OPSitu: A Semantic-Web Based
Situation Inference Tool Under Opportunistic
Sensing Paradigm

Jiangtao Wang'2, Yasha Wang' 3™ and Yuanduo He!:?

! Key Laboratory of High Confidence Software Technologies,
Ministry of Education, Beijing 100871, China
wangys@sei.pku.edu.cn
2 School of Electronics Engineering and Computer Science,
Peking University, Beijing, China
3 National Engineering Research Center of Software Engineering,
Peking University, Beijing, China

Abstract. Opportunistic sensing becomes a competitive sensing para-
digm nowadays. Instead of pre-deploying application-specific sensors, it
makes use of sensors that just happen to be available to accomplish its
sensing goal. In the opportunistic sensing paradigm, the sensors that can
be utilized by a given application in a given time are unpredictable. This
brings the Semantic-Web based situation inference approach, which is
widely adopted in situation-aware applications, a major challenge, i.e.,
how to handle uncertainty of the availability and confidence of the sensing
data. Although extending standard semantic-web languages may enable
the situation inference to be compatible with the uncertainty, it also
brings extra complexity to the languages and makes them hard to be
learned. Unlike the existing works, this paper developed a situation infer-
ence tool, named OPSitu, which enables the situation inference rules to
be written in the well accepted standard languages such as OWL and
SWRL even under opportunistic sensing paradigm. An experiment is also
described to demonstrate the validity of OPSitu.

Keywords: Semantic web - Situation inference - Opportunistic sensing

1 Introdution

In the research of situation-aware systems, situation inference is considered to
be an important technique, which focuses on how to infer the situation of an
entity (i.e. a person, a thing or a place) based on sensing data collected from
the physical space or the cyberspace [1]. Among multiple approaches for sit-
uation inference, the Semantic-Web based approach is widely adopted [2-6].
In this approach, standard Semantic Web languages, such as OWL (Web Ontol-
ogy Language) and SWRL (Semantic Web Rule Language), are used to model
the related concepts and inference rules at design time. After obtaining the sens-
ing data, situation inference process is conducted by a semantic inference engine

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014
I. Stojmenovic et al. (Eds.): MOBIQUITOUS 2013, LNICST 131, pp. 3-16, 2014.
DOI: 10.1007/978-3-319-11569-6_1

4 J. Wang et al.

at runtime. In these works, there is a common assumption that the sensing data
are certain and complete during the inference process [1].

In recent years, with the technological advance and popularity of IOT (Inter-
net of Things) and mobile computing, sensing infrastructures have been estab-
lished in our daily surroundings. The massively existing sensing devices include
static sensors spreading across buildings, streets, public parks and rivers, and
mobilizable sensors carried by people and vehicles, such as built-in sensors in
smartphones, tablets, wearable devices, vehicles borne radars, GPS, cameras,
etc. Together with the sensors, wireless communication infrastructures, such as
WSN, Wi-Fi and 3G /4G mobile network, are also available almost everywhere
to deliver sensing data. With these abundant sensors and sensing data deliv-
ery infrastructures, a new sensing paradigm emerges, which is referred to as
Opportunistic Sensing [7-11]. Instead of pre-deploying application-specific sen-
sors, opportunistic sensing applications make use of sensors that just happen to
be available to accomplish its sensing goal [11].

Due to the sensor sharing mechanism, the opportunistic sensing paradigm is
less costly and more environmental friendly. However, it leads to new technical
challenges to those applications that adopt the Semantic-Web based situation
inference approach. Firstly, opportunistic sensing attempts to discover and utilize
sensors available by chance. Therefore, when there are no sensors to acquire
sensing data that is necessary during situation inference process, the situation
of an entity cannot be deduced. Secondly, even if all needed sensors are available,
the confidence of sensing data is unpredictable. There are two reasons for the
unpredictability. On the one hand, the sensors to fulfill a sensing goal are by
products of other sensing systems rather than application-dedicated, and the
accuracy of the same type of sensors vary dramatically from one sensing system
to another. On the other hand, it is hard to predict what sensor will be selected
to accomplish a sensing goal at runtime.

The above stated problems may be abstracted as how to do semantic reason-
ing with uncertainty. To solve this problem, various extensions of OWL and
SWRL have been proposed with different mathematical theories [12]. These
works have proved their validity to varying degrees, but they also have a com-
mon deficiency, i.e., the extended languages are often very complicated and hard
to be learned, even for those people who are familiar with standard Semantic
Web languages.

Therefore, this paper developed a situation inference tool, named OPSitu.
Instead of extending languages, OPSitu provides the developers of situation-
aware applications with standard OWL and SWRL to write the situation
inference rules, no matter the application will run under opportunistic sens-
ing paradigm or not. The uncertainty of sensing data in opportunistic sensing is
handled at runtime by the situation inference engine of OPSitu with the help of
a pre-built knowledge base.

The rest of this paper is divided into 5 sections. Section 2 presents an exam-
ple for opportunistic sensing. Section 3 gives a system overview of the OPSitu;
Sect. 4 introduces the implementation of the situation inference engine in detail.

OPSitu: A Semantic-Web Based Situation Inference Tool 5

Section 5 describes the experiment. Section6 reviews related works. Finally,
directions of future works are concluded in Sect. 7.

2 Running Example

A situation-aware application, named MyClassroom, is to provide different ser-
vices for students in classrooms according to their different situations. Thus
MyClassroom has to identify current situation of a student in the classroom
out of a set of possible situations. There are only five possible situations for
a student user in the classroom that MyClassroom focuses, and they are class
attendance, open lecture, student meeting, class exam and self-study. To infer
the users situation, there are also five contexts to be exploited and the relevant
sensing modules to acquire these contexts are described in Table1l. MyClass-
room is running under opportunistic sensing paradigm, because there are two
contexts whose availability is uncertain, i.e., status of the projector and existence
of human voice.

Moreover, to infer the student’s situation in classrooms, five rules are given
in Table 2, and one row for each possible situation. For example, if a student is
in a large classroom, the projector in that room is on, human voice exists in that
room, and the acquaintance proportion of Tom in that room is low, then Tom

Table 1. Context and Relevant Sensing Modules

Context Relevant Sensing Module Availability

Classroom Capacity Observed by human and Available
stored in the database

Projector Status Based on the light sensor on | Uncertain
the screen of projector

People Speaks Based on the microphone on | Uncertain
the rostrum

Location Based on Wi-Fi fingerprint Available

Acquaintance proportion | Based on the Bluetooth in Available

persons smartphone

Table 2. Situation Inference Rules

Context . Classroom | Projector Human Acquaintance
. > Location . Voice .
Situation Capacity Status Existence Proportion
Class Attendance|In Classroom|Small/Mid/Large On Yes High
Open Lecture In Classroom Large On Yes Low
Student Meeting |In Classroom| Small/Mid Off Yes High
Class Exam In Classroom| Mid/Large Off No High
Self-Study In Classroom|Small/Mid/Large Off No Low

6 J. Wang et al.

is attending an open lecture. By adopting the Semantic-Web based approach,
these inference rules are written in OWL and SWRL. In Fig. 1, the inference rule
for specifying “Open Lecture” is written in SWRL in (a), and related concepts
appearing in the rule are defined in the ontology model in (b).

3 System Overview

3.1 Key Concepts

For the convenience of description, some concepts are interpreted in the follow.

Situation & Context. In this paper, a situation is the semantic abstraction
about the status of an entity and the adaptions of the situation-aware application
are triggered with the change of situations. A context is the information for
characterizing the situation of an entity, and a situation is specified by multiple
contexts based on human knowledge. For the example in Sect. 2, the situation
of a student in a classroom is specified by five contexts based on the inference
rules in Table 2.

Situation Candidate Set (SCS). Generally speaking, although the possible
situations of some entities (for example, a person) are infinite, the situations
that an application focuses are limited. Therefore, situation inference can be
considered as a classification problem. The candidate situations of an entity
form a set, which is referred to as an SCS (Situation Candidate Set) in this
paper. For the example in Sect. 2, the SCS for MyClassroom is S = {Attending
Class, Attending Open Lecture, Having Meeting, Taking Exam, Self-Studying}.

Context Assertion (CA). In this paper, Context Assertion (CA) is defined
as a logic expression describing the condition that a context should be satisfied.
For the example in Fig. 1 there are five contexts. Correspondingly, there are five
Context Assertions (CAs) denoted as A(C;)(i =1,2,...,5), and they are listed
in Fig. 2.

Situation Inference Rule (SIR). The Situation Inference Rule (SIR) is a
first-order logic expression defining the relationship between contexts and a sit-
uation. More specifically, an SIR consists of two parts, the antecedent and the
consequent. The antecedent part is a set of Context Assertions (CAs) connected
with each other using logic AND. Thus the antecedent part of an SIR for a
candidate situation S; can be represented as R(S;) = A(C1) A A(C2) A ... A
A(Cy,), where A(C;) is the ith CA and the SIR is related to m contexts.
The consequent part is the logic expressions for a candidate situation. The
semantic inference rule in Fig. 1(a) is an example of an SIR. Its antecedent part
is A(C1) A A(Ca) AN A(C3) AN A(Cy) N A(Cs), where A(C;) are expressed in Fig. 2
respectively, and its consequent part is Situate(?p, ?stu) A OpenLecture(?stu),
which means the person ?p is attending an open lecture.

OPSitu: A Semantic-Web Based Situation Inference Tool 7

Person(?p) /\ClassRoom(?r) /\LocatedIn(?p, ?r) /\RoomCapacity(?r, ?cap) /|

equalTo(?cap,’Large’) /\Projector(?pro) /\ EquippedWith(?r, ?pro) /\ HasStatus
(?pro,?s) \equalTo(?s,’on’) NExistHumanVoice(?r,?x) /\ equalTo(?x,’yes’) /
AcquaintanceProportion(?p, ?y)/\ equalTo(?y,’Low’) - Situate(?p,?stu) /|
OPenlecture(?stu)

(a) Situation inference Rule Written in SWRL: an Example

situate LocatedIn

/ Acquaintance
/ proportion

~a

// RoomCapacity
/

Iocated[n Room1726 [—EquippedWith-= ProjectorA | -HasStatus-

Upper- Domain- Property supClassof Individual
level Class specific Class

(b) An Ontology Model Defining Concepts of the Rule in (a)

Fig. 1. Situation Inference Rule: An Example

A (C,) = LocatedIn(?p,?r) A ClassRoom(? 1) A Person(?p) // the person is in a classroom
A (C,) = RoomCapacity(?r,? cap) A ClassRoom(?r) AequalTo(? cap,’Large’) //the room is large
A (C3) = HasStatus(? pro,?s) A Projector(? pro) A EquippedWith(?r,? pro) A

ClassRoom(?r) AequalTo(?s,’on’) // the status of projector is on
A (C,) = ExistHumanVoice(?7,?x) A Classroom(?r) A equalTo(? x,"yes") // human voice exists
A (Cs) = AcquaintanceProportion(?p,?y) A Person(?p) AequalTo(?y,'Low")

// acquaintance proportion of the person in the room is low

Fig. 2. Example of context assertions

3.2 Architecture

Figure 3 demonstrates the architecture of OPSitu system and some other compo-
nents that cooperate closely with OPSitu, and they are described in the follow.

8 J. Wang et al.

OPSitu

Situation Inference Engine

Buisuas ansiunyoddo

SIR Decomposition
Knowledge Base i

App-specific Knowledge

App-specific L—inject intoge]
Ontology

SIRs

Shared Ontology

Context Confidence
Record

CA Reasoning

1019)10) e3RQ

Merging & Decision

Inferred situation

Fig. 3. System architecture of OPSitu

Opportunistic Sensing Data Collector. It consists of sensing modules for
different contexts, including location, temperature, light, sound, etc. Those mod-
ules obtain sensing data from the physical space or the cyberspace and process
them into meaningful context information. This part has been done by many
existing works [7-9,11], thus we will not discuss it in detail.

Knowledge Base. Situation-aware applications perform the situation inference
based on two types of knowledge. One is shared by all applications, and the other
is application-specific. OPSitu is designed according to this classification.

The knowledge shared by applications is stored and managed in a pre-built
Knowledge Base. It consists of the Shared Ontology and the Context Confidence
Record. The Shared Ontology defines commonly used concepts for all applica-
tions as Class and Property in OWL (Web Ontology Language). To address the
unpredictability of sensing data’s confidence pointed out in Sect. 1 the Context
Confidence Record pre-stores the confidence of contexts, which is measured by
the accuracy of the sensing data collector. At runtime, the situation inference
engine can query the Context Confidence Record and utilize them in the inference
process.

Application-specific knowledge is injected into the Knowledge Base by appli-
cation developers. It is comprised of the App-specific Ontology and the SIRs.
The App-specific Ontology is derived from the Shared Ontology. Therefore, it
not only contains all concepts in the Shared Ontology but includes some addi-
tional concepts just for a specific application. SIRs are logic expressions defining
the relationships between contexts and situations, and they are also application-
specific.

Since the management of knowledge base is a mature technology and there
are many existing tools [13], OPSitu directly adopts Protégé [14], a free open-
source Java tool, to support the creation and management of knowledge in OWL
and SWRL.

Situation Inference Engine. The Situation Inference Engine is to conduct
situation inference with uncertainty at runtime, and it is on the basis of the
knowledge and opportunistic sensing data. It consists of three modules, SIR

OPSitu: A Semantic-Web Based Situation Inference Tool 9

Decomposition, CA Reasoning and Merging & Decision. Compared with the sens-
ing data collector and knowledge base, the design and implementation of Situa-
tion Inference Engine is more challenging due to its complexity. Thus it is the
main contribution of this paper, and we will describe it in detail in Sect. 4.

4 Situation Inference Engine Implementation

For a semantic reasoner that only supports the certain reasoning, two conditions
must be satisfied in order to infer the situation of an entity. Firstly, an inference
rule is considered as a whole. Secondly, before the inference process is activated,
some variables in the rule must be assigned with specific value. However, this is
not compatible with opportunistic sensing, because the value of some variable
may not be determined when corresponding sensors are not available. To address
this problem, the Situation Inference Engine adopts an inference process includ-
ing the following three steps. Firstly, it decomposes the SIR into several CAs
at first. Secondly, it performs the reasoning for the C'As whose context can be
determined at runtime. Thirdly, it merges the reasoning results of all CAs and
makes a decision about which candidate situation is the most possible.

4.1 Semi-automatic SIR Decomposition

Although it is easy for human to recognize what is a CA in an SIR, it is difficult to
make OPSitu smart enough to decompose an SIR into C'As in a fully-automatic
way. Thus, we come up with a semi-automatic strategy, and it consists of fol-
lowing two steps.

Step 1: Sensible Atomic Formula Selection. After finish writing an SIR
at design time, the developer is required by the system to select the atomic
formula that are directly related to sensing data (either from physical sensor or
cyberspace), which are referred to as Sensible Atomic Formula in this paper. For
the SIR in Fig. 1 (a), five atomic formulas, LocatedIn(?p, ?r), RoomCapacity(?r,
?cap), HasStatus(?pro,?s), ExistHuman Voice(?r,?x), and Acquaintance-
Proportion(?p, 7y) should be selected by the developer as Sensible Atomic
Formula in this step.

Step 2: Runtime Decomposition. At runtime, the SIR Decomposition mod-
ule will decompose an SIR into several CAs based on the Sensible Atomic For-
mula that developer has selected. For each Sensible Atomic Formula, its related
atomic formulas including itself are combined together with logic AND as a
CA. Take LocatedIn(?p,?r) as an example. ?p relates to Person(?p), and ?r
relates to ClassRoom(?r). Therefore, three atomic formulas, LocatedIn(?p, ?r),
Person(?p) and ClassRoom(?r), are connected together with logic AND as a
CA A(C1). Similarly, A(Cs), A(C3), A(C4) and A(Cs) becomes another four
CAs after the decomposition phase, and they are listed in Fig. 2.

10 J. Wang et al.

4.2 Topological-Ordering Based CA Reasoning

After the decomposition, OPSitu directly exploits Pellet to conduct the reasoning
for each C'A whose context can be acquired. However, the reasoning of each CA is
not independent, and this gives OPSitu an opportunity to improve its reasoning
performance. Let us take A(C1), A(C3) and A(Cy) in Fig.2 as an example to
illustrate the dependency issue.

Before runtime reasoning, some variables in a C'A have to be assigned with a
specific value. For instance, the value of variable ?r must be assigned before
the reasoning of A(C3) and A(Cy). This is because only when the room is
specified, whether human voice exists and the projector’s status in that room
can be determined. Moreover, if one wants to determine where Tom is located
in, a query must be issued by using the OWL API [15] getObjectPropertyVal-
ues(Tom, LocatedIn). Therefore, the reasoning of A(C3) and A(Cy) depends on
LocatedIn(?p, ?r). Here we define the dependency between CAs in Definition 1.
According to this definition, A(C3) and A(C4) depends on A(Ch).

Definition 1. If the reasoning of A(C;) depends on the Sensible Atomic For-
mula of A(C;), then A(C;) depends on A(Cj).

In fact, after the reasoning of A(C1), the value of ?r (a specific room) has
already been determined. Consequently, if the following two conditions are sat-
isfied, the OPSitu does not need to query the value of ?r when reasoning A(Cs)
and A(Cjy), thus improving its reasoning performance.

Condition 1: OPSitu performs the reasoning of A(C) before A(C5) and
A(Cy).

Condition 2: OPSitu records the value of 7r as an intermediate result after
the reasoning of A(Ch).

Based on the analysis above, we propose a method for arranging a reasonable
reasoning order so as to enhance the reasoning performance. It consists of two
steps, the dependency analysis and the Topological-Ordering based reasoning.

Step 1: Dependency Analysis. In this step, OPSitu will analyze the depen-
dency among all CAs of an SIR. In this process, the dependency analysis is
designed as the generation of a directed graph, in which a CA is a vertex, and
the dependency between two CAs is a directed edge linking two vertexes.

Step 2: Topological-Ordering Based Reasoning. After the dependency
analysis, all CAs of an SIR are to be arranged in a topological order based
on the Topological Ordering algorithm. Then the CAs, whose context can be
acquired, will be reasoned one by one according to the topological order. Since
the Topological Ordering is a well-known algorithm and the reasoning of CAs
is based on the open-source semantic reasoner (the Pellet), we will not describe
the ordering and reasoning in detail.

OPSitu: A Semantic-Web Based Situation Inference Tool 11

4.3 Similarity-Based Merging and Decision

After the reasoning of all CAs, the reasoning results would be merged together
to compute the possibility of each candidate situation based on a similarity
function, and to make a decision about which situation is the most possible one.

To describe the merging and decision phase, some concepts should be defined
at first.

Firstly, the truth-value of a CA is extended from the conventional 0/1(false/
true) to the interval [—1,1]. The absolute value of the truth-value indicates
the confidence of the context, and the positive/negative symbol represents the
assertions tendency of being true or false. The semantic interpretation of this
extension is represented in Formula 1, in which & € (0,1] is the confidence of
context C; obtained from the Context Confidence Record in the knowledge base.

k if acquired C; indicates that(A(C;)) is true
TruthValue((A(C;)) =< 0 if the C; can not be acquired
—k if acquired C; indicates that(A(C;)) is false
(1)
Secondly, CTV (Contexts Truth Vector) and BV (Benchmark Vector) are
defined in Definition. In this paper, we assume that all situations in an SCS are
based on a common set of CAs.

Definition 2. An SCS is denoted as S = S1,5%,...,5, the objective of sit-
uation inference is to find the situation that most likely to be from S. At a
given time t, the antecedent of an SIR for S; € S is denoted as R(S;) =
A(C1) NA(C2) A -+ NA(Cr,), where A(C;) is a CA and the R(S;) is related
to m contexts. CTV (Contexts Truth Vector) and BV (Benchmark Vector) are
defined in (a) and (b)

(a) Denote TV;(S;) = (Th,T3,...,Tm) as CTV (Contexts Truth Vector) of
R(S;), where T; = TruethValue(A(C;)), and m is the number of contexts.

(b) Denote bV = (1,1,...,1), a m-dimension vector, as the BV (Benchmark
Vector).

Thirdly, we define a similarity functionSim(S(t),S;) to represent the sim-
ilarity between S; and S(¢) in Formula 2, where S; € S and S(t)is the actual
situation at time ¢. It is measured by the cosine similarity between Contexts
Truth Vector TV; and Benchmark Vector bV .

Sim(S(t), Si) = cos(TVi(S;), bV) = W @)

Finally, our merging and decision phase is described in Fig. 4. The main idea
of this process is to compute the degree of possibility of each candidate situation,
and the possibility is measured by the a similarity function Sim(S(t),S;). Then

the candidate situation with maximum possibility is considered to be the inferred
situation.

12 J. Wang et al.

Denote a SCS asS ={S1 S, ...,S,}, for a specific SIR’s antecedent R(S;) =
AC)HNA(CHN...NA(Cp) whereA (C;) is a CA and the SIR’s antecedentR(S;)is
related to m contextsCy, Cs, ..., Cp,.

Step 1: For i = 1,2,...,n,computes the value of Sim(S(t),S;) using formula (2).
Step 2: Make a decision about which situation is most likely to be at time t(denoted
asSinferred (£))-Sinferred (t) = Sk, if Sylet Sim(S(t), S;)to bemaximum.i = 1,2,...,n.
Step 3: If there is more than one S;whose Sim(S(t), Sj)reach to the maximum value,

randomly choose one of them as the inference result.

Fig. 4. The merging and decision phase description

5 Experimental Evaluation

5.1 Experimental Methodology

To evaluate the validity of OPSitu, an experiment has been conducted based
on the example in Sect. 2. Firstly, we construct and store SIRs in Table2 into
SWRL format in the Knowledge Base. Secondly, the sensing modules in Table 1
serve as the Opportunistic Sensing Data Collectors.

After establishing the SIRs and sensing data collectors, our experiment com-
prises two steps:

Step 1: Context Confidence Generation. We generate the confidence of
contexts in two ways. One way is through experiment. For example, the confi-
dence of projector status is generated by experiment. As the length of the paper
is limited, we put the details of four experiments on the website [16]. The other
way is set by experience. For example, as the classroom capacity is observed by
human and stored in a database, its confidence is set to be a constant 100 % with-
out experiment. The generated confidence of each context is listed in Table 3,
and we store them in the Context Confidence Record of OPSitu’s Knowledge
Base.

Table 3. Context Confidence

Context Confidence | Generation Method
Classroom Capacity 100 % Experience
Projector Status 100 % Experiment
People Speaks 82.5% Experiment
Location 93.2% Experiment
Acquaintance Proportion | 94 % Experiment

OPSitu: A Semantic-Web Based Situation Inference Tool 13

Step 2: Simulative Situation Inference. The parameters of this simula-
tive inference are the confidence of each context, which are generated by the
real-world experiment above. The process of the simulative situation inference
is described in Fig.5. In Step A and B, we simulate an opportunistic sensing
environment by programming, and then adopt the Situation Inference Engine
of OPSitu to infer the situation in Step C. For the simulation of the opportunis-
tic sensing environment, there are two points need to be explained.

(1) Based on a survey in university P, in the step B (2) 90 % of all virtual
classrooms are randomly selected to be equipped with light sensors, and 95 % to
be equipped with microphone.

(2) In the Step B (3) we assign the value of contexts based on the corre-
sponding SIR. This is because the objective of this experiment is to evaluate the
validity of Situation Inference Engine of OPSitu rather than the reliability of
SIR, thus we assume that all SIRs are reliable in this simulative inference.

Step A: Create N virtual Classrooms: Ry, Ry, ..., Rn.
Step B: for (i=1toN) {
(1) Randomly assign a situation for R;;
(2) Assign the availability of sensors opportunistically for R;
(3) Assign value to context based on SIRs. }
Step C: for (i=1toN) {
(1) Adopt the OPSitu’s Situation Inference Engine to infer situation;

(2) Compare the inferred situation with the assigned one. }

Fig. 5. Situation inference in a simulative opportunistic sensing environment

5.2 Experimental Result

We set the number of virtual classroom N to be 10000. The experimental result
is demonstrated as the confusion matrix in Table4. By analyzing the confusion
matrix in Table 4, the overall situation inference accuracy by OPSitu reaches to
94.9% in such a simulative opportunistic sensing environment.

The misclassification is caused when the key sensing data to classify similar
situations is missing. For example, when the light sensor is not available, class
attendance and student meeting are easy to be misclassified. Therefore, the lim-
itation of OPSitu is that the fewer contexts are determined, the lower inference
accuracy would be. However, the opportunistic sensing paradigm has a basic
assumption that the sensors are abundant enough in the environment where the
application is expected to be used [9]. Thus under this assumption, OPSitu can
conduct Semantic-Web based situation inference with a satisfactory accuracy.

14 J. Wang et al.

Table 4. Situation Inference Confusion Matrix

Context Class Open | Student| Class Self-Study
Situation Attendance|Lecture| Meeting| Exam
Class Attendance 1830 0 162 0 0
Open Lecture 0 1990 0 0 10
Student Meeting 155 0 1762 83 0
Class Exam 0 0 89 1911 0
Self-Study 0 9 0 0 1991

6 Related Work

To deal with uncertainty in the Semantic Web and its applications, many
researchers have proposed extension of Semantic Web language with special
mathematical theories. [17,18] extended OWL based on the probability theory.
Reference [19] proposed an extension for terminological logics with the possibility
theory. Reference [20-23] extended either OWL or SWRL based on fuzzy logic,
etc. In addition to language extension, some of these work developed correspond-
ing semantic inference engines. In terms of the expressiveness, those extensions
for semantic web languages are capable of dealing with the uncertainty brought
by opportunistic sensing. However, these extended languages are often compli-
cated and hard to learn, even for those who are familiar with the standard
semantic web languages. Besides, there are already many situation inference
rules written in OWL and SWRL on the Semantic Web. If we want to share and
reuse this existing knowledge in opportunistic sensing applications, they have
to be transformed into the format of those extended languages. However, since
the extended languages are quite complex, the transformation process is very
time-consuming.

To avoid the shortcomings of the language extension approaches above, [24]
provided a guidance to use OWL and SWRL to express fuzzy semantic rules.
This approach models the binary predicate with uncertainty as a 3-ary predicate.
Since SWRL is a rule language only supporting unary and binary predicates,
this paper adopts a procedure called the reification to express a 3-ary relation
via unary and binary relations. Therefore, under this guidance, developers can
express fuzzy rules without the modification of OWL and SWRL. However, the
reification process is very complicated and it is conducted by developers. Besides,
the rules after the reification process, although expressed by SWRL, are too
complex to be understood.

7 Conclusion

In order to solve the problem of uncertainty during situation inference brought
by the opportunistic sensing paradigm, this paper proposed OPSitu, a Semantic-
Web based situation inference tool. OPSitu enables the developers of opportunis-
tic sensing applications to write the situation inference rules with standard OWL

OPSitu: A Semantic-Web Based Situation Inference Tool 15

and SWRL, and utilizes a pre-built knowledge base to handle the uncertainty at
runtime.

The future work about OPSitu include two parts. Firstly, taking the weights
of contexts into consideration. In some cases, different contexts contribute to
the inference of a situation to different degrees. However, the current version
of OPSitu does not consider this aspect. Hence we plan to take the weight of
context into consideration in the next version of OPSitu. Secondly, this paper
assumes that all candidate situations in an SCS are based on the same set of
contexts. However, in some circumstances, this may not be true. Thus we plan
to revise the inference engine of OPSitu to make it able to handle more complex
conditions.

Acknowledgments. This work is funded by the National High Technology Research
and Development Program of China (863) under Grant No. 2013AA01A605, the National
Basic Research Program of China (973) under Grant No. 2011CB302604 and the National
Natural Science Foundation of China under Grant No.61121063.

References

1. Ye, J., Dobson, S., McKeever, S.: Situation identification techniques in pervasive
computing: a review. Pervasive Mob. Comput. 8(1), 36-66 (2012)

2. Goix, L.-W.; Valla, M., Cerami, L., Falcarin, P.: Situation inference for mobile
users: a rule based approach. In: 2007 International Conference on Mobile Data
Management, pp. 299-303. IEEE (2007)

3. Matheus, C.J., Baclawski, K., Kokar, M.M., Letkowski, J.J.: Using SWRL and
OWL to capture domain knowledge for a situation awareness application applied
to a supply logistics scenario. In: Adi, A., Stoutenburg, S., Tabet, S. (eds.) RuleML
2005. LNCS, vol. 3791, pp. 130-144. Springer, Heidelberg (2005)

4. Oberhauser, R.: Leveraging semantic web computing for context-aware software
engineering environments. In: Wu, G. (ed.) Semantic Web. In-Tech, Vienna (2010)

5. Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.Q.: Ontology based context modeling
and reasoning using owl. In: Proceedings of the Second IEEE Annual Conference
on Pervasive Computing and Communications Workshops, 2004, pp. 18-22. IEEE
(2004)

6. Yau, S.S., Wang, Y., Karim, F.: Development of situation-aware application soft-
ware for ubiquitous computing environments. In: Proceedings of 26th Annual Inter-
national Computer Software and Applications Conference, COMPSAC 2002, pp.
233-238. IEEE (2002)

7. Hoseini-Tabatabaei, S.A., Gluhak, A., Tafazolli, R.: A survey on smartphone-based
systems for opportunistic user context recognition. ACM Comput. Surv. (CSUR)
45(3), 1-27 (2013)

8. Roggen, D., Lukowicz, P., Ferscha, L., del Mill, R., Troster, G., Chavarriaga, R.,
et al.: Opportunistic human activity and context recognition. Computer 46, 3645
(2013)

9. Conti, M., Kumar, M.: Opportunities in opportunistic computing. Computer 43(1),
42-50 (2010)

10. Ferscha, A.: 20 years past weiser: what’s next? IEEE Pervasive Comput. 11(1),
52-61 (2012)

16

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

J. Wang et al.

Kurz, M., Holzl, G., Ferscha, A., Calatroni, A., Roggen, D., Troster, D., Sagha, H.,
Chavarriaga, R., Milldn, J.D.R., Bannach, D., et al.: The opportunity framework
and data processing ecosystem for opportunistic activity and context recognition.
Int. J. Sens. Wireless Commun. Control, Special Issue on Autonomic and Oppor-
tunistic Communications 1, 102-125 (2011)

Stoilos, G., Simou, N., Stamou, G., Kollias, S.: Uncertainty and the semantic web.
IEEE Intell. Syst. 21(5), 84-87 (2006)

Schmidt, J.W., Thanos, C.: Foundations of knowledge base management: Contri-
butions from logic, databases, and artificial intelligence applications (2012)
Gennari, J.H., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubézy, M.,
Eriksson, H., Noy, N.F., Tu, S.W.: The evolution of protégé: an environment for
knowledge-based systems development. Int. J. Hum Comput Stud. 58(1), 89-123
(2003)

Bechhofer, S., Volz, R., Lord, P.: Cooking the semantic web with the OWL API.
In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp.
659-675. Springer, Heidelberg (2003)

http://219.143.213.95/experiments/

Ding, Z., Peng, Y.: A probabilistic extension to ontology language owl. In: Pro-
ceedings of the 37th Annual Hawaii International Conference on System Sciences,
2004, pp. 1-10. IEEE (2004)

Ding, Z., Peng, Y., Pan, R.: A Bayesian approach to uncertainty modelling in owl
ontology. Technical report, DTIC Document (2006)

Hollunder, B.: An alternative proof method for possibilistic logic and its application
to terminological logics. Int. J. Approximate Reasoning 12(2), 85-109 (1995)
Pan, J.Z., Stoilos, G., Stamou, G., Tzouvaras, V., Horrocks, I.: -SWRL: A Fuzzy
Extension of SWRL. In: Spaccapietra, S., Aberer, K., Cudré-Mauroux, P. (eds.)
Journal on Data Semantics VI. LNCS, vol. 4090, pp. 28-46. Springer, Heidelberg
(2006)

Stoilos, G., Stamou, G.B., Tzouvaras, V., Pan, J.Z., Horrocks, I.: Uncertainty and
the semantic web. In: OWLED, Fuzzy owl (2005)

Wang, X., Ma, Z.M., Yan, L., Meng, X.: Vague-SWRL: a fuzzy extension of SWRL.
In: Calvanese, D., Lausen, G. (eds.) RR 2008. LNCS, vol. 5341, pp. 232-233.
Springer, Heidelberg (2008)

Wlodarczyk, T.W., Rong, C., O’Connor, M., Musen M.: Swrl-f: a fuzzy logic exten-
sion of the semantic web rule language. In: Proceedings of the International Con-
ference on Web Intelligence, Mining and Semantics, pp. 1-39. ACM (2011)
Ciaramella, A., Cimino, M.G.C.A., Marcelloni, F., Straccia, U.: Combining fuzzy
logic and semantic web to enable situation-awareness in service recommendation.
In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA 2010, Part I.
LNCS, vol. 6261, pp. 31-45. Springer, Heidelberg (2010)

http://219.143.213.95/experiments/

	OPSitu: A Semantic-Web Based Situation Inference Tool Under Opportunistic Sensing Paradigm
	1 Introdution
	2 Running Example
	3 System Overview
	3.1 Key Concepts
	3.2 Architecture

	4 Situation Inference Engine Implementation
	4.1 Semi-automatic SIR Decomposition
	4.2 Topological-Ordering Based CA Reasoning
	4.3 Similarity-Based Merging and Decision

	5 Experimental Evaluation
	5.1 Experimental Methodology
	5.2 Experimental Result

	6 Related Work
	7 Conclusion
	References

