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Abstract. For context-aware systems, it is essential for the constituent
components to react flexibly to changes happening in the surrounding
environment. In distributed networks, a failure of some nodes might dis-
rupt the whole system. Given the circumstances, it is necessary for the
remaining nodes to find consensus on a new organizational structure. In
this paper, we propose an approach for improving the convergence speed
of a prominent algorithm for finding consensus: Ben-Or’s algorithm.
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1 Introduction

Our problem involves searching for consensus in a group of network nodes where
the nodes have to self-organize to deal with environmental stimuli occurring at
execution time [4]. Fault tolerance, when being confronted with, means that in
the event of network crashes network nodes are able to organize themselves to
recover to a stable state. This leads to the problem of searching for an eventual
agreement among distributed nodes.

Building consensus among distributed network nodes in presence of failure
has been identified as a thorny issue in distributed computing. When at least
one node fails, it has been shown that there exists no deterministic algorithm for
solving consensus using asynchronous message passing [2,3]. In this paper, we
present an approach of building consensus in distributed systems as an amend-
ment for an existing randomized consensus algorithm, Ben-Or’s algorithm [1].
The experimental results have shown that our proposed algorithm considerably
improves the convergence speed of the original approach.

The paper is organized as follows. Section 2 introduces consensus in distrib-
uted systems. Section 3 presents a biological background. Section 4 brings in our
approach, a honey bee inspired algorithm for attaining consensus. An implemen-
tation as well as simulation and the experimental results for the two algorithms
are highlighted in Sect. 5. Section 6 draws future work and finally concludes the
paper.
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2 Literature Review

2.1 The Problem of Finding Consensus

The problem of building consensus in distributed systems is described in detail
as follows: A set of n ≥ 2 nodes P = {p1, p2, .., pn} has to negotiate using
asynchronous message passing and decide on the same value from a common set
of inputs. In the scope of this paper, we discuss binary consensus, i.e. the input
values v ∈ {0, 1} [1,3,9,12]. The properties of consensus [9]:

– At most f nodes may fail. The nodes that fail are called faulty nodes; the
nodes that still work are called non-faulty nodes.

– Each node p broadcasts its proposal as a message to all other nodes.
– A node makes a decision based on the set of messages it received.
– A message never fails once it has been sent.
– A node p can send its report or proposal value v to some nodes, and it may

crash before sending the message to the remaining non-faulty nodes. As a
result, some nodes have v and some don’t.

Three key requirements need to be met by every consensus algorithm [3]:

– Termination: Every node must ultimately decide.
– Agreement: All correct nodes decide on the same value.
– Validity: The chosen value must be the input of at least one of the nodes.

2.2 The FLP Theorem

No matter how simple the definition is, the solution for the problem remains
a challenge in distributed computing. In [2] Fischer, Lynch and Paterson prove
that with an asynchronous message passing system, there exists no deterministic
algorithm for solving the problem described in Sect. 2.1 in presence of failures.
The theorem has been named after the authors - the FLP theorem [2].

2.3 Randomized Consensus: Ben-Or’s Algorithm

Ben-Or’s randomized consensus algorithm is considered as the first one for solv-
ing consensus. In his approach, it is assumed that at most f < n/2 nodes may
fail during execution. The algorithm is described in the pseudo code Algorithm
1 [1]. A proof for the correctness of the algorithm is available in [8].

– Procedure Report(k, x) broadcasts a message containing information about
the current round k and the proposed value to all other non-faulty nodes.

– Procedure WaitFor(k, ∗) waits for all incoming messages containing k and a
report/proposal value.

– Procedure Propose(k, v) broadcasts a proposal value v in round k to all non-
faulty nodes.

– Procedure Decide(v) makes a decision on the value v.
– Procedure ChooseRandom(0, 1) returns either 0 or 1 with equal probability.
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Algorithm 1. Ben-Or’s Consensus Algorithm
1: procedure BenOrConsensus(vp)
2: x ← vp
3: k ← 0
4: while true do
5: k ← k + 1
6: Report(k,x)
7: WaitFor(k,∗) from n-f nodes � * is either 0 or 1
8: if there are more than n/2 messages containing v then
9: Propose(k,v)
10: else
11: Propose(k,abstention)
12: end if
13: WaitFor(k,∗) from n-f nodes
14: if there are at least f+1 messages containing v then
15: Decide(v)
16: else if there is at least 1 message containing v then
17: x ← v
18: else
19: x ← ChooseRandom(0,1)
20: end if
21: end while
22: end procedure

Remarks. In Algorithm 1, the abstention value in Line 11 indicates that a node
p prefers neither 0 nor 1, it abstains. The value is something like a “nuisance”
since it does not contribute to a convergence of consensus.

In [8], it has been proven that in a round k if every two nodes propose then
they propose the same value. Once a node p decides in Line 15 in round k then all
nodes will decide in the next round k+1 [8]. But a node decides on a value v only
if it receives more than f propose messages containing v in Line 14. In Line 9,
a node proposes a value only if it has received more than n/2 report messages
with the same value v. That means, when the number of messages containing the
same value does not exceed n/2 then the node cannot propose any value. If so,
then a quorum cannot be reached in Line 14. Given the circumstances Ben-Or’s
algorithm gains a consensus very slowly.

3 Biological Background

3.1 Bio-inspired Computing

The main idea of bio-inspired computing is to emulate activities from natural
communities in computer systems to infuse alike features. As a result, they can
react to environmental changes and be resilient to perturbations and errors.
So far, there have been several computational solutions inspired by colonies in
nature, e.g. ant and honey bee optimization algorithms. By looking into the
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honey bee colony, we found that honey bees have a mechanism to reach an
agreement on choosing a new beehive given that various candidate sites may
have been nominated during the decision making process. To our knowledge, the
mechanism is notable and can be applied to the problem of consensus among
distributed network nodes.

3.2 Bee Communication

Foraging takes place in summer, worker bees spread out to collect and accumu-
late food for the whole year. Each individual bee may find different food sources,
but as the time goes by, the colony tends to head for rich food source where they
can get more nectar and pollen. A scout bee, after finding a new food source,
returns to the hive and performs a waggle dance to notify other honey bees about
the food source. With this information, other honey bees are able to know where
and how far they must fly in order to get to the food sources.

3.3 Consensus

Swarming occurs when the bee population increases thus causing congestion and
difficulties in maintaining good hygiene in the beehive. Before swarming, the
queen lays eggs to raise a new queen bee. When the new queen bee arrives, the
old queen bee takes a number of workers with her and they fly to a new temporary
location, e.g. a tree branch, that is near to their beehive. The swarm stays on
the temporary residence for a short time while waiting for a new residence.
Although many sites may have been nominated during swarming, eventually
all scouts make a unanimous decision, they reach a final agreement for a site,
normally the best one. The honey bee colony has a mechanism to build consensus
among all scout bees. Scout bees dance for good sites vigorously and lastingly
than for sites with inferior quality [5]. It has been shown that the strength of a
dance is decreased linearly over the time [6]. When the dance expires, scout bee
stops dancing for the site and chooses randomly a new site to follow and dance
for. The rate of recruitment for a site is proportionate to the number of waggle
dances by bees. Since dances for good sites prolong, a good site attracts more
bees. As a result, a good site gains a quorum much easier than sites with inferior
quality [7]. The consensus mechanism is summarized as follows:

– Phase 1: Each scout explores a site, evaluates and assigns a quality to the
site.

– Phase 2: The scout flies back to the swarm and dances to advertise for the
site it has found. The better the site quality, the stronger and livelier the bee
dances for it.

– Phase 3: After dancing, the bee returns and explores the site and then backs
to the cluster. It dances for the site again, but less stronger. This step is
repeated and the strength of the dance is decreased until it reaches 0.

– Phase 4: When the dance expires, the scout selects randomly a dance to follow.
It then flies to the site that is being promoted by the dance it follows. The
process repeats from Step 1 to Step 4.
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– Phase 5: If the number of bees gathering around a site exceeds a certain
threshold then a quorum is reached. The scouts fly back to the swarm and
signal the whole colony to depart for the chosen site. The search ends.

4 A Honey Bee Inspired Algorithm for Building
Consensus in Distributed Systems

4.1 Similarities

We see that Ben-Or’s algorithm may reach a pretty slow convergence given that
nodes do not choose the same value in the randomization phase. Regarding the
problem of reaching an eventual agreement among nodes in distributed com-
puting, we witness a substantial coincidence between consensus in distributed
systems and consensus in the honey bee colony as shown in Table 1.

The fact that the two phenomena have a lot in common and honey bees pos-
sess a good mechanism to deal with consensus encourages us to employ the honey
bee’s consensus mechanism in building consensus in distributed computing.

4.2 Proposed Amendments

We call Mp(k) is the set of messages received by node p at round k; Cp(k, 0)
and Cp(k, 1) are the cardinality of the set of messages that contain 0 and 1,
respectively. When Cp(k, 0) = Cp(k, 1) we say it is a tie for the two sets. As we
have seen in Algorithm 1, it is expected that the majority of nodes report the
same value in Line 6 and then a quorum is reached in Line 14. However, a node
proposes a value only if it receives more than n/2 messages containing the same
value, otherwise it proposes the value abstention. We may “waste” the chance
that nodes report the same value in round k+1 given that almost n/2 messages
containing the same value v are sent in Line 13.

It should be noted that from rounds k > 1, the value x reported in Line 6
is the result from either Line 15 or 17 or 19 in round k − 1. We propose a

Table 1. Analogies

Honey bee consensus Distributed system consensus

Scout bees Nodes
Sites Values
Each scout bees dances for a site Each node reports a value
Scouts nominate a site by dancing Nodes propose a value by

broadcasting messages
Scouts select a site if the number of

bees gathering around it exceeds a
threshold

Nodes decide on a value v if they
receive more than f report
messages containing v

All bees reach eventual agreement for
a site

All nodes eventually decide on the
same value
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way to guide the nodes to opt for the most sensible value v instead of choosing
a random value. We consider the case that the majority requirement is not
satisfied: Cp(k, v) < n/2; but there is a plurality of nodes that report v, that
means: Cp(k, 1 − v) < Cp(k, v) < n/2. The honey bee inspired algorithm for
building a consensus is illustrated in the pseudo code Algorithm 2. The main
functions are explained as follows:

Algorithm 2. Honey Bee Consensus Algorithm
1: procedure HoneyBeeConsensus(vp)
2: x ← vp
3: k ← 0
4: strength ← 0
5: while true do
6: k ← k + 1
7: Report(k,x)
8: WaitFor(k,∗) from n-f nodes
9: if there are more than n/2 messages containing v then
10: Propose(k,v)
11: else
12: if strength ≤0 and Cp(k, 0) �= Cp(k, 1) then � start to follow v
13: v ← Plurality(0,1)
14: Follow(v)
15: strength ← Evaluate(0,1)
16: end if
17: Propose(k,abstention)
18: end if
19: WaitFor(k,∗) from n-f nodes
20: if there are more than f messages containing v then
21: Decide(v)
22: else if there is at least 1 message containing v then
23: x ← v
24: else
25: if strength >0 and Follow(v) then � currently follow a value
26: x ← v
27: Decrease(strength)
28: else
29: x ← ChooseRandom(0,1)
30: strength ← 0
31: end if
32: end if
33: end while
34: end procedure

– Function Plurality(0, 1) returns 0 if Cp(k, 0) > Cp(k, 1) and returns 1 if
Cp(k, 0) < Cp(k, 1).

– Procedure Follow(v) indicates that a node prefers a value v.
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– Function Evaluate(0, 1) calculates a correlative value between Cp(k, 0) and
Cp(k, 1); a proposal is Evaluate(0, 1) = abs(Cp(k, 0) − Cp(k, 1)).

– Procedure Decrease(strength) subtracts a specified number from strength.

By a node, the internal variable strength is added and it is decreased linearly
at every round. This aims to make sure that a node does not insist on a fixed value
and as a result, a deadlock can be averted. The variable strength is calculated in
the sense that the bigger the difference between the two cardinalities, the larger
the value. The value that is being favoured by the plurality of the nodes will be
more likely to be followed by others.

The value that is being reported by plurality of nodes can be expressed as
a site with a better quality in the metaphor of bee swarming. A node prefers a
value v so long as strength > 0. If strength ≤ 0 the node chooses randomly a
new value (Line 29). Randomization is also invoked in the worst case when there
is no plausible argument of choosing 0 or 1, i.e. Cp(k, 0) = Cp(k, 1). In the given
case, deliberate choosing a fixed value, either 0 or 1, would not make sense.

With this approach, the chance that the majority of nodes report the same
v in Line 7 should be higher than that in Ben-Or’s algorithm. In the best case,
if all nodes receive the same set of report messages in round k (Line 8), they all
will follow the same value and as a result will report it in Line 7 in round k + 1.
Afterwards, they all propose the same value in the next step. That leads to a
consensus which is impossible in the original Ben-Or’s algorithm.

It should be noted that the while loop from Line 5 to Line 33 does not have a
stop statement. In a real implementation, it is necessary to specify a point where
the loop halts. In [8] the authors propose a solution for the problem. In their
approach, after a node decides on a value v it sends a message with the content
(decide, v) to all nodes and then stops. Every node that receives the message
also decides on the value and sends the message to other nodes and halts.

We acknowledge that the changes made by the honey bee inspired app-
roach might possibly have a side effect on the stability of the original algorithm.
The issue needs to be thoroughly studied and should be considered as an open
research topic. It is unfortunately beyond the scope of this paper.

5 Evaluation

5.1 A Test Program: Multicast Delivering of Messages

To evaluate the performance of the algorithm inspired by honey bees, we imple-
ment a test program in the Java programming language. The program consists
of two modules, sending and receiving multicast messages. A group of connected
computers equipped with this program can exchange multicast messages to nego-
tiate a common solution.

5.2 Simulation Tools: NS2 and AgentJ

Since a more precise evaluation result can be obtained if performance tests are
performed with presence of several nodes, we decided to export the test pro-
gram to run on a simulation environment. Network Simulator NS2 is a discrete
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Fig. 1. NAM screenshot for NS2 simulation with 9 network nodes

event simulation framework. It was written in the programming languages C++
and Python and has been used widely for simulating applications running in
wired and wireless networks. NS2 supports various routing protocols, e.g. TCP,
UDP, multicast. Tcl (Tool Command Language) is used for scripting simulation
scenarios in NS2 [11].

AgentJ is a software tool for embedding real applications written in Java in
the NS2 simulation environment. AgentJ allows Java source code to execute on
NS-2 with minor modification [10]. The use of AgentJ is practical given that
there is a need for simulating applications written in Java with a large number
of nodes. The combination NS2 and AgentJ provides us with a convenient way
to simulate evaluation tests without needing to setup a real network.

Figure 1 depicts an example of multicast network nodes in Network Animator,
a circle represents a node and a line between one pair of nodes corresponds to
the link between them. In a multicast scenario, each node is connected to all
other nodes. For a clear representation, in the figure we depict only a handful
of nodes, however, we can increase the number of network nodes to meet our
requirement.

5.3 Experimental Results

For deploying some test scenarios, we setup NS2 and AgentJ in Linux Fedora
12. Network crash is simulated by shutting down some nodes randomly dur-
ing execution given that at most f < n/2 nodes may fail. A node fails with
a probability of a randomized value ranging from 0 to 1. In the evaluation,
the number of nodes is set to the following values n = 5, 10, 15, 20, 25, 30,
f ∈ {0, �n/2�}. We ran the tests with different sets of input values and with
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Table 2. Performance comparison

n = 5, 10, 15

n 5 10 15
f — 0 1 2 — 0 3 4 0 4 6 7
rBenOr — 1 1 12 — 1 10 20 1 4 23 60
rHoneyBee — 1 1 2 — 1 2 2 1 2 2 2

n = 20, 25, 30

n 20 25 30
f 0 6 8 9 0 8 10 12 8 10 12 14
rBenOr 1 17 32 189 1 32 291 1319 29 112 1531 7554
rHoneyBee 1 2 2 2 1 2 3 2 2 4 2 2

repetition. For the implementation, Function Evaluate(0, 1) in Line 15 is deter-
mined as Evaluate(0, 1) = abs(Cp(k, 0)−Cp(k, 1)). Once a node starts to follow a
value v, it assigns the difference to the strength value strength = Evaluate(0, 1).
Every time it is called, Procedure Decrease(strength) subtracts 1 from strength
until it is smaller than 0.

The outcomes of the execution are shown in Table 2. For each category, the
first row represents the number of nodes taking part in building consensus n. The
second row is the number of nodes that fail during execution f . The third and
fourth rows are the corresponding numbers of rounds r that Ben-Or’s algorithm
and the honey bee inspired version reach a consensus, respectively.

It can be seen that, the larger the number of nodes is, the more difficult a con-
sensus can be reached. If no node fails, that means f = 0 then both approaches
can gain a swift consensus. When failure is present, there are differences in per-
formance. By the original Ben-Or’s algorithm, if the number of failed nodes
increases, the number of rounds that it gains a consensus increases correspond-
ingly. Especially, when f is nearly approaching n/2 a large number of rounds
can be seen. Both tables show that the honey bee inspired algorithm has a con-
siderably better computational performance, especially when network nodes fail
en masse. Compared to Ben-Or’s algorithm, it can gain a consensus after a small
number of rounds of exchanging messages. In addition, its performance is stable
towards the number of failed nodes. We witness an improvement in performance
when applying the honey inspired mechanism.

6 Conclusion and Future Work

In this paper, we have introduced our approach for solving consensus in distrib-
uted systems. In the algorithm we proposed some changes to the original Ben-
Or’s randomized consensus algorithm based on the organizing model inspired by
the honey bee colony. The experimental results showed that the approach gains
an improvement in computational performance in comparison to the original
Ben-Or’s algorithm.
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For future work, we expect to perform further investigations on the proposed
algorithm. We anticipate that the amendments might have side effects on specific
circumstances that have not been perceived yet in the scope of this paper. This
issue needs to be scrutinized and remains and open topic. In addition, the per-
formance of the algorithm needs to be thoroughly analysed as well as compared
with that of other existing algorithms.
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