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Abstract. Bringing context into systems design has added a new dimen-
sion to modern technology. In service-centric and social-centric systems,
the personalization of services to accommodate the preferences of each
individual is essentially based on context information. Due to this impor-
tance, a significant amount of research work is being done on structuring
and modeling contexts. However, no work has been done on storing these
models using recent database technologies and techniques. Also, there is
no reported work that considers a structure for context history, which is
essential to maximize accessibility and scalability of context information
in dynamic settings. Motivated by these issues, we have developed a gen-
eral structure for storing context using three different database models.
Additionally, we have compared the three models in terms of their per-
formance and modeling ability. In this paper we present the data models
for context, context history, and provide a summary of the experimental
analysis conducted on them.

1 Introduction

As the technology evolves, the dependency of society on the technology becomes
more intense. This increases the need for smarter systems that can provide spe-
cific services rather than general ones. Services in the Health Care sector is
an example. As a result many service-oriented systems have become pervasive,
requiring context for service provision. Context can be either a location of a sub-
ject or any environmental surrounding such as temperature or weather affecting
the subject. There has been many studies on defining and modeling context [1].
However, there is no work yet in designing context databases. A context database
is essential to manage a heterogeneous collection of contexts and their history
in order that context information, both past and current, are made available
in a time-critical manner for providing critical services. This is the motivation
for us to provide a general implementation structure for context that could be
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embedded in a Service-oriented Application (SOA) or any other ubiquitous com-
puting system. Additionally, we propose a design for storing context history that
maximizes data management and enhances accessibility.

1.1 Contributions and Organization of Paper

Our contributions include (1) a general model for storing and managing contexts,
(2) an implementation for the proposed context model in three different database
models, (3) a comparison of the three implementations based on experimental
studies, and (4) a general database structure for storing and managing context
history. These contributions are organized as follows. In Sect. 2, we introduce a
definition of context, types of context, and a generic context model. In Sect. 3, we
provide the three database structures for the generic context model and compare
them. In Sect. 4, we provide a solution for handling the context history. In Sect. 5,
we provide a brief literature survey of context modeling and implementation. In
Sect. 6 we summarize our ongoing research work.

2 Context

There exists a large body of literature in context, as understood in different
fields such as linguistics, AI, philosophy, and Human Computer Interface. In
ubiquitous computing, context is a meta-information that qualifies either data
or information or an entity of interest in the system. Within SOA we can regard
context as any element that could affect the service provision and execution
operations. In general, [11] mentions that context is any environment element of
an entity that gives rise to meaningful interpretation of a function computation.
As an example, location of a subject is the context which will decide whether or
not mobile service could be provided to that subject. In [15], context is formalized
and defined as a set of dimensions and tags. The set of dimensions “Who, Where,
When, What, and why” are introduced to construct any general context. This
definition has been considered in [10] for configuring a service. In the definition
of “configured service”, context is split into ContextInfo and ContextRule, where
ContextInfo is the context representation introduced by [15] and ContextRule is
the service qualifier rule that has to be met for getting the service. Below, we first
provide an extension to the work done by [15] and introduce a detailed study on
the context structure from an empirical point of view. Next, we introduce types
of contexts, and provide a design for the context considering all contexts’ types.

2.1 Context Types

The three important entities in any SOA are service, service requester (SR), and
service provider (SP). Each entity will be influenced by their own set of contexts.
Thus, we define the three categories Service Context (SC) Service Requester
Context (SRC), and Service provider Context (SPC). A context of type SC is to



Storing and Managing Context and Context History 37

describe the service status. For example, a service may be “temporarily unavail-
able” in some contexts or is available only in “certain contexts”. A context of
SRC qualifies the status while requesting or receiving the service. For exam-
ple, the location and time parameters characterize the context of a client while
requesting or receiving a service. A context of type SPC is to qualify service
availability and service quality for a service provided by a SP. As an example, a
SP may have license to provide service within 10 km of the location where SP is
registered. So, his location and the authorized zonal information for his service
contribute to constructing SPC contexts. Contexts from these categories regu-
late and restrict service provisioning in SOA. Contexts of SC and SPC types
must be pre-defined in the system, although contexts of type SRC may vary
dynamically due to the mobility of SRs. In general, a context type can be put
into one of the three subtypes permanent, temporal, and transient. A permanent
context needs to be saved. Contexts that arise in Health Care service domain are
examples of this type. A temporal context may undergo changes. Many contexts
that arise in business applications are of this type. As an example, a business
rule of a multinational corporation might change depending upon the govern-
ment imposed legalities. A transient context arises dynamically, and after its use
it may never arise again. Contexts that arise in many game playing systems are
of this type.

2.2 Generic Context Model

The generic context model has the three main parts ContextInfo, ContextRule
and ContextValue. Based on the context representation introduced in [15] we
have structured ContextInfo and ContextRule as shown in Fig. 1. However, Con-
textValue requires a more sophisticated structure in order to capture the change
of values. We decided to include information such as the identifier of the context’s
collector and a date and time of collection.

The information included in the ContextValue is included in two different
nodes. A dimension node information is specific to each dimension separately.
This information includes source ID which is the context collector’s identifier.
Since information for each dimension can be collected by several collectors, it is

Fig. 1. The main structure of the context
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Fig. 2. The structure of contextValue

important to know which collector has collected the information to track it in
case of a failure. Also, date and time of collection are made part of ContextValue
in order to record the history of change. The second node of ContextValue is
the registration node. This node includes information that is general for all
dimensions such as context’s type, requester ID, provider ID, service ID and
date/time of the last update. This information except date/time of last update,
is not updated frequently. Rather, they are set when the service is executed
and will remain the same for other updates (Fig. 2). The fields in this node are
defined below.

– lastupdate: includes the date and time of last update of the ContextValue
– requesterID: includes the ID of the requester to whom the service is provided
– providerID: includes the ID of the service provider
– serviceID: includes the ID of the service
– ContextType: can be permanent, temporal or transient
– intialdate: includes the date and time when the context was initialized
– lifetime: includes the time window for the life of the context

3 NoSql Implementation for Generic Context Structure

NoSql technology is selected to implement the generic context structure for the
following reasons: (1) it supports semi or free schema [14] which makes it suitable
for managing dynamic data, (2) it supports hierarchical structures, (3) it is highly
scalablewhichmakes it suitable for distributeddatabases, (4) itmanages attributes
with multiple values, and (5) it provides efficient query processing mechanisms
[3]. There are three main categories of NoSql database, classified based on their
storing techniques: Document-Oriented, Key-Value, and Column-Oriented. Each
of these NoSql technologies has many tools to support its operations. Thus, we
decided to use these three database technologies for managing contexts. We choose
one implementation from each class: MongoDB for Document-Oriented, Redis for
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Key-Value, and Hbase for Column-oriented. The following describes how each of
these technologies can be used to implement context.

3.1 Service Context Model in MongoDB

MongoDB is an open source document-oriented database. Each record in this
style is called a document. A document is made up of a group of fields and
their associated values. It can contain embedded documents with an overall size
that does not exceed 16 MB. The number of fields need not be the same in all
documents. That is, each record can have different structure. Each document
has a unique key by default. A secondary key can be assigned. A collection is a
pool of documents, which is equivalent to a table in SQL. The database supports
all primitive types (Integer, String, Float), and arrays.

Figure 3 shows our proposed MongoDB model for the generic context struc-
ture. In this figure, the ContextInfo node is modeled as an embedded document
that contains all dimensions as fields with their types as values. The ContextRule
is modeled as an embedded document with one field of string type. The Con-
textValue is modeled as an embedded document that contains fields and arrays as
follows. The datetime, clientID, providerID, and serviceID are modeled as regu-
lar fields. Each dimension of the context is modeled as an array structure, which
wraps the information specific to each dimension in one memory block. Thus, all
information regarding one dimension including sourceID, date/time of collection,
and value of the dimension can be retrieved by the name of the dimension. The
rational for representing dimensions as arrays instead of embedded documents is
to reduce the levels of document embedding. Increasing the levels of document
embedding makes MongoDB’s operations resource intensive and causes complex
query processing and retrieval. Thus, with the current structure, when an update
operation is performed, only lastupdate field and dimensions’ values are updated
with a single query.

3.2 Service Context Model in Redis

Redis is an open source advanced key-value database. A record in the key-value
database consists of a key mapped to its corresponding value. Redis is considered

Fig. 3. Service context model in MongoDB
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Fig. 4. Service context model in Redis

advanced because it provides five possible data structures for the value type.
These data structures are String, Hash, Set, List, and Sorted Set. A String is a
single value with a maximum size of 512 MB. A Hashes is a set of pairs where
each pair consists of a name field and its corresponding value. A single Hashes
record could have up to 232 − 1 pairs. A Set is an unsorted and not duplicated
group of elements connected to a single key. In a Set, the maximum number of
elements is 232 − 1. A List is simply a list of string values that are ordered as
they are entered. A List could have a maximum size of 232 − 1 values. A Sorted
Set is similar to Set, but each value is attached with a score. A score is an integer
number attached to each value of a Sorted set. The values of a Sorted set are
sorted in ascending order based on their score. The maximum number of values
in a Sorted Set is similar to a Set.

Figure 4 depicts our Redis, key-value model, for context structure. The model
uses strings and Hashes to model elements. Because ContextInfo consists of many
pairs of dimension names and their types, Hash is a good data type to use.
Similarly, ContextValue contains pairs. However, it has two levels of hierarchy.
The first level is used to map the names of dimensions to their value keys.
The second level is used to map the value keys to nested Hashes that include
dimensions’ information. The ContextRule attribute is modeled as a String data
type because it contains only one value which is the ContextRule statement.

3.3 Service Context Model in Hbase

Hbase is an open source column-oriented database. It supports key-value tech-
niques, and it is based on the BigTable technology [7], which is designed by
Google. It provides flexible table structure. An Hbase table contains a bunch
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Fig. 5. Service context model in Hbase

of Key-Values wrapped together under one name. This name is called Column
Family (CF). Column Qualifier (CQ) is a field of data. Row Key is a unique
key that differentiates a row from another. Cell stores an atomic value. To store
this value or retrieve it, three keys are needed. These keys are row key, column
family, and column qualifier. The size of a cell could be from 10 to 50 MB [6].
Version is characterized by a time stamp. Every time data is inserted/updated
in a cell, the system stores a time stamp for this action. If time stamp is not
specified when retrieving data, the system automatically returns the latest one.

Hbase does not have a fixed pre-defined schema which makes it very flexible to
structure Context Model. Figure 5 shows the Service Context Model in Hbase, in
which we have named the column family as Context Family. The Context Family
is mapped to the set of dimension names. It is also mapped to some columns
that provide information to the ContextValue. Actually, columns are the data
that are related to one or more rows. Rows are the data that are related to the
dimensions. As illustrated by Fig. 5, only the ContextValue needs all the fields
represented by columns. This results in rows with different length. The third
row key is ContextRule which does not need any data of column defined in the
structure. Thus, a new column qualifier is added and named Rule.

3.4 A Comparison of the Three Models

We compare the three models in terms of the features afforded by the underlying
database models and in terms of their performances. Table 1 compares their
structural features and Table 2 compares their performance.

The CAP Theorem [2], which studied consistency, availability, and partition
tolerance of NoSql databases, states that any NoSql database should have two
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Table 1. A comparison of the structural properties of three context database models

Redis MongoDB Hbase

CAP theorem CPT CPT CPT
Strengths High speed Flexibility,

simplicity
Versions support,

compressions
Weaknesses Durability

problem
Difficult to update Can’t work alone, or

scale down
Maximum size Section 3.2 16 MB Cell 10-50 MB
Indexing One index Allows secondary

index
Cell queried by (row

key, CF, CQ)
Modeling ability One structure,

No hierarchy
Supports embedding Tables and

embedding

strong features out of three. In [9], it is stated that MongoDB, Redis, and Hbase
have the two strong features consistency and partition tolerance (CPT). Redis
is a flexible database but has some limitations, compared to the other two. The
constraints on data type, indexing system, and key value structure make it more
difficult to use with complex rich data. On the other hand, both MongoDB and
Hbase can handle complex data. MongoDB supports hierarchical structures by
permitting nested documents and allowing secondary indexing [4]. In Hbase,
hierarchical structures are supported by nested columns with multiple indexing
[7]. These features help developers to structure rich context data. MongoDB is
easier than Hbase in configuring and coding Table 1.

We tested the performance of the three databases using YCSB benchmarking
tool [5]. We used different workloads, defined by YCSB, where each workload
differs from the other by the number and types of operations performed. The
numbers shown in Table 2 represent the average result of each workload exam-
ined on different number of records that range from 10,000 to 1,000,000 records.
We tested the performance based on two factors: runtime and throughput1. In
our results, Redis occupies the first place in terms of runtime and throughput
followed by MongoDB and, finally, Hbase. However, YCSB does not consider
complexity of structure. Therefore, the results could change dramatically with
more complex structures. Specifically, because Redis does not have pre-defined
data structures, it consumes more operations to perform a single query. As a
result, Redis performance decreases, whereas MongoDB and Hbase seem to per-
form better with complex structures.

4 Database for Managing Context History

An analysis of historical information of contexts will provide valuable lessons
to service providers in modifying their business practices in future. Historical
data regarding clients is very valuable for improving businesses and capturing
1 Throughput is the number of operations performed per millisecond.
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Table 2. A comparison of the performances of three context database models

Workloads Redis MongoDB HBase

- Runtime (ms) Throughput Runtime (ms) Throughput Runtime (ms) Throughput

Workload (a) 459.25 2279.725 759 1322.43 11477 8682.03

Workload (b) 391.75 2589.860 737.25 1363.452 12508.5 425.7

Workload (c) 356.00 2899.95 660.25 1514.95 8136.74 443.93

Workload (d) 368.50 2785.15 700 1431.6 5331.75 485.44

Workload (e) 5196.25 192.65 3922.25 424.91 7351.5 299.07

Workload (f) 471.50 2132.19 1124.5 933.87 4295 506.41

the market needs and business trends. Through the accumulated contexts, ser-
vice providers can observe and evaluate the services provided in the past and
re-evaluate their business policies. In particular, service providers can perform
some data mining and discover the contexts in which the frequency of service
requests peaked. When some of these contexts occur in future, providers can be
better prepared to serve the clients. Also, historical information can be critical
in health-related applications where there is an essential need to access the his-
tory of patients. For example, in providing health care for mental illness, it is
very useful to investigate a patient’s reactions in different situations for under-
standing and identifying the problem. The volume of data involved in historical
evolution of contexts is rather immense. Consequently, we need a structure in
which information is allowed to grow in an orderly manner, data access time is
optimized, and insertion and deletion of information are done efficiently.

We propose a hierarchical structure that categorizes the historical contexts
based on services associated with providers of the services. Figure 6 shows the
hierarchy, where the subtree rooted at a service provider contains the services
and the contexts of providing these services. Thus, with the help of informa-
tion included in the data registration node, reaching the contexts of a specific
service for a specific client can be an easy process. Also, the hierarchical classifi-
cation helps in keeping the growth manageable by narrowing it down to a specific
provider, and service. Thus, the data related to one provider to one service is
clustered together. Therefore, when providers are to access services’ contexts
they only need to surf their own contexts between their own clients. This clas-
sification can also be furthered by clustering the contexts for providers based
on contexts’ types. Thus, permanent contexts are clustered together and remain
untouched, whereas temporal contexts are visited periodically for cleaning.

Additionally, to keep the history manageable we introduced lifetime, intial-
date and contextType fields in Sect. 2.2. Based on contextType a context is either
to be deleted or retained. In case the type of context is permanent, context is
persisted. If the context type is transient, it is not saved at all. If the type is tem-
poral, the lifetime field is added to the field intialdate which will define the expiry
date of the context. This expiry date is calculated whenever the clean-up process
is activated and the record is deleted if either the current date information in it
is equal or past the expiry date information.
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Fig. 6. Context history hierarchical structure

5 Related Work

There exists a large body of literature in the study of context. In this section we
have chosen some recent published work on context modeling to compare our
work. In general, to our knowledge there is no work done yet on database models
for managing context and context history.

The UML context model proposed in [12] considers atomic and complex con-
texts. An atomic context is modeled as a class in which the two attributes are
the name of the context and the source name of context. The only attribute
of the complex context is the aggregation of its different contexts, with some
logical operations. The two context models are independent of service. However,
there is a class, called context-awareness, which is a component of the service.
The proposed context model is both abstract and incomplete. It is abstract in
the sense that the authors did not provide any language or database support
that are necessary for implementing the model. It is incomplete in the sense
that the type information necessary to capture the heterogeneity of informa-
tion, the nature of context (permanent or temporal), and rules for using it in
services are not modeled. Although the authors [8] claim to have put forth a
context-aware service application, the work does not provide any view of the
context structure and how it is defined. Actually, the work is an extension to
[12] that they considered as state and event based context. On one hand, a
state-based context includes data of attributes that could be entity, device or
user related. On the other hand, the event-based context encompasses a bunch of
entity events. These events could be related to an application or a user with con-
sideration to events’ history. However, there is no elaboration for how the context
is structured and where the data is stored. Also, there is no specific structure
for the history and what data could be included. In [13], the authors have intro-
duced a context structure mainly for Mashup application requirements. They
have considered the dimensions when, where, what and who to construct con-
texts. However, the structure assigns several entities for each dimension. This
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makes context structure complex. In general, not all applications require the
same context information. Consequently, their model could result in aggregating
useless information. The model does not provide any mechanism to add another
dimension. In addition, although the context change history was mentioned in
the paper, there was not any information regarding history structure, model or
attributes and data of the history.

6 Conclusion

The significant virtue of the context structure that we have proposed in this
paper is its ability to handle the richness of context information. It can fit
the needs of service definition, service provider characterization, and service
requester preferences. The context model is independent from service models of
service providers, yet the context structure can be adapted to fit in service mod-
els. The three database structures that we have investigated seem to adequately
handle the management requirements of a large collection of contexts and their
histories. We have compared the three database organization from both struc-
tural and performance characteristics. We are currently embedding the context
databases in service registries, the central publishing house in a service-oriented
architecture.
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