of the data packets. As the
network link quality became worse, the difference between finish times increased.
In the case of 60 % PRR, the difference is more than a factor of two. A closer
investigation shows that, with multiple concurrent transmitters, Crossroads is
able to more closely saturate the radio medium capacity. Since Crossroads nodes
can successfully receive the data objects faster than the baseline, they can turn
off the radio much earlier to save energy.

6 Related Work

Proximity-based App Framework. Qualcomm’s AllJoyn [18] is a cross-
platform framework. Like Crossroads, AllJoyn also sits between the application
layer and the physical radios, and provides APIs for data exchange among appli-
cations on devices in proximity. However, AllJoyn limits what traffic-specific
properties that PSI applications can pass, and it does not have PSI-related

Crossroads: A Framework for Developing PSI 179

optimizations, such as reliable group dissemination. Windows 8 ships with a
Proximity API that provides an even more limited set of functionalities [14].
The problem of managing multiple radio interfaces on a node has been explored
by several prior projects. However, in this problem space, our work explores PSI-
specific issues and optimizations. Like Contact Networking [3], we try to provide
the illusion of persistent links between applications on neighboring devices.
And, we share the view of supplying hints of traffic semantics from applica-
tions to lower layers for optimization [11]. This design is absent in some related
projects [24].

Reliable Group Dissemination. Previous efforts on Bluetooth mostly focus
on building a multicast tree with respect to some metrics, such as energy and
latency [4,5]. The lack of link-layer acknowledgment (ACK) is one source of
low multicast delivery reliability on Wi-Fi. However, requiring ACKs from all
receivers can cause an acknowledgment explosion in the network. Kuri et al. [12]
proposed a leader-based protocol; RMAC [19] and 802.11MX [10] generate an
out-of-band tone to signal positive and negative ACKs respectively. However,
these work do not consider the energy constraint of smartphones, as the burden
of packet retransmissions is still entirely on the sender.

7 Conclusion

Compared to solutions from the industry and the academic communities, Cross-
roads brings a set of expressive APIs and PSI-optimized services to balance PSI
app development overhead and developers’ expressiveness. Our design was driven
by first-hand PSI app development experience, and supported by the evaluation
results. We are working on bringing Crossroads to more mobile platforms.

References

1. Baber, C., Westmancott, O.: Social networks and mobile games: the use of blue-
tooth for a multiplayer card game. In: Brewster, S., Dunlop, M.D. (eds.) Mobile
HCI 2004. LNCS, vol. 3160, pp. 98-107. Springer, Heidelberg (2004)

2. Balasubramanian, N., Balasubramanian, A.,Venkataramani, A.: Energy consump-
tion in mobile phones. In: IMC (2009)

3. Carter, C., Kravets, R., Tourrilhes, J.: Contact networking: a localized mobility
system. In: MobiSys (2003)

4. Chang, C.-T., Chang, C.-Y., Chang, S.-W.: Tmcp: two-layer multicast communi-
cation protocol for bluetooth radio networks. Comput. Netw. 52, 2764-2778 (2008)

5. Chang, C.-Y., Shih, K.-P., Chang, H.-J., Lee, S.-C., Yu, G.-J.: Pamp: a power-
aware multicast protocol for bluetooth radio systems. In: ICCCAS (2004)

6. Chatter, Inc. Buzzmob- social media for real life. http://www.buzzmob.com

Color Labs, Inc. Color - Broadcast Live. http://color.com

8. Davis, R.C., Landay, J.A., Chen, V., Huang, J., Lee, R.B., Li, F.C., Lin, J.,
Morrey III, C.B., Schleimer, B., Price, M.N., Schilit, B.N.: Notepals: lightweight
note sharing by the group, for the group. In: CHI (1999)

=

http://www.buzzmob.com
http://color.com

180

11.

12.

13.

14.

15.

16.
17.

18.
19.

20.

21.

22.
23.

24.

C.-J.M. Liang et al.

Foursquare Labs, Inc. Foursquare. http://www.foursquare.com

. Gupta, S.K.S., Shankar, V., Lalwani, S.: Reliable multicast MAC protocol for wire-

less LANs. In: ICC (2003)

Higgins, B.D., Reda, A., Alperovich, T., Flinn, J., Giuli, T., Noble, B., Watson,
D.: Intentional networking: opportunistic exploitation of mobile network diversity.
In: MobiCom (2010)

Kuri, J., Kasera, S.K.: Reliable multicast in multi-access wireless lans. In: Infocom
(1999)

Le, A., Keller, L., Fragouli, C., Markopoulou, A.: MicroPlay: a networking frame-
work for local multiplayer games. In: MobiGames (2012)

Microsoft, Inc. Windows.networking.proximity namespace. http://msdn.microsoft.
com/en-us/library /windows/apps/windows.networking. proximity

Monsoon Solutions, Inc. Power Monitor. http://www.msoon.com/LabEquipment/
PowerMonitor/

Nearverse, Inc. LoKast - Real-time Interactive Spaces. http://www.lokast.com
Parsons, J.J., Oja, D.: New Perspectives on Computer Concepts 2012, 14th edn.
Cengage Learning, Independence (2011)

Qualcomm Innovation Center, Inc. AllJoyn. https://www.alljoyn.org

Si, W., Li, C.: Rmac: a reliable multicast mac protocol for wireless ad hoc networks.
In: ICPP (2004)

Spanek, R., Kovar, P., Pirkl, P.: The bluegame project: ad-hoc multilayer mobile
game with social dimension. In: CONEXT (2007)

TechCrunch. Nearly 40% of facebook use is from mobile apps. http://techcrunch.
com/2011/12/29 /nearly-40-of-facebook-use-is- from-mobile-apps/

Tencent, Inc. Weixin. http://weixin.qq.com

Zhang, Z., Chu, D., Chen, X., Moscibroda, T.: Swordfight: enabling a new class of
phone-to-phone action games on commodity phones. In: MobiSys (2012)

Zhuang, S., Lai, K., Stoica, 1., Katz, R., Shenker, S.: Host mobility using an internet
indirection infrastructure. Wirel. Netw. 11(6), 741-756 (2005)

http://www.foursquare.com
http://msdn.microsoft.com/en-us/library/windows/apps/windows.networking.proximity
http://msdn.microsoft.com/en-us/library/windows/apps/windows.networking.proximity
http://www.msoon.com/LabEquipment/PowerMonitor/
http://www.msoon.com/LabEquipment/PowerMonitor/
http://www.lokast.com
https://www.alljoyn.org
http://techcrunch.com/2011/12/29/nearly-40-of-facebook-use-is-from-mobile-apps/
http://techcrunch.com/2011/12/29/nearly-40-of-facebook-use-is-from-mobile-apps/
http://weixin.qq.com

	Crossroads: A Framework for Developing Proximity-based Social Interactions
敳敲癥搠䁤 㴀 ⨀䁬整䁴潫敮 ⴀ㘀瀀�
	1 Introduction
	2 Background
	2.1 Our Proximity-Based Apps
	2.2 Traffic Patterns of Proximity-Based Apps

	3 Architectural Design Overview
	3.1 APIs with Application Hints
	3.2 Network Topology Management
	3.3 Group Dissemination Support

	4 Current Implementation
	4.1 Application-Hints APIs
	4.2 Network Topology Management
	4.3 Group Dissemination

	5 Evaluations
	5.1 Latency Hint
	5.2 Topology Robustness
	5.3 Group Dissemination

	6 Related Work
	7 Conclusion
	References

