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Abstract. Context awareness is a computing paradigm that makes
applications responsive and adaptive with their environment. Formal
modeling and verification of context-aware systems are challenging issues
in the development as they are complex and uncertain. In this paper, we
propose an approach to use a formal method Event-B to model and ver-
ify such systems. First, we specify a context aware system’s components
such as context data entities, context rules, context relations by Event-
B notions. In the next step, we use the Rodin platform to verify the
system’s desired properties such as safety properties. It aims to benefit
from natural representation of context awareness concepts in Event-B
and proof obligations generated by refinement mechanism to ensure the
correctness of systems. We illustrate the use of our approach on a simple
example.
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1 Introduction

Context-aware systems potentially determine their behaviors and reduces
human-computer interaction by providing knowledge context information of
their user’s environment. Context awareness of an application relates to adapta-
tion, responsiveness, sensitiveness of the application to changes of the context [3].
Since the behaviors of such systems are often complex and uncertain. That could
be unacceptable especially when context-aware systems are implemented as
safety-critical systems. The results up to date have worked on modeling con-
text awareness with various approaches such as object role modeling, ontology
based modeling, logic based modeling [3,14]. They also have proposed several
frameworks for context modeling. However, to the best of our knowledge, there
does not exist an approach that models context awareness in several aspects
such as events of environments, context rules and uncertainty. Furthermore, the
resulted model can be formally verified to ensure the correctness of the system.

Formal methods are techniques used for modeling and verifying systems.
These techniques prove the correctness of the system mathematically. The B
method [1] is a formal software development method, originally created by
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J.-R. Abrial. The B notations are based on the set theory, generalized sub-
stitutions and the first order logic. Event-B [2] is an evolution of the B method
that is more suitable for developing large reactive and distributed systems. Soft-
ware development in Event-B begins by abstractly specifying the requirements
of the whole system and then refining them through several steps to reach a
description of the system in such a detail that can be translated into code. The
consistency of each model and the relationship between an abstract model and
its refinements are obtained by formal proofs. Support tools have been provided
for Event-B specification and proof in the Rodin platform.

In this paper, we propose to use Event-B as a formal method to model and
verify context-aware systems. A context-aware system is somehow considered as
a reactive system, i.e. it receives events emitted by context changes and responses
to these changes with the providing context knowledge. For this reason, Event-B
is a well-suite method for modeling such systems in comparison to others for-
mal methods. The contributions of our proposal are: (1) Natural representation
of context-aware systems by Event-B concepts. Context awareness components
are then defined formally. The modeling process is also such practical that we
can implement a tool which automatically model from the context awareness
specification (2) After formalization, significant properties are verified via proof
obligations of refinement mechanism automatically (or interactively) without
any intermediate transformation.

The rest of the paper is structured as follows: Sect.2 provides some back-
ground of Context awareness and Event-B. In Sect. 3, we introduce an approach
to model a context-aware system by formalizing its components using Event-B
notations. Section 4 presents a scenario of an Adaptive Cruise Control system in
order to demonstrate our approach. Section 5 summarizes some related works.
We conclude and provide future works in Sect. 6.

2 Backgrounds

As we use Event-B notation to formalize context-aware systems, in this section,
we introduce briefly some background of Event-B and context awareness.

2.1 Event-B

Event-B is a formal method for system-level modeling and analysis. Key features
of Event-B are the use of set theory as a modeling notation, the use of refinement
to represent systems at different abstraction levels and the use of mathematical
proof to verify consistency between refinement levels [2]. An Event B model
encodes a state transition system where the variables represent the state and
the events represent the transitions from one state to another. A basic structure
of an Event-B model consists of a MACHINE and a CONTEXT.

A machine is defined by a set of clauses which is able to refine another
machine. We briefly introduce main concepts in Event-B machine as follows:
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VARIABLES represent the state variables of the model of the specification.

INVARIANTS described by first order logic expressions, the properties of the
attributes defined in the VARIABLES clause. Typing information, functional
and safety properties are described in this clause. These properties are true
in the whole model. Invariants need to be preserved by events clauses.

EVENTS define all the events that occur in a given model. Each event is charac-
terized by its guard (i.e. a first order logic expression involving variables). An
event is fired when its guard evaluates to true. If several guards evaluate to
true, only one is fired with a non deterministic choice. The events occurring

in an Event B model affect the state described in VARIABLES clause.

An Event B model may refer to a CONTEXT describing a static part where
all the relevant properties and hypotheses are defined. A CONTEXT consists of
the following items:

SETS describe a set of abstract and enumerated types.

CONSTANTS represent the constants used by the model.

AXIOMS describe with first order logic expressions, the properties of the
attributes defined in the CONSTANTS clause. Types and constraints are
described in this clause.

2.2 Context-Aware Systems

The term “context-aware” was first introduced by Bill Schilit, he defined contexts
as location, identities of objects and changes of those objects to applications that
then adapt themselves to the context [12]. Many works have been focused on
defining terms of context awareness. Context-aware systems can be constructed
in various methods which depend on requirements and conditions of sensors,
the amount of users, the resource available on the devices. A context model
defines and stores context data in a form that machines can process. Baldauf
et al. [3] summarized several most relevant context modeling approaches such as
key-value, markup scheme, graphical object oriented, logic based and ontology
based models.

In this paper, we consider the environment in which a system is operating
as contexts. Therefore, there are many kinds of contexts such as position, accel-
eration of the vehicle and/or temperature, weather, humidity, etc. The system
uses sensors to capture the contexts data. Processing of the system is context-
dependent, i.e. it react to the context changes (for example: if the temperature is
decreased, then the system starts heating). The system’s behaviors must comply
with the context constraints properties (for instance: the system does not start
heating, even though the operator executes heating function when the temper-
ature is vey high).

3 Formalizing Context Awareness

In this section, we consider a simplified context-aware system and represent its
components in set theory. Base upon these definitions, we then use Event-B
notations to formalize a context-aware system.
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Fig. 1. A simple context-aware system

3.1 Set Representation of Context Awareness

Firstly, we introduce a simple structure of context-aware systems consisting of
five components depicted in Fig.1. A basic operation of the system is that if
there is any change from the environment, it sends events to core context-aware
service. This component then uses both context data entities and context rules
to reason about the situation. Finally, it reacts to environment via its behaviors.
During that process, the system still has to fulfill the constraints.

Definition 1 (Context-aware system). A context-aware system is denoted
by a 4-tuple, CaS = (E,R,CD,CC) where E and R represent for the environ-
ment events and context rules respectively, CD denotes context data entities and
its relations and CC' states the system’s constraints.

We go further for definitions of context rules and context entities. Let us
assume that rules of context-awareness are in the form of ECA (event-condition-
action), i.e. if an an event e occurs in condition C' then do action A. Hence, we
present definitions for each element r,r € R as follows:

Definition 2 (Context rules). A rule is defined by 3-tuple r = (e, a, c), where
e,c are event and condition of the rule respectively, while a states the action of
the rule.

Context data consists of context entities and their relations. This component
takes a role as a data storage of the system.

Definition 3 (Context data). Context data is denoted by a 2-tuple CD =
(E,R), where E is a set of context entities and R is a set of functions mapping
between sets of context entities.

Definition 4 (Environments). Environment is a set of events stated by a set:
E = {e}, where e is an event that is sent to context aware core service.
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3.2 Modeling Context-Aware System

Event-B is based on classical set theory, we thus use it to model context-aware
systems according to definitions given in Subsect. 3.1. We present transformation
rules between a context-aware system and an Event-B model as follows:

— Rule 1: Recall that, we represent context data by either sets or set’s elements.
Hence, we formalize it as sets or constants of an Event-B Context.

— Rule 2: Each rule » = (e,a,c) is mapping to an Event-B event, since its
structure is similar to ECA format. More specifically, conjunction of e and ¢
are guards of Event-B event while a is modeled in the body of the event (see
Table 1). All these events are included in either Event-B abstract machines or
a refined ones.

— Rule 3: Each event that is triggered by environment is represented by an
Event-B event. Example: A context-aware system includes a sensor for detect-
ing Wind speed is high or low, it is then formalized by two events: detect-
StrongWind and detect WeakWind. Two events of this sensor are included in
one Event-B machine.

— Rule 4: A constraint of the context-aware system is a desired property that the
system should maintain. That standpoint matches to the meaning of Event-B
invariants, we thus model Context constraints by a set of invariants.

We summarize transformation rules used for modeling in Table 2.

3.3 Incremental Modeling Using Refinement

In fact, the development of context-aware systems often starts from the scratch
requirements, then it is built gradually when we have new requirements about
context entities and reasoning. Therefore, it requires to have a suitable model-
ing method for incremental development. As we have described in Subsect. 3.2,

Table 1. Modeling a context rule by an Event-B event

IF (e)
ON (¢) WHEN (e Ac¢)
ACTION (a)  THEN (a) END

Table 2. Transformation between context-aware systems and Event-B notations.

Context-aware concepts  Event-B notations
Rule 1 Context data CD Sets, constants
Rule 2 Context rules r = (e,c,a) Events
Rule 3 Environments triggers £ Events
Rule 4 Context constraints CC'  Invariants
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a context-aware system is transformed to abstract Event-B. It is apparently suit-
able for modeling initial context-aware systems. In this subsection, we answer
the question how our approach fits to incremental development of such systems.

The refinement mechanism of Event-B makes it possible to model context-
aware systems incrementally. We begin with abstract machines to model the
very beginning system, after that we refine these machines by concrete ones to
represent new requirements of the systems. It is proved through Event-B proof
obligations that concrete machines are checked with invariants of abstract ones.
According to Rule 4 in Subsect. 3.2, all constraints are represented by Invariants,
therefore a new constructed context-aware system at any refined step preserves
all constraints of the initial step.

4 An Example: Adaptive Cruise Control System

We demonstrate our approach by modeling a scenario of an Adaptive Cruise
Control (ACC) system. First, we introduce the scenario, then we apply modeling
method presented in Subsect. 3.2 and finally we check the significant properties.

4.1 Scenario Description

ACC controls car’s speed is based on the driving conditions which are enhanced
with context-aware features such as weather conditions, close target conditions,
road conditions. The constructed ACC system has three sensors for detecting
weather conditions, road conditions and close target. When a car travels in a
raining condition or sharp bend, ACC reduces car’s speed. If there is no rain or
the road is not shape, then ACC resumes the preset speed. When a car detects a
target close, ACC reduces car’s speed to target’s speed. If no target is detected,
then it resumes the initial speed.

The ACC must conform to a safety property that is if driver applies the
brake, then ACC stops the car in whatever condition. Immediately when the
driver releases the brake, ACC resumes the initial speed.

4.2 Modeling ACC Scenario

In this scenario, there are three sensors, following the approach presented in
Sect. 3, we specify the initial system with one abstract machine and three con-
crete machines corresponding to the car and three sensors respectively (depicted
in Fig. 2).

Two events DetectBreak and DetectNoBreak are modeled by two events
of the abstract machine. In Fig. 3, we formalize the context input sensor detecting
weather by a concrete machine which has two events DetectRain and Detect-
NoRain. These two events represent two context rules of raining conditions.
Modeling context reasoning with road and target sensors are similar.

We finally specify the desired properties of the system such as safety, live-
ness by Event-B invariants clauses. ACC system should comply the context con-
straints, for example: if the weather is rain, then car’s speed is slower than the
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‘ Car_AbstractMachine ‘

refines . refines
refines
‘ Road_Machine ‘ Target_Machine

Fig. 2. ACC Event-B model overview

‘ Weather_Machine

MACHINE
Car_AbstractMachine
MACHINE VARIABLES
Weather_Machine isBreak
VARIABLES speed
speed INVARIANTS
isRain invl: speed € N
INVARIANTS . )
invl: isRain = FALSE V speed < initSpeed inv2:isBreak € BOOL
inv2:isRain € BOOL inv3: isBreak = FALSE V speed = ()
EVENTS EVENTS
DetectRain DetectBreak
When refines When
grdl: speed >= initSpeed grd 1: isBreak = TRUE
grd2: isRain = TRUE Then
Then speed =0
speed = speed — 10 End
End
DetectNoRain DetectNoBreak
When When
grd 1: isRain = FALSE grd 1: isBreak = FALSE
grd 2: speed < initSpeed grd 2: speed =0
Then Then
speed = initSpeed speed = initSpeed
End End
END END

Fig. 3. Part of ACC system modeled by Event-B

initial one (stated in Fig.3 by invl of Weather-Machine: isRain = FALSE Vv
speed < initSpeed). Road and Target context constraints are modeled similarly.
Moreover, the system also fulfills a safety property that is if the break is applied,
then the speed is zero. This property is specified by the invariant clause inv3:
isBreak = FALSE V speed = 0.

4.3 Verifying the System’s Properties

After modeling, we are able to verify the system safety properties with the Rodin
tool. All desired properties are described as four invariants clauses of abstract
and refined machines. The Rodin tool generates proof obligations (PO) for these
invariants that are proved to be preserved through events for both refined and
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Fig. 4. Verification of safety property in Rodin

abstract machines. For instance: the generated proof obligations of the safety
property (formalized by inv3 of the abstract machine Car_AbstractMachine) are
“DetectBreak/inv3/INV” and “DetectNoBreak/inv8/INV”. The former is the
invariant preservation PO of event DetectBreak, while the later is the one of
event DetectNoBreak. The POs are presented in detail as follows:

“DetectNoBreak/inv3/INV”: isBreak = FALSE A speed = 50 \- isBreak =
FALSE V speed = 0.

“DetectBreak/inv3/INV”: isBreak = TRUFE A speed = 0 & isBreak =
FALSE V speed = 0.

These POs are proved trivially and done automatically with the Rodin tool
as illustrated in Fig. 4.

5 Related Work

Many papers have been proposed for modeling and verifying context-aware sys-
tems with various approaches. Most research efforts that are based on markup
scheme model have defined and extended markup languages. Henricksen et al.
[7] proposed to represent contextual data by Comprehensive Structure Context
Profiles (CSCP). Indulska et al. [8] extended CC/CP model to define a set of
CC/PP components and attributes to express a various types of context infor-
mation and context relationships.
Some researchers followed the graphical model approach to model contextual
data. Mostefaoui [11] presented a three-layered data model for context. Benselim
and Hassina [4] recently presented an UML extension for representing and mod-
eling context by creating some stereotypes that are described by several tagged
values and some constraints.

Almost all ontology-based approaches have used high-level ontologies to for-
malize context information and models. Shehzad et al. [13] introduced a formal
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modeling method in context aware systems using OWL. Ejigu et al. [6] also
proposed ontology based reusable context model that providing structure for
contexts, rules and their semantics. The problem with these two pieces of work
is that there was no verification mechanism presented.

More recently, Tran et al. [15] introduced a ROAD4Context framework which
is based on Role-Oriented Adaptive Design (ROAD) [5] to model context-aware
systems. However, in order to verify the system, it takes more intermediate steps
to translate a ROAD4Context model to a Petri net model and then use SPIN
to check the system’s behaviors. Furthermore, the transformation rules are not
presented generally.

6 Conclusions and Future Work

The use of context-awareness plays an important role in reactive and inter-
active systems. Context aware computing is applied in many fields such as
mobile, embedded systems, etc.. Modeling and verifying context-aware systems
are difficult tasks due to their complex behaviors. In this paper, we introduce a
proof-based approach to model and verify such systems. The advantages of our
approach are natural representation of context-aware concepts to model and the
use of invariant preservation proof obligations generated by refinement mecha-
nism in Event-B to verify the correctness of the system. However, in this paper,
we just consider a simple case of context awareness. Limitation of data types in
Event-B method is also a weak point when modeling complex context data.

Our future research will concentrate on elaborating the modeling systems
with various kinds of context data. We are working on extending this approach
with modeling uncertainty in context-awareness. Developing a tool that allows
to translate context-aware systems to Event-B model automatically is also one
of our future aims.
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