
A Context-Aware Model for the Management
of Agent Platforms in Dynamic Networks

Phuong T. Nguyen1(B), Volkmar Schau2, and Wilhelm R. Rossak2

1 Research and Development Center, Duy Tan University, 182 Nguyen Van Linh,
Danang, Vietnam

phuong.nguyen@duytan.edu.vn
2 Department of Computer Science, Friedrich Schiller University Jena,

Ernst-Abbe-Platz 2-4, 07743 Jena, Germany
{volkmar.schau,wilhelm.rossak}@uni-jena.de

Abstract. A network infrastructure in a mass casualty incident res-
cue scenario is normally characterized by multiple of working domains
scattered over a wide area. For mobile agent systems working in these
networks, the management of agent platforms contributes to achieving
fault tolerance and reliability. We employ a honey bee inspired approach
for imposing a self-organizing mechanism on the colony of mobile agent
platforms. This paper presents our approach as well as introduces some
preliminary evaluations of the proposed mechanism.

Keywords: Context-aware systems · Mobile agents · Bio-inspired com-
puting

1 Introduction

For the support of mass casualty incident (MCI) rescue, at the University of
Jena a project named SpeedUp1 has been in development since April 2009. The
project aims to develop a technological framework for providing support of rescue
forces in MCI situations so that in disaster events, rescue tasks can be performed
in a more effective way [1].

In SpeedUp’s communication infrastructure the mobile agent concept [2]
has been chosen as one of the key technologies. In MCI rescue scenario of
the SpeedUp-Type, rescue forces may be distributed widely. Each geographi-
cal location forms most likely a technological region in which different forces
work together to do rescue tasks (Fig. 1). It is expected that agent platforms
are able to adapt to changes that happen at execution time. In this paper, we
present an overview to our model, a honey bee inspired mechanism for the man-
agement of dynamic mobile agent platforms [6,7]. Afterwards, we introduce some
preliminary evaluation results on the key functionalities of the model.
1 The project was funded by the German Federal Ministry of Education and Research
(BMBF), http://www.speedup-projekt.de.

P.C. Vinh et al. (Eds.): ICCASA 2013, LNICST 128, pp. 77–86, 2014.
DOI: 10.1007/978-3-319-05939-6 8, c© Springer International Publishing Switzerland 2014

http://www.speedup-projekt.de

78 P.T. Nguyen et al.

Fig. 1. Network infrastructure in an MCI rescue scenario

2 An Approach for the Management of Dynamic Agent
Platforms in MCI Rescue Scenarios

2.1 Network Model

The SpeedUp solution is a communication and data platform for coordination
and integration of all rescue teams in catastrophic situations [6]. Because of its
characteristics, such as autonomous, reactive, opportunistic, and goal-oriented,
the mobile agent technology has been selected for the SpeedUp-Type’s MCI
communication infrastructure [11]. The main components are as follows:

– Agent Platform: A software platform that provides executing environment for
agents.

– Region: A region is made up of agent platforms that have the same authority.
– RegionMaster: An agent platform in a region that undertakes the context-

aware tasks for the whole region.

One crucial issue in the SpeedUp context is to manage the dynamics of agent
platforms efficiently as they join and quit in an unforeseeable manner. To achieve
industrial strength, we propose a context-aware model for the management of
agent platforms.

2.2 Biological Background

The main idea of bio-inspired computing in computer systems is to emulate
activities in nature so that these systems can have alike features. As a result,
they can react to environmental changes. So far, there have been several compu-
tational models inspired by colonies in nature [4,5,10]. Regarding the SpeedUp
network model, we found some coincidental similarities between the model and
the honey bee colony. In addition, honey bees already have good mechanisms to
deal with their organizational issues.

In a bee colony, foraging takes place in summer, forager bees spread out to
search for food sources. The forager bees may find different food sources, but as

A Context-Aware Model for the Management of Agent Platforms 79

Fig. 2. A scout agent observes nodes and their mutual connectivity

the time goes by, honey bees tend to head for rich food source where they can
get more nectar and pollen. A bee, after finding a new food source, returns to
the hive and performs a waggle dance to notify other honey bees about the food
source. As a result, other honey bees are able to know where and how far they
must fly in order to get to the food sources [3,9].

Swarming in a bee colony occurs when the bee population increases. Before
swarming the queen bee raises a new queen bee. The old queen takes a number
of workers with her and they fly to a new temporary location, e.g. a tree branch.
The most experienced foragers in the swarm, called scout bees, are then deployed
to find new suitable locations. When one round of exploration is finished, each
scout bee returns to the bee cluster to inform the whole colony about the place
she has found. The scout bee then flies to the site and evaluates it again and
then backs to the swarm to dance for it. Other bees either perform their own
dance or watch or follow other dances. If the number of scout bees gathered in a
site constitutes a quorum then the scouts make a decision, they choose the site
as the new hive [3,9].

2.3 A Self-organizing Model for the Management of Dynamic
Agent Platforms

We proposed an adaptive mechanism for the management of working regions in
the SpeedUp context based on honey bees’ activities. In the algorithm, two map-
pings from the honey bee colony to the SpeedUp’s network model are employed.

Mapping 1: RegionMaster plays the role of a beehive, at regular intervals, it
deploys scout agents to all platforms of the region to collect information related
to connectivity between a platform and others, and platform’s performance.
When a scout agent arrives at a platform, it sends messages to all platforms
to measure the latency between the current platform and other platforms. The
process is illustrated in Fig. 2. Once all ping messages have returned, the platform
calculates the average latency τavg as specified below:

τavg =
1
n

n−1∑

i=1

t(i) (1)

In which n is the number of nodes in the region; t(i) is the transfer time
between the current platform and the ith neighbour platform. The average

80 P.T. Nguyen et al.

latency represents the level of closeness between the platform and its neighbour-
hood. A low average latency means the platform has a good connection quality
to the remaining platforms. In contrast, a high latency relates to a degraded
connection quality between the platform and the others.

A platform holds a boolean value split to indicate whether it expects its
region to segregate or not. After τavg has been calculated, it will then be com-
pared to the latency to RegionMaster τRM . If τRM � τavg then the node expects
the region to be splitted; it sets the value split to true. The platform hands out
the two values τavg and split to the scout agent.

After performing its routine at a platform, the agent migrates to the next
platform. The process repeats until all nodes of the itinerary have been visited.
En route, the scout agent also nominates a candidate node as possible new region
master based on platform’s performance and connection quality. Once all plat-
forms in its itinerary have been visited, the scout migrates back to RegionMaster
to submit all information it has collected. A scout provides the knowledge of each
node in its path it has visited by submitting information to RegionMaster like a
scout bee dances to notify other bees of a food source. RegionMaster can then
build a map of connection quality of the region.

Mapping 2 is inspired by bee swarming. In a region RegionMaster is consid-
ered as the queen bee and all others are worker bees. After visiting all nodes,
scout agents go back to RegionMaster and submit the information they have
collected. RegionMaster counts the number of values that satisfy split = true. If
the number constitutes a quorum, the region is about to be splitted. RegionMas-
ter promotes a new RegionMaster. The new RegionMaster forms a new region
from the nodes it inherits. The two regions are independent from each other, but
logically connected.

3 Implementation

The implementation is based on the open source multi-agent system Ellipsis
which is developed by our workgroup at the Chair of Software Engineering of
the University of Jena.

3.1 Network Monitoring

In the course of time, the performance of an agent platform as well as its connec-
tivity to the neighbourhood can change. The monitoring process takes place at
every platform at regular intervals to ensure that environmental stimuli occur-
ring during execution are to be observed and processed adequately.

3.2 Network Organizing

After all nodes of a region have been vesicated, the information gathered by
a scout needs to be processed and served as a base for decision making. Self-
organizing activities are conducted to maintain an equilibrium between the inter-
nal organization of the platforms and the external perturbations. These activities
allow agent platforms to recover to a stable state if changes or failures occurred.

A Context-Aware Model for the Management of Agent Platforms 81

Fig. 3. Fault tolerance by using redundancy

3.3 Fault Tolerance

In the proposed approach, RegionMaster plays a decisive role, which may gener-
ate a single point of failure. Given that RegionMaster breaks down or disconnects
suddenly, the node community has no information about the network and, there-
fore, cannot re-organize wherever necessary. To eliminate the effects of network
failure, a reserve for RegionMaster is voted based on information fetched by the
scouts. En route each scout agent compares information it has collected from the
visited platforms, and connection quality of each platform, it nominates a reserve
RegionMaster. The reserve RegionMaster senses the presence of RegionMaster
by periodically sending pings to it. If RegionMaster is no longer available, the
reserve RegionMaster replaces this node (Fig. 3).

4 Evaluation Parameters

For the software prototype, there are many important functionalities that need
to be evaluated. However, due to space limitations, in this paper we concentrate
on validating the feasibility and the ability of being context-aware. Interested
readers are referred to [7] for more evaluation results.

4.1 The Feasibility

In a dynamic network environment the cost for monitoring network might be con-
siderably high. The proposed mechanism is beneficial only if network monitoring
gains a good performance whilst keeping a reasonable running cost. The feasi-
bility of the proposed mechanism means that it maintains a reasonable cost for
monitoring while providing necessary information for the self-organizing tasks.
To validate the feasibility, scouts are deployed to monitor network, the parame-
ters regarding processing time and exploration time are measured. One round
of exploration happens when a scout is created, travels through all nodes of the
region, performs its routine and migrates back to RegionMaster. The following
information is going to be acquired:

82 P.T. Nguyen et al.

– The time a scout needs for accomplishing its tasks at a platform: tprocessing.
– The time a scout needs for performing one round of exploration: texploration.

The processing time at a platform is the duration from when an agent arrives
until it completes its tasks and leaves for the next node. It is calculated as follows:

tprocessing = tl − ta (2)

where ta is the time when a scout arrives at a platform and tl is the time when
it leaves for the next node of its itinerary. The processing time is:

tprocessing = tRTT + ts + td (3)

in which: tRTT is the period from the first ping message sent until the last
response received; td is the time to deserialize a scout agent from an incoming
stream of byte; ts is the time to serialize a scout agent into a byte stream. The
average exploration time is computed:

texploration = tend − tbegin (4)

where tbegin and tend are the time when a scout starts and completes one round
of exploration, respectively. This parameter indicates how often a scout agent
supplies a RegionMaster with up-to-dated information.

4.2 Context Awareness

For agent systems working in highly dynamic networks, being context aware is an
important feature. Agent platforms should be able to take appropriate measures
to counteract adverse effects happening to them. In the scope of this paper, we
investigate the ability of the framework to detect and provide the system with
adequate measures to deal with perturbations happening to RegionMaster.

5 Evaluation

5.1 Experiment Setup

To evaluate the software prototype, we build a laboratory scale test system
where conditions of a real network are imitated, without a real scenario being
present. Characteristics of a dynamic network are simulated using other soft-
wares. The test network consists of eight computers connected through a local
Gigabit Ethernet LAN 1000 Mbps (Table 1).

5.2 The Feasibility

Figure 4 shows the logical connection for the first test. In this scenario, one scout
is created at RegionMaster. RegionMaster assigns the list of agent platforms
{D1,D2,D3,D4, FJ, PT, T1, T2} to the scout. Figure 5 depicts the processing

A Context-Aware Model for the Management of Agent Platforms 83

Table 1. Hardware configuration for the experiments

Computer Alias OS Kernel RAM Processor

Desktop D1 Fedora 12 2.6.31 2.0GB AMD 2.2GHz
Desktop D2 Debian 6.0.4 2.6.32 4.0GB Intel 2*2.0GHz
Desktop D3 Debian 6.0.4 2.6.32 4.0GB Intel 2*2.0GHz
Desktop D4 Debian 6.0.4 2.6.32 4.0GB Intel 2*2.0GHz
Fujitsu FJ Fedora 12 2.6.31 3.0GB Intel 2*2.8GHz
Portégé PT Windows 7 N/A 4.0GB Intel 2*2.4GHz
Thinkpad T1 Fedora 12 2.6.31 2.4GB Intel 2*2.4GHz
Thinkpad T2 Windows XP N/A 1.0GB Intel 1.7GHz

Fig. 4. Logical representation of the experiments

time of the platforms. This parameter represents the time that the agent needs to
perform its tasks at a platform. It is dependent on the processing power of agent
platforms and the latencies to the other platforms, which are in turn dependent
on the network speed. It can be seen that, except T2 that has a higher processing
time because of its limited processing power (Table 1), the processing time for the
other platforms is considerably low. It guarantees that the processing activities
place comparatively little burden on the system performance.

To measure texploration, the agent is sent around the network for different
number of rounds r. In the second experiment r is set to different values, i.e.
r = {100; 200; 300; 500; 1000; 2000; 3000; 5000}. The average exploration time is:

texploration =
tend − tbegin

r
(5)

This parameter demonstrates how fast the scout supplies RegionMaster with
up-to-date information of the network. If the agent needs a long time to perform
its tasks at the platforms, the information submitted to RegionMaster might be
out-of-date. As a consequence, the reactions produced by RegionMaster would
not be adequate. However, the measurement results show that this is not the case.
In Fig. 6, the curve represents the accumulated exploration time. The straight
line which depicts the average time for finishing one round of surveillance pro-
vides evidence that the parameter is stable, no matter how many rounds the

84 P.T. Nguyen et al.

Fig. 5. Processing time for every plat-
form

"

#

(
)

!

Fig. 6. Average time for a scout agent
to explore the region

Table 2. Metrics measured at the time of self-organizing

Platform D1 D2 D3 D4 FJ PT T1 T2
τavg/τRM (%) 47,8 47,6 37,5 27,5 — 37,5 44,4 29,7
Split true true true true false true true true

agent has migrated. This means that the scout produces no overhead when it
works in the long run.

5.3 Context Awareness

FJ is RegionMaster, a scout is deployed to survey the region. In this scenario,
the connectivity between RegionMaster and the remaining platforms is degraded
using software. This aims to investigate the countermeasures of the system given
that the quality of the connection to RegionMaster has declined. Given the
circumstances, it is expected that the software helps the platforms recover from
the degradation.

In this experiment, a certain network traffic between RegionMaster and the
other platforms is created, resulting in a smaller bandwidth left to the remain-
ing platforms. To produce network traffic, we utilize the open source software
Iperf [8]. This tool is used to produce both TCP and UDP data streams over
networks; data sent by the client will be received and eventually discarded by
the server. Since Iperf consumes a certain bandwidth on the connection between
RegionMaster and the rest of the region, there is smaller bandwidth left for
other applications. As a result, each platform experiences effects from the traffic
generator. The latencies between the platforms and RegionMaster grow sharply.
These changes are sensed by the scout. Every platform sets the value split based
on the ratio Θ = τavg/τRM ; where τavg is the average latency and τRM is the
latency to RegionMaster, respectively. The splitting threshold is set to Θ < 50%.
Table 2 shows the ratio and the corresponding value split for every platform.

Since most of the platforms set the value split to true the region is splitted.
There is only RegionMaster staying at the old region. The remaining nodes join
the new region with D2 promoted to be the new RegionMaster. In this case, an

A Context-Aware Model for the Management of Agent Platforms 85

Fig. 7. Average latencies to Region-
Master

Fig. 8. Average latencies of all plat-
forms

adaptation has been made, the old RegionMaster relinquishes its leadership in
the only-one platform region and becomes an inferior node of the new region. A
new region emerges from the original region.

Figure 7 displays the latency to RegionMaster τRM of every platform in three
phases. For a platform, the left column is the latency before Iperf is activated; the
middle column represents the time while Iperf is operating and the right column
is the latency of the platform after the self-adapting process has occurred. In the
beginning and while Iperf was working FJ was RegionMaster so τRM (FJ) = 0.
Similarly, after D2 has taken its job as RegionMaster τRM (D2) = 0. As usual
expected, while Iperf is working, the latencies to RegionMaster for every plat-
form increase significantly. However, once D2 takes over as RegionMaster, the
latencies decrease proportionally. Figure 8 shows the average latencies τavg of
every platform in the corresponding phases. These latencies also shift in the
same pattern as by τRM . Before additional bandwidth was produced, the aver-
age latencies had been at a normal level. While Iperf was operating the latencies
rose markedly. After the region has been restructured, these values resume to
a normal level. The network monitoring activities supply the framework with
up-to-date information about network situation, thereby facilitating the deci-
sion making process. The measurement results suggest that the swap in role of
RegionMaster from FJ to D2 brings a more stable connectivity to every plat-
form compared to that of the old arrangement, right after Iperf started producing
bandwidth.

6 Conclusion

In this paper we have introduced a mechanism for the management of agent
platforms in highly dynamic networks based on the organizational model of
honey bees.

Experimental results show that the software framework has an acceptable
operating overhead as well as a practical processing speed. The test scenarios
demonstrated that the framework is able to detect degradations in connectiv-
ity once they occurred. Based on the information gathered by scout agents,
the framework provides the system with a measure to adequately overcome the

86 P.T. Nguyen et al.

problem that adversely affects the platform colony. The countermeasures appear
to be effective since they help the colony to promote a new equilibrium in con-
nectivity between the platforms. The connection qualities from a platform to
RegionMaster as well as from a platform to the others have been improved. From
our perspective, the evaluation validates that the software framework principally
fulfils the requirements regarding the feasibility and being self-adaptive.

References

1. FSU Jena, The SpeedUp Project (2011)
2. Braun, P.: The migration process of mobile agents. Ph.D. dissertation, Friedrich

Schiller University, Jena (2003)
3. Seeley, T.D., Kirk Visscher, P.: Group decision making in nest-site selection by

honey bees. J. Apidologie 35, 101–116 (2004)
4. Karaboga, D., Bahriye, A.: A survey: algorithms simulating bee swarm intelligence.

J. Artif. Intell. Rev. 31, 61–85 (2009)
5. Pham, T., Afify, A., Koc, E.: Manufacturing cell information using the bees algo-

rithm. In: Proceedings Innovative Production Machines and Systems Virtual Con-
ference (2007)

6. Nguyen, P.T., Schau, V., Rossak, W.R.: Towards an adaptive communication
model for mobile agents in highly dynamic networks based on swarming behaviour.
In: The 9th European Workshop on Multi-agent Systems (EUMAS) (2011)

7. Nguyen, P.T., Schau, V., Rossak, W.R.: An adaptive communication model for
mobile agents inspired by the honey bee colony: theory and evaluation. In: The
10th European Workshop on Multi-agent Systems (EUMAS) (2012)

8. Network Performance Measurement. http://sourceforge.net/projects/iperf/
9. Seeley, T.D., Buhrman, S.C.: Nest-site selection in honey bees: how well do swarms

implement the best-of-N decision rule? J. Behav. Ecol. Sociobiol. 49, 416–427
(2001)

10. Brocco, A.: Exploiting self-organization for the autonomic management of distrib-
uted system. Ph.D. thesis, University of Fribourg, Switzerland (2010)

11. Buford, J.F., Jakobson, G., Lewis, L.: Multi-agent situation management for sup-
porting large-scale disaster relief operations. Int. J. Intell. Control Syst. 11, 284–
295 (2006)

http://sourceforge.net/projects/iperf/

	A Context-Aware Model for the Management of Agent Platforms in Dynamic Networks
	1 Introduction
	2 An Approach for the Management of Dynamic Agent Platforms in MCI Rescue Scenarios
	2.1 Network Model
	2.2 Biological Background
	2.3 A Self-organizing Model for the Management of Dynamic Agent Platforms

	3 Implementation
	3.1 Network Monitoring
	3.2 Network Organizing
	3.3 Fault Tolerance

	4 Evaluation Parameters
	4.1 The Feasibility
	4.2 Context Awareness

	5 Evaluation
	5.1 Experiment Setup
	5.2 The Feasibility
	5.3 Context Awareness

	6 Conclusion
	References

