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Abstract. In this work we show how phone call conversations can be
used to objectively predict manic and depressive episodes of people suf-
fering from bipolar disorder. In particular, we use phone call statistics,
speaking parameters derived from phone conversations and emotional
acoustic features to build and test user-specific classification models.
Using the random forest classification method, we were able to predict
the bipolar states with an average F1 score of 82 %. The most important
variables for prediction were speaking length and phone call length, the
HNR value, the number of short turns and the variance of pitch F0.
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1 Introduction

1.1 Motivation

Bipolar disorder is a mental illness characterized by alternating episodes of mania
and depression. About 2.4 % of people worldwide are diagnosed with bipolar dis-
order at some point in their lifetime; in the USA this figure reaches 4.4 % [11].
This illness is responsible for more handicapped life-years than all forms of can-
cer and one in four bipolar patients have a history of attempted suicide. Each
chronic case often causes lifetime costs of more than $600,000 [2]. The state-
of-the-art method for diagnosis and monitoring of bipolar disorder centers on
frequent visits to the doctor and self-assessment questionnaires. These methods
are time-consuming, expensive and rely on the availability of experienced doc-
tors, making them particularly hard to implement in low-income countries [11].
We envisage supporting the diagnosis and monitoring of bipolar disorder patients
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with technical means, particularly through the use of smartphones. This could
potentially increase the affordability, availability and pervasiveness of treatment
for patients. This is a realistic possibility considering the current trend towards
decentralized pervasive healthcare [1] and the fact that there are over 4.5 billion
unique mobile phone users, in other words more than 60 % of the world popu-
lation owns at least one mobile phone, 30 % of which are smartphones [4]. For
economic and usability reasons it makes sense to exploit these already existing
hardware devices rather than developing new ones. In this work we explore the
potential of smartphones for monitoring bipolar patients by focusing on voice
analysis as the most natural modality available.

1.2 Related Work

Very recently, new approaches for monitoring and detecting mental disorders
with the help of wearable and mobile devices have been investigated. Frost
et al. [7] transferred the traditional and well-established methodology of paper-
based questionnaires to wearable devices such as phones or tablets. Moore et al.
[12] used short text messages to collect self-assessment data from 153 bipolar
patients. This data is used to evaluate models to forecast manic and depres-
sive episodes. The authors conclude that self-assessment is very heterogeneous
and this constrains the accuracy of their forecast models. Besides self-assessment
questionnaires, analysis of patients’ voices is another well-established method for
diagnosing affective disorders. Voice analysis studies noted in the literature date
back to as early as 1938 [13]. In the area of neurodegenerative diseases speech
analysis is very accurate. Applying speech analysis, Tsanas et al. [15] manage to
discriminate Parkinson patients from healthy controls with a 99 % accuracy. For
classifying mental disorders, psychiatrists usually follow well-established guide-
lines, assessment protocols or rating scales. Many of these state-of-the-art rating
scales involve statements related to the patient’s voice. For example, the Young
Mania Rating Scale [18] requires the psychiatrist to assess the speech rate and
how much the patient talks. Vanello et al. [16] uses signal processing algorithms
to analyze voice automatically. The method is applied for episode identification
of bipolar patients in a controlled environment.

To analyze speech in real-life situations an unobtrusive, wearable device with
a microphone has to be carried by patients. Mobile phones fulfill these criteria
and are carried anyway by a vast majority of the population. One of the first
studies involving mobile phones that analyzed users’ voices is presented by Lu
et al. in 2012 [10]. The assessment of the users’ stress levels in unconstrained
outdoor acoustic environments achieved an accuracy of 76 %. Xu et al. [17] ana-
lyze voice data to estimate the number of speakers in a room. Other approaches
exploit the internal sensors implemented in smartphones, like GPS positions,
accelerometer data or Bluetooth fingerprints. These approaches use data mining
to recognize activity patterns and classify mental states [8,9,14].

In this work we explore the feasibility of voice analysis during phone conver-
sation with smartphone microphones to predict bipolar disorder episodes.
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Fig. 1. System overview: from recording the voice to the state recognition

1.3 System Overview and Paper Organization

Figure 1 provides an overview of the chain from phone call recording to predicting
bipolar states. During phone conversation, the speech of the patient is recorded.
Immediately after the call ends, its features are extracted from the raw recording.
Before the original file is deleted, a scrambled version of it is stored on the
smartphone. At the end of the day, the features of all phone calls during that
day are merged together, resulting in one data point per every 24 h. On server-
side, daily features are concatenated with the corresponding ground-truth scores.
These pairs build the input for training and testing different classifiers in a cross-
validation manner in order to assess the prediction performance of the current
state of a bipolar patient.

The rest of the paper is organized as follows: details about the data col-
lection are presented; next, we describe three different phone call feature sets
used for prediction analysis; Sect. 4 shows the classification performance and the
parameters that best contribute to predicting bipolar episodes; and the work is
concluded by discussing the limitations of the study and summarizing its main
achievements.

2 Data Collection

In this section we briefly describe the data collection trial and how the ground-
truth is derived. We also discuss the integrity of the collected data and show
how participants’ privacy is maintained (see [9] for details).

2.1 Trial Description

A data collection trial was deployed in cooperation with the psychiatric hospital
Hall in Tirol, Austria. A total number of 12 bipolar patients between the age
of 18 and 65 were recruited during a stationary stay at the psychiatric hospital.
After signing an informed consent form, they were provided with an Android



106 A. Muaremi et al.

smartphone and were asked to collect behavioral data over a time-span of 12+
weeks. Apart from automatically collecting smartphone data, the patients were
asked to submit a daily subjective self-assessment by filling out a questionnaire.
The trials were ’real-life’, meaning that the patients were encouraged to use the
smartphone as their normal smartphone, with no restrictions or limitations.

2.2 Handling of Ground-Truth

Objective ground-truth of the patients’ state was gathered every three weeks at
the hospital. Standardized psychological tests scales for depression and mania
were used, combined with psychiatric assessments. These measurement points
resulted in an assessment on a scale between −3 (heavily depressed) to +3
(heavily manic), with intermediate steps of depressed, slightly depressed, nor-
mal, slightly manic and manic. An overview of the assessment for each patient
over the study duration is depicted in Fig. 2. In a normal case, the number of
ground-truths is 5 (hospital visits) per patient, which is very few for analysis.
The following procedure was applied to extend the number of ground-truth days:
None of the patients were rapid-cyclers, i.e. the change of state did not happen
within a few days but rather at least one or more weeks, yet changes of state
would likely happen after a visit to the doctor (during the examination point).
Therefore, according to experienced psychiatrists it was acceptable to project
the ground-truth assessment values 7 days before the examination and 2 days

Fig. 2. States of the individual patients at different measurement points [9]
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after. This time-period was adjusted (extended or shortened) according to stable
or unstable daily subjective self-assessments.

2.3 Data Completeness

The maximal amount of data (5 measurement points for 12 patients times 9 days
(7 before + 2 after)) was reduced due to some practical factors. Two patients
(p101, p802) did not use the new smartphone for phone-calls but kept their old
cell-phone for this. Furthermore, two patients (p202, p402) did not show any
changes in state during the entire trial time. Therefore, their data was of no use
in respect of state classification and had to be discarded. Moreover, the presence
of ground-truth together with the availability of phone-call data was necessary,
yet sometimes patients switched off their smartphone for several days or did not
receive or conduct phone-calls and therefore, little or no data was available for
the measurement point. As a consequence of these factors, only 6 of 12 patients
(p201, p102, p302, p602, p902, p1002) provided enough data points for different
mental states to make reliable classification possible (see Table 1). Each of these
patients experienced only 2 out of 3 phases during the entire trial period (see
Fig. 2), resulting in a two-class problem for the later state recognition.

Table 1. The number of ground truth (GT) days and voice data per patient. The last
row presents the data distribution in the two GT classes per patient.

# of Days Patients

p101 p201 p102 p202 p302 p402 p502 p602 p702 p802 p902 p1002

Total 97 83 75 ?? 90 ?? 131 53 76 115 91 67

GT 84 47 52 ?? 70 ?? 63 41 53 71 48 47

Voice 0 79 66 42 83 41 4 46 62 0 89 61

GT + Voice 0 37 44 0 58 0 0 33 36 0 41 42

Classes - 12|25 31|13 - 17|41 - - 12|21 32|4 - 26|15 11|31

2.4 Privacy Compliance

The main requirement of the ethical committee was to ensure that the semantic
content of the stored speech on the smartphone was not accessible at any time.
To ensure this, we cross-compiled the feature extraction code for ARM processors
resulting in a toolbox, which can be run on android phones. Immediately after
the phone call is finished this toolbox is used to derive the features directly on
the smartphone. These high-level features (see next section), with which the
speech cannot be reconstructed, are stored locally on the phone.

Before the speech recording is deleted, a modified version of the original
file is created. Each 0.5 s segment of the speech is divided into 25 ms chunks.
These 20 slices are randomly permuted and for each segment the permutation
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order is changed. A low-pass filter is applied at the end to remove the signal
discontinuities, i.e., jumps, at borders of the chunks and segments. The content
of the resulting concatenated audio file is not understandable at all, i.e., the
speech intelligibility is zero. The scrambled version of the audio file will be used
for improving the bipolar state recognition algorithms in the future.

3 Phone Call Features

We differentiate between statistical features (STAT), speaking cues (SPEAK) used
in social signal processing and voice features (VOICE) used in the area of acoustic
emotion recognition. The calculation of the features is based on the open-source
audio feature extractor “openSmile” [5]. In the following sections the categories
are described in more detail.

3.1 Phone Call Statistics

The basic phone call statistics are derived from the meta data of the speech file
without considering the content of that file. The following STAT features were
calculated on a daily basis:

1. Number of phone calls during the day
2. Sum of the duration of all phone calls during the day
3. Average duration of the phone calls
4. Standard deviation of phone call durations
5. Minimum duration of all daily phone calls
6. Maximum duration of all daily phone calls
7. % of phone calls in the morning (between 4am and 9am)
8. % of phone calls in the night (between 11pm and 4am)

3.2 Speaking Cues

From the voice recordings we extract non-verbal activity cues adopted from [6]
to describe the speaking behaviour of a patient in a conversation. Based on
the output of voice activity detection (voiced speech vs. unvoiced speech) the
speaking segments are created. Speaker diarization is not necessary since the
audio recording contains only the voice of the patient. Figure 3 shows an exem-
plary audio recording and the highlighted speaking segments. In a conversation
a speaker turn is the time interval when that person is speaking. Short turns or
utterances are most likely to be back-channels, i.e., feedback words while some-
one else is talking, such as “okay”, “hm”, “right”, etc. Non-speaking segments
are either pauses or turns from the other person on the line. The following SPEAK
features were calculated on a daily basis:

1. Average speaking length (STAT3 without the non-speaking segments)
2. Average number of speaker turns
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3. Average speaking turn duration
4. Standard deviation of speaking turn duration
5. Average number of short turns/utterances
6. % of speaking from the total conversation
7. Speaker turns per length in minutes
8. Short turns/utterances per length in minutes

Turn

Speaker's Turns

Fig. 3. Exemplary recorded smartphone audio and highlighted speaking segments

3.3 Voice Features

“openSmile” is capable of extracting more than 5000 acoustic features, but we
start with a smaller feature set motivated by the findings in [5]. For each frame
of the speech signal (frame length: 25 ms, step size: 10 ms) the following low-level
descriptors are calculated:

• root mean square frame energy
• mel-frequency cepstral coefficients (MFCC) 1–12
• pitch frequency F0

• harmonics-to-noise ratio (HNR)
• zero-crossing-rate (ZCR)

and to each of these, the first derivative is additionally computed. Therefore, per
frame we get 16 · 2 = 32 descriptors. Next, for all frames of the speech signal the
following 12 functionals are applied to the low-level descriptors:

• mean, standard deviation (2)
• kurtosis, skewness (2)
• minimum and maximum value, relative position, range (4)
• two linear regression coefficients with their mean square error (4)
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Thus, the total feature vector per voice recording is 32 · 12 = 384 attributes.
This high number of features is further reduced using the filter feature selection
method based on joint mutual information (JMI). The JMI criterion is reported
to have the best tradeoff in terms of accuracy, stability, and flexibility with
small data samples [3]. Feature selection is performed using leave-one-patient-
out cross-validation. Finally, we end up with the following VOICE features:

1. kurtosis energy
2. mean 2nd MFCC
3. mean 3rd MFCC
4. mean 4th delta MFCC

5. max ZCR
6. mean HNR
7. std F0

8. range F0

4 State Recognition

4.1 Prediction Performance

The goal of the state recognition is to determine which bipolar state a patient
is experiencing by using the extracted features shown in the previous chapter.
To do so, we built random forest (RF) classification models for each patient
individually and applied cross-validation to assess the prediction accuracy. Other
classifiers were tested as well (support vector machine, neuronal network), but
they achieved worse performance. In addition, RF has the built-in property to
assess the importance of the variables. For each patient we applied the 3-fold
cross-validation method to split randomly into training and testing sets. We
chose 3 due to the small number of data samples and the unbalanced class
distribution. The procedure is repeated 100 times and the mean performance
values are calculated. The analysis is first carried out using only STAT, SPEAK,
and VOICE features, and then using all features with the concatenated feature
sets. Figure 4 depicts the F1 score (F1 = 2 · precision·recall

precision+recall ) of the RF classifier
using different features sets. Table 2 shows the corresponding numbers with the
average values for each feature set.

The F1 scores range from 67 % to 87 %. There is not a clear pattern that
shows the best feature set, but rather, across all patients they perform similar
on average (with 77 %, 78 % and 79 %). Except for patient p0902, fusing the
feature sets resulted in better results with an average increase of 3 % (from 79 %
to 82 %) over the best individual performances. Since the class distribution differs
from patient to patient, it is important to assess the improvements above the
individual baselines as well. The performance improvement ranges from low, at
9 %, for patient p102 to 19 % for patient p0902, and on average the improvement
is 14 % above baseline.

The performances here are comparable with the results of the related work
in [9] reporting an average accuracy of 81 % using GPS data. This performance
however decreases by 5 % when GPS is fused with accelerometer features.
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Fig. 4. Subject dependent RF performance (F1 score) of the bipolar state classification
using STAT, SPEAK, VOICE features and all features.

Table 2. Subject dependent RF performance (F1 score) of the bipolar state classifica-
tion and average values for each feature set.

Features p201 p102 p302 p602 p902 p1002 Avg

STAT 78% 71 % 81 % 76% 79 % 81 % 77%

SPEAK 77% 76 % 84 % 67% 78 % 84 % 78%

VOICE 75% 74 % 78 % 77% 84 % 86 % 79%

All 79 % 79 % 85 % 81 % 82 % 87 % 82%

>Baseline 11% 9 % 14 % 17% 19 % 13 % 14%

4.2 Feature Significance

Beside the classification performance, we are also interested to find out which
parameters are the most relevant. This side knowledge helps to better understand
the behavior of a bipolar patient, and also tells us which other, non-relevant
parameters can be neglected, potentially resulting in a reduced computational
effort on the smartphone.

The RF classifier is able to assess the importance of the variables during
the training process. In each cross-validation step (in the case of all feature sets
consolidated), the importance of the features is extracted and the mean value
over all steps is calculated. This value is used to sort the features in descending
order. Table 3 shows the top-five features for each patient separately. The last
column shows the overall top-five features, which is the weighted mean of the
individual patients with the weights corresponding to the position of the features
in the individual rank list.

For each patient the top-five feature ranking list varies but there are always at
least two feature categories involved. This variation indicates that the patients’
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behaviors are not very similar to each other, which justifies the development
of person-dependent classification models. The most important average features
are the average speaking length (SPEAK1), the mean HNR value (VOICE6), the
number of short turns/utterances (SPEAK5), the standard deviation of the pitch
F0 (VOICE7), and the maximum daily phone call length (STAT6).

The top features resulted from the analysis are along with important variable
reported in related areas such as discriminating leader behaviour (short turns)
[6], detecting stress in real-life environments using smartphones (std pitch) [10],
or classifying Parkinson disease from speech (mean HNR) [15].

Table 3. Patient-wise and overall top-five important features

Rank p201 p102 p302 p602 p902 p1002 Avg

1 SPEAK7 VOICE3 SPEAK2 STAT2 VOICE5 VOICE7 SPEAK1

2 VOICE8 SPEAK1 SPEAK5 STAT6 VOICE6 SPEAK3 VOICE6

3 STAT7 SPEAK2 SPEAK1 VOICE7 STAT3 VOICE6 SPEAK5

4 STAT4 STAT3 STAT2 VOICE8 STAT4 SPEAK4 VOICE7

5 VOICE7 SPEAK8 STAT6 VOICE6 SPEAK2 VOICE5 STAT6

5 Limitations

Data Collection. From 12 patients in total we could use data from only half
of. Due to the small data sample the conclusions made in this work should be
treated with caution. To improve our evaluation, more subjects as well as longer
trial duration are necessary.

Phone Call Features. Some features that are used in other domains could
be interesting, such as the ratio of incoming/outgoing calls and the number of
unique numbers, or the number of interruptions (successful and failed) during a
phone call conversation.

State Recognition. In the analysis of feature significance we have shown a
ranking list without giving an absolute importance weight to particular fea-
tures. The assessment of the coefficients when logistic regression is used could
be considered as well.

6 Conclusion and Future Work

In this work we have shown the applicability of daily phone calls to assess-
ing the episodes of bipolar patients in a real-life environment. In order to do so,
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we extracted three different types of features, namely phone call statistics, social
signals derived from the phone call conversation and acoustic emotional proper-
ties of the voice.

We used the random forest classifier to train and test person-dependent mod-
els. Statistical, speaking and voice features showed on average across all patients
similar individual performance in terms of state recognition. By fusing all fea-
tures together, we were able to predict the bipolar states with an average F1

score of 82 %.
Moreover, we assessed the feature importance for each person individually

and we have seen that the patients behave differently from each other. Yet we
identified the speaking length and phone call length, the HNR value, the number
of short turns/utterances and the pitch F0 to be the most important variables
on average over all subjects.

Recognizing the current state of the bipolar patients might be difficult. How-
ever, in most cases psychiatrists are primarily interested in knowing when a
person’s state changes, regardless of which state the patient was in before and in
what direction she/he is moving. State change triggers an alarm to the doctor,
indicating that it is an important time to consult with their patient.

During the trials in Tirol we collected all data on Android smartphones.
The previous work in [9] especially shows the usage of location and acceleration
features for tracking bipolar states. Incorporating voice analysis could result in
a complete smartphone solution for daily-life diagnosis of depressive and manic
episodes in bipolar patients.
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