
A Stability-Aware Approach to Continuous
Self-adaptation of Data-Intensive Systems

Marco Mori1(B), Anthony Cleve1, and Paola Inverardi2

1 PReCISe Research Center, University of Namur, Namur, Belgium
{marco.mori,anthony.cleve}@unamur.be

2 Dipartimento di Informatica, University of L’Aquila, L’Aquila, Italy
paola.inverardi@di.univaq.it

Abstract. Nowadays data-intensive software systems have to meet user
expectations in ever-changing execution environments. The increasing
space of possible context states and the limited capacity of mobile devices
make no longer possible to incorporate all necessary software function-
alities and data in the system. Instead, the system database has to be
adapted to successive context changes, in order to include all the infor-
mation required at each stage. This adaptation process may translate
into frequent and costly reconfigurations, in turn affecting negatively
system stability and performance. This paper presents an approach to
context-dependent database reconfiguration that aims to improve sys-
tem stability by anticipating future information needs. The latter are
specified by means of an annotated probabilistic task model, where each
state is associated with a database subset. Experiments suggest that this
approach has a positive impact on the stability of the system, the gain
depending on the degree of similarity of the successive tasks in terms of
database usage.

1 Introduction

In the era of ubiquitous environments, modern data-intensive systems are highly
dynamic with respect to different aspects: they have to provide different soft-
ware functionalities according to changing environmental conditions and chang-
ing user needs (i.e., context). Consequently, they have to provide users with the
information that are suited for their current context of operation in a resource-
constraint environment. The literature of self-adaptive systems [3,7,17] promotes
the creation of self-adaptable applications by means of different software alter-
natives that satisfy different sets of requirements based on the current context.
Different software alternatives, created for different contexts, possibly need dif-
ferent portions of data belonging to a big data source. Keeping all these data on
the server and making them available through the cloud is not a good solution for
variants running in resource-constraint environments. Indeed, continuous inter-
actions with the server require an always-on Internet connection, which in turn
consumes device resources. Further, in case of data that are rarely changed or

P.C. Vinh et al. (Eds.): ICCASA 2013, LNICST 128, pp. 304–315, 2014.
DOI: 10.1007/978-3-319-05939-6 30, c© Springer International Publishing Switzerland 2014

Stability-Aware Database Adaption 305

whose modifications do not negatively affect competing accesses, frequent inter-
actions with the server are even not necessary. For this reasons, we consider
a local copy of the database available to the application at a specific context.
Ubiquitous resource-constraint environments where these applications run, suffer
from the limited capacity (storage and computational) of devices and from the
large number of context situations for which different portions of data are nec-
essary. This implies that it is not feasible to include the global database within
the storage-constraint device thus making it necessary to provide adaptivity not
only for applications but also for data and their manipulation mechanisms. In
addition, even privacy concerns should prevent users, under certain conditions,
to access sensitive information. To this end, the literature of context-aware data-
bases includes the support to provide the application with the subset of the
database according to current context, user tasks and user preferences [1,5,9].

Variability of accessing data poses the interest towards new data-intensive
systems for ubiquitous environments that are able to perform run-time recon-
figurations to data-related artifacts [12]. Data adaptations occurring in non-
stationary environments suffer from performance degradations and furthermore
they negatively affect stability of data, i.e., the capacity of the system to have the
lowest possible variation of data with respect to the variations of tasks [8,14]. In
this paper, we provide a framework for improving the stability of the database
reconfiguration process by exploiting a predictive task model which expresses
probable future variation of the application requirements in terms of variation
of the information needs. Upon task variation we determine which are the admis-
sible configurations of the database, i.e., the ones that fit into the device and
that provide at least the minimum set of data required for the current task.
Among those legal configurations, we then choose the one that allows reach-
ing the highest level of stability. To this end, we consider two criteria: (i) how
good each solution is with respect to future variations to the current task (and
required data) and (ii) how good each solution is with respect to the operations
to perform over the current database instance. It is worth noticing that a good
configuration for the future may be too costly to reach from the current one.
Conversely, a configuration that is easy to obtain may not constitute a good
choice for the future. In light of this, we have formalized the two conflicting
criteria and we have combined them in a single utility function with the aim
of choosing the best admissible one by means of a future-aware and a future
un-aware decision-making approach. Experimental results evaluate the stability
for the two approaches with different input task models, each providing a dif-
ferent level of shared information needs and different memory occupancy among
states.

Motivating Scenario. We consider an e-health system to support the doc-
tor activities within and outside the hospital. A doctor works at the cardi-
ology and orthopedy department either as physician or as director. Based on
the current context, i.e., current location, role and activity, the doctor is inter-
ested in different excerpt of data. As physician performing check-up visits, the

306 M. Mori et al.

doctor needs to access a complete set of patient information with sensitive data,
while if he performs check-up visits at the patient home (outside the hospital)
he visualizes only basics patient information without sensitive data. Indeed, for
security reasons, the application prevents the access to sensitive data in case
of remote accesses. Only in case of operations at the surgery room, the doctor
has to visualize information supporting the specific operation he is performing.
As director, the doctor needs to access information about other doctors such
as actual working time and operations performed during the week. In addition
he may be interested in checking performance at the hospital level such as the
average time of surgery for patients and the current stock of healthcare materi-
als. Finally, in case of an emergency the doctor should only access basic patient
information concerning particular diseases affecting the patient.

All the heterogeneous data that are necessary to perform all the doctor activ-
ities are included in a global data source. In a certain context, the doctor only
requires a partition of the global data to perform its current activity. These activ-
ities are performed following a certain schedule, e.g., the doctor issues orders to
healthcare manufacturer after he has discovered that a particular healthcare
material is ending or he performs surgery operations after he performed check-
up visits. Determining a deterministic scheduling for these activities is not pos-
sible since they depend on un-predictable conditions such as patients’ behav-
ior and materials usage. Nevertheless predicting how context changes (along
with required data), may support the reconfiguration process in anticipating
reconfiguration needs and assuring a better stability to data provided to the
device.

2 Basics Models

Our approach supports the reconfiguration of the current subset of data based
on the current and probable future contexts. We support the context-dependent
variability of the conceptual schema following a feature engineering perspective.
We model features as the basic functionalities of the system each correspond-
ing to a certain requirement, a contextual presence condition, and a data excerpt
expressed in terms of a set of entity types belonging to the global conceptual
schema. We exploit a probabilistic task model where each state represents a dif-
ferent task for which a set of features with the corresponding data are required.
Based on the current task we determine the admissible subsets of data and we
apply a multi-objective optimization problem in order to choose the best possible
reconfiguration which optimizes the overall system stability.

2.1 Data, Context and Features

Conceptual Schema. We represent data through a conceptual schema CS
defined as a set of entity types and relationships. We model the variability of
data by means of views, i.e., V ⊆ CS. Our granularity of adaptation is currently
limited to entity types and relationships.

Stability-Aware Database Adaption 307

Context. We define the context as a set of dimensions affecting the interest of
the user towards different portions of data, i.e., user role, task, location, device
characteristics, etc. each of which can assume a finite set of domain values. In
our e-health scenario we defined three context dimensions, i.e., user role (d1 =
{Doctor,Director}), user location (d2={Cardiology,Orthopedy,Outside}) and
activity (d3={Surgery, Check−up,HospitalManagement, IssuingOrders,
StockManagement,Emergency}).

Feature. We represent the context-dependent variability of data based on fea-
tures, each defined as a triple f = (Q,P,E) where Q is a functional, non-
functional or a specific quality requirement (context independent), e.g., fx.Q :
The system manages check-up visits; P is the presence condition, i.e., a con-
textual constraint requirement which expresses the applicability of the feature,
e.g., fx.P : Activity=Check-up AND Role=Doctor, meaning that fx is required
in case of Check-up visits of the doctor, while E is the subset of entity types of
the conceptual schema of interest for the feature, e.g., fx.E : {Patient,Disease,
Therapy,Diagnosis}. Among the features for the e-health scenario, Surgery
Operation supports the operations at the surgery room, BasicInfo manages
basic personal information of the patient, Cardiology and Orthopedy features
provide the support for managing patients belonging to the corresponding depart-
ment, SensitiveInfo manages sensitive patient information such as HIV test
results and genetic screening information, Hospital Dashboard and Doctor
Dashboard features support the direction activity of the doctor by providing
useful information about care processes.

Given a subset T over the complete set of features we derive its correspond-
ing database view VT by creating a consistent excerpt of the global concep-
tual schema. In [11] we have formalized this process which consists of collecting
together the entity types belonging to each feature in T and in adding rela-
tionships types and is-a relationships in order to produce a consistent view of
the conceptual schema. Finally, we define function M(T) to assesses the space
required by the database instance corresponding to view VT .

2.2 Probabilistic Task Model

Given a set of features F , the probabilistic task model is defined as PTM =
(S,L, Z) where S = {S0, ..., St} is the set of states with the required features,
i.e., Si ⊆ F for i = 1, ..., t; L is the set of transition probabilities from one state to
another; Z : S × L → S is the probabilistic transition function. This automaton
can be obtained by mining the past data accesses of the system. Such a mining
process is out of the scope of this paper, which assumes the availability of the
probabilistic task model. We introduce the notion of uncertainty in switching
from one state to another. Following the idea of the PageRank algorithm we
consider a low factor d of moving from one state to another while we consider
with weight 1−d the transition probabilities as obtained by the mining process.
This allows us to partially consider transitions that have never occurred in past

308 M. Mori et al.

Fig. 1. Task model

executions and to have a fully connected automaton where infinite cycles are not
possible (thus making it possible to evaluate a steady-state probability vector).
Figure 1 shows the automaton for the e-health scenario. Among task states,
Hospital Management manages care processes concerning a single doctor and
the whole hospital thus it requires features Doctor Dashboard and Hospital
Dashboard; Surgery Operations task supports the operations and it requires
features Surgery, Basic Info, Sensitive Info, Cardiology and Orthopedy; state
External Visits supports check-up visits of the doctor at the patients home and
it requires features Check-up and Basic Info; Cardiology Visits and Orthopedy
Visits states support check-up visits at the corresponding two hospital depart-
ments. Transition probabilities leaving from a state express the future tasks for
the doctor/director, e.g., after Cardiology Visits he will either perform Orthopedy
Visits or External Visits with equal probability or he will perform Surgery
Operations with an higher probability.

Database Reconfiguration Cost. Reconfigurations to the current database
instance come at some cost which affects the performance of the application.
This cost depends on the operations that have to be performed over the current
database and it can be approximated with the number of operations that have
to be performed over the conceptual schema. To this end, we have implemented
an algorithm that given two subsets of features Fi, Fj ∈ 2F and their corre-
sponding views Vi, Vj , it evaluates C(Fi, Fj) as the number of entity types and
relationships to add and to delete to switch from Vi to Vj .

Stability. Our definition of stability takes into account observed reconfiguration
costs along with the variations of data required at a certain context. Given a
certain path of states of the probabilistic automaton Path = {S0, S1, ..., Sn}

Stability-Aware Database Adaption 309

each containing a set of required features Si ⊆ F for i = 1, ..., n, we define
stability as the ratio between observed database reconfiguration costs (output)
and required database reconfiguration costs (input) (Eq. 1). The component at
the numerator sums the costs for reconfiguring the best configuration Ti at step
i while the denominator sums costs between states of the path.

st =
∑n−1

i=0 C(Ti, Ti+1)
∑n−1

i=0 C(Si, Si+1)
(1)

Sharing Index. The nature of the task model is essential for evaluating the best
approach for improving stability during the reconfiguration process. To this end,
given two subsets of features Fi, Fj ∈ 2F and their corresponding views Vi, Vj ,
we define the data-requirement sharing as the number of their shared elements
DEqual(Fi, Fj) = |Vi∩Vj |. Starting from this metric, we define the sharing index
sh as the average number of shared elements among states of the probabilistic
automaton (Eq. 2). For each state we sum the data-requirement sharing DEqual

with respect to any of the possible next states weighted with the probability
of moving towards any of those. Then we sum these quantities weighted with
the importance of each state according to the steady-state probability vector r.
Finally, we divide this quantity by the maximum number of elements per state
MaxES.

sh =

∑t
i=1 ri · ∑t

j=1 p(i, j) · DEqual(Si, Sj)
MaxES

(2)

Memory Occupancy Index. We also characterize the automaton according to
the percentage of memory required at each state (Eq. 3) as the ratio between the
total space required by the features of each state Si (weighted with its importance
according to vector r) and the space available at the device MaxSpace.

mo =
∑t

i=1 ri · M(Si)
MaxSpace

(3)

Data-Requirement Distance. In our approach we consider how good a cer-
tain configuration is with respect to future states of the task model. To this end,
given two set of features Fi, Fj and their views Vi, Vj , we define their data-
requirement distance DMiss(Fi, Fj) = |Vj − Vi| as the number of elements that
lack to Vj with respect to Vi.

3 Approach to Stability

Upon task variation we have to determine the best possible reconfiguration of
data. In Eq. 4 we formalize this decision-making problem as a minimum opti-
mization problem to assess the most suitable configuration of features among
the ones that fit the memory space limit MaxSpace while providing the set of

310 M. Mori et al.

features required at the current task Scurr. The utility function evaluates the
best T that minimizes two conflicting objectives: its reconfiguration cost with
respect to the current one Tcurr and its distance with respect to probable future
states.

min
T∈2F

α · C(Tcurr, T) + (1 − α) · DFuture(w, T)

subject to M(T) ≤ MaxSpace, Scurr ⊆ T
(4)

To weigh two conflicting objectives we introduce the parameter α = [0, 1]. Set-
ting values closer to 1 we give more importance to the current reconfiguration
cost, while setting values closer to 0 we give more importance to future states.
Based on the values assigned to α and w we compare different approaches to
the decision-making problem. By setting α = 1 we obtain a future un-aware
technique where only the current state and the cost between source and target
configuration are considered. On the contrary, by setting a value of α lower than
1, we obtain a future-aware technique. In this case we exploit w to consider till
one step ahead, till two steps ahead, and so on. We evaluate the fitness of a
configuration with respect to future states by considering a variable number of
steps ahead in the future. If we consider one step ahead (w = 1) we evaluate
the sum of the data-requirement distances between the target configuration and
each next state weighted with the probability of moving from the current state
to each next state:

DFuture(1, T) =
t∑

i=1

p(Scurr, Si) · DMiss(T, Si) (5)

If we consider two steps ahead (w = 2) we augment the previous sum with the
relevance for states that are two steps ahead:

DFuture(2, T) = DFuture(1, T)+
t∑

i=1

t∑

j=1

p(Scurr, Si)·p(Si, Sj)·DMiss(T, Sj) (6)

We have also defined a technique to consider an increasing number of states
by evaluating the fitness of each T as the sum of its distances to each state Si

weighted according to the steady-state probability vector r:

DFuture(fixpoint, T) =
t∑

i=1

ri · DMiss(T, Si) (7)

Example. We suppose that the doctor is at state Orthopedy Visits (Fig. 1) since
he is performing check-up visits at the Orthopedy department of the hospital.
Upon task variation towards Hospital Management we have to reconfigure data
to include features required in the new state, i.e., Doctor Dashboard and Hospital
Dashboard. Since the space for data is limited, we have to discard almost all the
features that are not anymore required at the new state in order to give room
for the data required by the two new features. Among the admissible config-
urations that contain the new two features we choose the one that minimizes

Stability-Aware Database Adaption 311

stability considering current and future context changes. Indeed, by looking at
future tasks we discover that with high probability (0.6) feature Check-up will
be required again by the task External Visits, thus we maintain it by choosing
among the admissible configurations one that contains features Doctor Dash-
board, Hospital Dashboard and Check-up. Thus, we improve stability of data by
keeping a feature that is likely to be required by future tasks.

4 Validation

We have implemented a simulator of the theoretical framework with the aim
of measuring the impact of future-aware and future un-aware approaches on
the stability of the system. We consider as input to the simulator two different
large conceptual schema: OsCommerce conceptual schema which supports the
management of an e-commerce web store1, and Oscar conceptual schema which
supports the management of heterogeneous care processes within a hospital2.
OsCommerce conceptual schema, which contains 330 entity types and 813 rela-
tionships, is available at http://www.info.fundp.ac.be/∼mmo/osCommerce.use
through the UML-based tool USE [6]. Oscar conceptual schema which contains
455 entity types and 267 relationships, is available at http://www.info.fundp.ac.
be/∼mmo/Oscar.lun through the data-modeling tool DB-MAIN3. Starting from
the above schemas we have considered a set of different experiments with the
following characteristics. We have generated 12 features by assigning to each
of them 12 different entity types. Then we have created different automata by
randomly selecting 4 features for each state and a distribution of random proba-
bilities each one between 0.1 and 0.3. For each automaton we have experimented
a set of 100 paths each one with 1000 hops representing variations to the current
task state. For each path we have measured its stability and we have computed
an average stability value among all paths. We have repeated the same experi-
ment with different combinations of values for α and w to compare future-aware
and future un-aware approaches.

We have obtained different stability values based on the nature of the input
automaton, depending on its sharing index sh and its memory occupancy index
mo. Figure 2 shows the stability measure obtained according to six different
automata which are good representative over the set of experiments we car-
ried out. These automata have an average of either 33 % (sh = 0.33) or 45 %
(sh = 0.45) of shared elements between states and either 90 % (mo = 0.90) or
70 % (mo = 0.70) or 40 % (mo = 0.40) of memory required at each state. The sta-
bility curves refer to the future un-aware (α = 1) approach and to future-aware
approaches, i.e., 1−step ahead (w = 1), 2−step ahead (w = 2) and fixpoint. If
the memory required at each single state is almost equal to the memory avail-
able (mo = 0.9), it follows that st is approximately equal to 1 for both future-
aware and future un-aware approaches. In this case, each time a state requires
1 OsCommerce technical guide, http://guifre.lsi.upc.edu/OSCommerce.pdf.
2 Oscar official website, http://www.new.oscarmanual.org/.
3 DB-MAIN official website, http://www.db-main.be.

http://www.info.fundp.ac.be/~mmo/osCommerce.use
http://www.info.fundp.ac.be/~mmo/Oscar.lun
http://www.info.fundp.ac.be/~mmo/Oscar.lun
http://guifre.lsi.upc.edu/OSCommerce.pdf
http://www.new.oscarmanual.org/
http://www.db-main.be

312 M. Mori et al.

Sharing index sh = 33 Sharing index sh = 45

Fig. 2. Stability of future un-aware and future-aware (w = 1, w = 2, w = fixpoint)
techniques depending on utility objective weights α with 33 % and 45 % of sharing and
90 %, 70 % and 40 % of memory occupancy.

database elements that were not required at the previous state it is necessary
to perform the corresponding operations to change the schema. This behavior
holds independently to the percentage of shared elements among states. If the
memory occupancy among states is equal to 70 % (mo = 0.7), we obtain different
results depending on the sharing index. First, with sh = 33 the best stability
is obtained by applying the future un-aware technique; in particular, while after
α ≥ 0.6 we have similar stability values, with α ≤ 0.6 future-aware approaches
produce higher values for st, meaning that on average given the same paths of
task variations, they required higher database reconfiguration costs. This occurs
because the gain of loading features that will be required in future states is
less than the gain obtained by choosing the less costly reconfiguration. Second,
results gained with sh = 45 show that future-aware approaches produce better
stability than future un-aware ones; in particular with α ≥ 0.6 already look-
ing one-step ahead we get on average the lowest database reconfiguration costs
given the same paths of task variations. Finally, the stability curves with 40 %
of memory occupancy (mo = 0.4) show that there is space for keeping a big
set of features which is enough to satisfy almost each future task. Even though
future un-aware approaches will load this set of features gradually (as needed),
while future-aware approaches load them in advance (before they are needed),
both approaches produce a stability close to 0 meaning that on average almost
no reconfigurations to the schema are performed.

As we observed in the three different cases of memory occupancy, we claim
that if the required memory at each different state is too near (mo = 0.9) or too
far (mo = 0.4) from the total capacity, it is not convenient to apply a future-
aware approach because the same level of stability can be already obtained with
a simple future un-aware approach. In both cases, the level of sharing elements
of the automata does not affect the level of stability. Conversely, if the memory
required at each state is far from both the maximum and the minimum capacity
(e.g., mo = 0.7) it may be convenient to adopt a future-aware approach. In
particular, we observed that adopting future-aware techniques is convenient if
states share a high number of elements, as it can be evaluated with our sh

Stability-Aware Database Adaption 313

index. Furthermore, these approaches are particularly suitable in case of unstable
contexts with frequent and intensive variations from one task to another.

5 Related Work

Task based models are receiving an increasing attention in supporting the adap-
tivity of systems with the aim of providing better performance to the reconfigu-
ration process [18]. Task models are not fixed during the whole lifecycle process
but they may change as a consequence of context variations [16] or user prefer-
ences variations [10,19]. Different approaches provide adaptivity to data based
on context or user preferences variations. In [2] the authors propose a methodol-
ogy to extract and to merge portions of the relational and logical schema based
on a hierarchical context model. In [5] the authors propose an approach to select
the most suitable portion of the relational database based on context-dependent
user preferences. In [20] the authors define a filtering technique for extracting the
excerpt of the conceptual schema based on a set of entity types that are required
in a certain context. All these approaches to database adaptivity [2,5,20] provide
the subset of the database based on a certain input context. Nevertheless contin-
uous reconfigurations of the database are not supported, i.e., a certain excerpt of
the database is produced based on context and kept for all the system lifetime.
Applications for ubiquitous environment need continuous self-adaptations while
taking into account device capacity limits and multi-objective criteria (costs
and performance) in choosing the best possible reconfiguration [15]. Moreover,
in order to achieve reconfigurations of data resilient to changes it is important
to consider future context variations. This problem has been addressed in the
literature of self-adaptive systems, e.g., in [4] predictive availability of context
resources are exploited to achieve system adaptations, while in [13] adaptations
are achieved based on a probabilistic user preferences model. Differently from
these approaches, we provide adaptivity to data and we achieve reconfigura-
tions of the current database that are resilient to future probable changes of
information requirements as annotated in a predictive task model.

6 Conclusion and Future Work

We presented a framework to support continuous reconfigurations of data-
intensive systems in resource-constraint environments. We formalized a decision-
making problem to select the best possible reconfiguration of data according to
a predictive task model expressing future probable variations of data accesses.
Results showed that it makes sense to consider a predictive task model for
improving stability of the reconfiguration process and they showed under which
conditions of the task model it is convenient to adopt either a future-aware or
a future un-aware approach. As for future work, we will implement the recon-
figuration process by adopting the DB-MAIN tool for creating sub-schemas of
the global schema and a relational DBMS for propagating these variations to
actual data. We will adopt higher level of granularity for adapting the schema

314 M. Mori et al.

by considering variations of attributes beyond concepts and relationships. Fur-
thermore, we will introduce further variability dimensions to the reconfiguration
process such as the addition of un-anticipated features with data, the addition
of new states and the variation to the probabilities of the task model.

Acknowledgment. This work has been partially supported by first author’s FSR
Incoming Post-doctoral Fellowship of the Académie universitaire ‘Louvain’, co-funded
by the Marie Curie Actions of the European Commission.

References

1. Bolchini, C., Curino, C., Orsi, G., Quintarelli, E., Rossato, R., Schreiber, F.A.,
Tanca, L.: And what can context do for data? ACM 52(11), 136–140 (2009)

2. Bolchini, C., Quintarelli, E., Tanca, L.: Carve: context-aware automatic view def-
inition over relational databases. IS 38(1), 45–67 (2012)

3. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.): SEFSAS
2009. LNCS, vol. 5525. Springer, Heidelberg (2009)

4. Cheng, S.-W., Poladian, V.V., Garlan, D., Schmerl, B.: Improving architecture-
based self-adaptation through resource prediction. In: Cheng, B.H.C., de Lemos,
R., Giese, H., Inverardi, P., Magee, J. (eds.) SEFSAS 2009. LNCS, vol. 5525, pp.
71–88. Springer, Heidelberg (2009)

5. Ciaccia, P., Torlone, R.: Modeling the propagation of user preferences. In: Jeusfeld,
M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 304–317.
Springer, Heidelberg (2011)

6. Gogolla, M., Büttner, F., Richters, M.: Use: a UML-based specification environ-
ment for validating UML and OCL. SCP 69(1–3), 27–34 (2007)

7. Inverardi, P., Mori, M.: A software lifecycle process to support consistent evolu-
tions. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Self-Adaptive
Systems. LNCS, vol. 7475, pp. 239–264. Springer, Heidelberg (2013)

8. Karsai, G., Lédeczi, A., Sztipanovits, J., Péceli, G., Simon, G., Kovácsházy, T.:
An approach to self-adaptive software based on supervisory control. In: Laddaga,
R., Shrobe, H.E., Robertson, P. (eds.) IWSAS 2001. LNCS, vol. 2614, pp. 24–38.
Springer, Heidelberg (2003)

9. Martinenghi, D., Torlone, R.: A logical approach to context-aware databases. In:
D’Atri, A., De Marco, M., Braccini, A.M., Cabiddu, F. (eds.) Management of the
Interconnected World, pp. 211–219. Physica-Verlag HD, Heidelberg (2010)

10. Miele, A., Quintarelli, E., Tanca, L.: A methodology for preference-based person-
alization of contextual data. In: EDBT, pp. 287–298 (2009)

11. Mori, M., Cleve, A.: Feature-based adaptation of database schemas. In: Machado,
R.J., Maciel, R.S.P., Rubin, J., Botterweck, G. (eds.) MOMPES 2012. LNCS, vol.
7706, pp. 85–105. Springer, Heidelberg (2013)

12. Mori, M., Cleve, A.: Towards highly adaptive data-intensive systems: a research
agenda. In: Franch, X., Soffer, P. (eds.) CAiSE 2013 Workshops. LNBIP, vol. 148,
pp. 386–401. Springer, Heidelberg (2013)

13. Mori, M., Li, F., Dorn, C., Inverardi, P., Dustdar, S.: Leveraging state-based user
preferences in context-aware reconfigurations for self-adaptive systems. In: Barthe,
G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 286–301.
Springer, Heidelberg (2011)

Stability-Aware Database Adaption 315

14. Nzekwa, R., Rouvoy, R., Seinturier, L.: A flexible context stabilization approach
for self-adaptive application. In: PerCom, pp. 7–12 (2010)

15. Parra, C., Romero, D., Mosser, S., Rouvoy, R., Duchien, L., Seinturier, L.:
Using constraint-based optimization and variability to support continuous self-
adaptation. In: SAC, pp. 486–491 (2012)

16. Quintarelli, E., Rabosio, E., Tanca, L.: Context schema evolution in context-aware
data management. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011.
LNCS, vol. 6998, pp. 290–303. Springer, Heidelberg (2011)

17. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research chal-
lenges. TAAS 4(2), 1–42 (2009)

18. Sousa, J.P., Poladian, V., Garlan, D., Schmerl, B., Shaw, M.: Task-based adapta-
tion for ubiquitous computing. Trans. Sys. Man Cyber (C) 36(3), 328–340 (2006)

19. Sykes, D., Heaven, W., Magee, J., Kramer, J.: Exploiting non-functional prefer-
ences in architectural adaptation for self-managed systems. In: SAC, pp. 431–438
(2010)

20. Villegas, A., Olivé, A.: A method for filtering large conceptual schemas. In: Parsons,
J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp.
247–260. Springer, Heidelberg (2010)

	A Stability-Aware Approach to Continuous Self-adaptation of Data-Intensive Systems
	1 Introduction
	2 Basics Models
	2.1 Data, Context and Features
	2.2 Probabilistic Task Model

	3 Approach to Stability
	4 Validation
	5 Related Work
	6 Conclusion and Future Work
	References

