Rule-Based Techniques Using Abstract Syntax
Tree for Code Optimization and Secure
Programming in Java

Nguyen Hung-Cuong®™), Huynh Quyet-Thang, and Tru Ba-Vuong

Department of Software Engineering, School of Information and Communication
Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
{cuongnh86, trubavuong}@gmail.com, thanghq@soict.hust.edu.vn

Abstract. Although the quality of computer software consists of many
different aspects, the security and the optimization are by far the most
important metrics for estimating quality of software systems. The secu-
rity ensures that application will work correctly and the optimization
reduces the amount of resources needed: computation, memory, size of
code, etc. Those techniques can be done by applying rules in abstract
syntax tree, a tree representation of the abstract syntactic structure of
source code. However, the process to optimize code often makes negative
effect to the security of program. This work studies about applying rules
in abstract syntax tree in Java and its effect on code optimization and
secure programming problems.

Keywords: Abstract syntax tree - Code optimization - Secure
programming

1 Introduction and Motivation

Nowadays, computer science appears in every aspects of our life, from house to
office, from industry to entertainment. One of the most important requirements
when building a computer software is the reliability of system: the high-reliability
system ensures that work of users will be done accurately, in different contexts
and different environments. Authors use dissimilar approaches to introduce new
techniques to improve the security of software and those techniques are used
widely: in C/C++ [1], in UNIX [2], in Java [3,4], etc. However, the increasing
of complexity system makes more many challenges that have to be overcome.
The development of software technology makes more and more compound sys-
tem, so arise demand that application should be optimized. Optimization is the
progress of transforming software source code to make more efficient without chang-
ing its works. In more specific, code optimization is a machine-independent opti-
mizations that can be done in source code of project or corresponding diagram to
reduces the amount of resources needed: computation, memory, size of code, etc.
on many fields of computer science: compiler [5], pipeline constraints [6], embedded

P.C. Vinh et al. (Eds.): ICCASA 2013, LNICST 128, pp. 168-177, 2014.
DOI: 10.1007/978-3-319-05939-6_17, (© Springer International Publishing Switzerland 2014

Rule-Based Techniques Using Abstract Syntax Tree 169

processors [7], etc. Many optimization problems are NP-complete and thus most
optimization algorithms depend on heuristics and approximations techniques.

Normally, not good optimization technique makes some negative effects to
the quality of software: developer can not control the corresponding changing
between modules before and after transforming. In addition, any technique have
their own application in specific context: one technique is good for this context
but can make uncontrolled problems in another one. This work is going to study
about the secure programming and code optimization techniques that apply
rules in abstract syntax tree in Java. So give results that in this technique, code
optimization process does not reduce the reliability of system.

As a important attribute of software quality, software reliability is influenced
strongly by software lifecycle [8]. In the software lifecycle of a commercial appli-
cations, 50 % of errors introduced and errors detected are in coding phase, so
secure programming and code optimization techniques can affect significantly to
the reliability of system.

In this study, we show result about the mutuality between secure programming
and code optimization in Java when applying rules in abstract syntax tree. This
paper is organised as follow: after this introduction section, Sect. 2 explains defini-
tion of abstract syntax tree and some regular problems of secure programming and
code optimization. Note that those problems are in common programming lan-
guage, not with any specific one. Next, Sect. 3 introduces rules and how to apply
rules in abstract syntax tree. Section 4 shows some experimental results, includ-
ing running environment, application design and running results. Then Sect.5
discusses some related and future problem to extend current work.

2 Basic Techniques of Java-Application Development

As mentioned earlier, in this paper we study how to improve the quality of
system. This section introduces two problems of software development: code
optimization and secure programming.

2.1 Code Optimization

When size of system is raised rapidly, researchers focus on optimizing the source
code to save the resource needed. Aho consider [5] code optimization as a sub
problem of compiler technique. Some regular techniques in code optimization
will be discussed following.

1. Use length property when check emptiness of string. For example, replace

public boolean isEmpty(String str){
return str.equals("");}

by

public boolean isEmpty(String str{
return str.length()==0;}

170 N. Hung-Cuong et al.

2. Do not use constructor of class Integer:

public void fubar(){
Integer i = new Integer(3);}

by

public void fubar(){
Integer i = Integer.valueOf(3);}

Today, several compiler can optimize source code in some specific context and
it is called compile level. Notwithstanding, code optimization should be done by
programmer because it is to complex to be executed automatically. And main
trade off when optimize manually is the working-cost.

2.2 Secure Programming

Secure programming relates with fault problems: detection, tolerance, back up,
etc. Target of developer is building a secure system, in this work of users will
be done correctly. However, it is a difficult challenges to overcome in current
state of science and technology. Some regular secure problems will be discussed
following.

1. Variables are set private

class Person{
String name;
int age;?}

by

class Person{
private String name;
private int age;}

2. Let object uncloneable

class Person{
/*do not use clone()*/}

by

class Person{
public final void clone()
throws java.lang.CloneNotSupportedException{
throw new java.lang.CloneNotSupportedException();}}

Many research show that most faults are made when some programming mistakes
are mined, so developer need to be trained about those attacks.

Rule-Based Techniques Using Abstract Syntax Tree 171

2.3 Abstract Syntax Tree

Abstract syntax tree (AST), or just simply syntax tree, is a tree representation
of the abstract syntactic structure of source code written in a programming
language: each node of the tree denotes a construct occurring in the source
code. Aho et al [5] introduce some syntax trees of basic elements as follow:
each construct is represented by a node that children of it emblem the semantic
meaningful components of this construct.

1.

Represent blocks by AST: consider block as a single statement, AST of blocks

is simply the syntax tree for the set of order statements. Then replace symbolic

node in this super-AST that represent a block by corresponding sub-AST), so

that link of super-AST points to root of sub-AST.

An AST for a statement. Operator of statement need to be defined for con-

struction of its AST: operator of a constructs that begin with a keyword is

this keyword.

— An operator while for while-statements.

— An operator do for do-while-statements.

— Conditionals can be handled by defining two operators ifelse and if for
if-statements with and without an else part, respectively.

An AST for an expression: an interior node represents an operator and cor-

responding operands are symbolized by children of it.

An example of AST for Euclid function:

int Euclid{
while b =0

if a>b
a>b
a :=a - b;
else
b :=b - a;

return a;}

is given in Fig. 1.

3 Rules and Applying in Abstract Syntax Tree

Rules are principles that modify source code to improve quality of work. They
have experimental meaning and are got from practician in computer science.
They contain some important information: description; “how, why and where”
to apply; etc. They have to be applied on given elements in specific context, so
deploying rule in real development requires combining with AST-transformation
of source code.

172 N. Hung-Cuong et al.

Statement
sequence

[while] [return]

=S

['=] [branch]

[>] [assign] [assign]
/N /N
Lallb | Ial% &l%

la] [b] [b] [a]

Fig. 1. Abstract syntax tree of Euclide function

3.1 Building Rules

From secure programming and code optimization problems that are discussed
before, developer should synthesis a set of rules to using after. However, those
techniques are used for general context and developer have to focus on techniques
that adapt with Java. Furthermore, he need refer rules from secure source: from
framework manufacturer, experiment developer, expert, etc... In this study, Java
is a programming framework that is discussed, and then we focus on resources
from Oracle, Google or AppPerfect. When apply rules in abstract syntax tree in
Java to resolve secure programming and code optimization problems, developer
should store them to reuse or gain experience to future work. In addition, pro-
grammer should save all information about rules that help user to lookup when
needed.

3.2 Using Rules to Detect Potential Elements in Source Code

As discussed before, each rule impact to different elements of source code, and
those elements are result of transform process to get AST from source code. So
following 4-step strategy is used to detect potential elements:

Step 1. Transform every source code files in Java project into abstract syntax
tree.

Step 2. Divide elements of each abstract syntax tree into groups, base on prop-
erty of element: method calling, variable declaration, etc..

Rule-Based Techniques Using Abstract Syntax Tree 173

Step 3. Apply each rule to elements that are consistent: if a element is invalid
with any rule, it is a potential element.

Step 4. List every potential elements and collect information that relates with
each potential element. This list is supplied to developer.

Because size of set of rule is unpredicted and the application of rule on specific
context is depend on semantic meaning of program, then potential elements
should be listed and provided to programmer to decide apply or not.

3.3 Using Rules to Modify Source Code

After detecting potential elements, the next part is modifying source code so
that rules are not violated. Developer has to decide what and how to transform
by following scenario:

Step 1. Select one potential element that violates rules and all of its information.
Step 2. Check its violation again. If it is still invalid, there are two cases:
— If this rule does not depend on program semantically, source code is
changed automatically.
— If this rule depends on program semantically, plug-in suggest devel-
oper all information to decide modify source code or not.
Step 3. Modify source code.

4 Experimental Results

4.1 Environment Descriptions

System computing performance depends on CPU Intel(R) Core(TM) i5 M520
2.40 GHz with memory RAM 4 GB. Operating system is Windows 7 Professional
64-bit and IDE is Java 6, 32-bit.

Our result is appreciated by using Java VisualVM, a tool that provides a
visual interface for viewing detailed information about Java applications while
they are running on a Java Virtual Machine.

Application is a Eclipse plug-in and developed by Plug-in Development Envi-
ronment that supplied by Eclipse. It bases on Eclipse Juno (4.2) SR2, package
“Eclipse for RCP and RAP Developers”. Plug-in uses three tools of Eclipse
Platform:

1. PDE (Plug-in Development Environment): providing tools to create, develop,
test, debug, build and deploy Eclipse plug-ins, fragments, features, update
sites and RCP products.

2. JDT (Java Development Tools): providing the tool plug-ins that implement
a Java IDE supporting the development of any Java application, includ-
ing Eclipse plug-ins. It allows to access, create and modify Java projects
in Eclipse.

3. Eclipse Refactoring API (ERAPI): is a part of Language Toolkit (LTK) of
Eclipse and is installed in two plug-ins: “org.eclipse.ltk.core.refactoring” and
“org.eclipse.ltk.ui.refactoring”.

174 N. Hung-Cuong et al.

4.2 Eclipse Plug-In Tool Descriptions
Product of our project is a Eclipse plug-in tool that:

+ Improve quality of application.
+ Make good programming behaviours.

Functions of tool:

1. Searching and analysing potential elements that can be impacted by code
optimization and secure programming techniques.

2. Supporting method to modify those elements by showing supported informa-
tion and recommending suggestions.

Data flow chart of plug-in is in Fig. 2. Our plug-in contain five modules:

1. Configuration Loader: this module saves and loads all information of rules in
XML file. This configuration has to be loaded firstly and store through begin
to end of session of Eclipse.

2. Preprocessor: transform every file in Java source code into abstract syntax
tree and divide into groups.

3. Analyzer is one of the most important of system. It is used to detect potential
elements in AST and store information of rules, including name, identity, type,
priority, etc...

4. Display Problem Unit: show information about potential elements.

5. Refactoring Unit: tool that support to optimize source code.

4.3 Experimental Results

Result is got after comparing performance of system before and after using
code optimization and secure programming techniques. Table 1 shows that run-
ning time of methods decrease clearly when applying code optimization and
secure programming techniques. The largest slowdown is seen on method
getTopicDetailsTask() with 33.53 % and this improvement shows that qual-
ity of source code is improved markedly.

Note. BKProfile is a intelligent web service that support to communication
between lecturers, company, student and ex-student through personal profile.
It is built in the form of question-answer system: users share their knowledge
through making question or answering of another.

Second evaluation of this study is about system resource usage: memory and
CPU. Those appreciations are got from running main functions of BKProfile
system. Figures3 and 4 show comparison of system resource using before and
after optimization. Figures 3 indicates that after apply optimization techniques
will decreasing CPU usage, both of maximum using and average. Figures4 dis-
play statistical heap-using. Heap stores every objects that are created by Java
in running time and is evaluated by two measures: heap-size and used-heap. In
Fig. 4, we can see that there are two improvements of using memory:

Rule-Based Techniques Using Abstract Syntax Tree

. . Configuration
Java Project List | Loader
project
information rule-related
configuration
\
Preprocessor | Rule Configuration
rule
collected configuration
elements
T = = =TT
Analyzer
elements to be
checked
Rule Condition
Rule Analyzer f oo Checker
result
detail
element
. problerp to be result
information checked
Problem List Jetail
simple problem
problem information
information H
Y
Display Problem Refactoring
Unit Unit

Fig. 2. Data flow chart of Eclipse plug-in tool

Table 1. Running time of methods

175

ID Program Method Times Running time(ms) Improve(%)
Before After
1-1 QuickSort generateArray 1 2703 2671 1.18
1-2 QuickSort sort 1 36558 25362 30.63
2-1 BKProfile getTopStatsTask 10000 114 107 6.14
2-2 BKProfile getTopicDetailsTask 10000 68 45.2 33.53
2-3 BKProfile get AnswersTask 20000 1005 951 5.37
2-4 BKProfile getQuestionDetailTask 20000 135 132 2.22
2-5 BKProfile getSimilarQuestionsTask 20000 210 188 10.48
2-6 BKProfile getFollowersTask (1) 20000 266 204 23.31
2-7 BKProfile getFollowersTask (2) 20000 143 113 20.98

176 N. Hung-Cuong et al.

=
CPU usage: 11.2% GC activity: 0.0%
100%
B80%
[
0%
20% f \
o 1:30:00 PM 1:30:30 PM 1:31:00 PM 1:31:30 PM 1:32:00 PM
B CPUusage B GC activity
U x]
CPU usage: 8.5% GC activity: 0.0%
100%
B0
(2%
0%
0%
o 2:01:00 PM 2:01:30 PM x

2:02:00 PM 2:02:30 PM
B CPUusage [GC activity

Fig. 3. CPU Usage

Heap | PermGen

Size: 117,285,960 B

Used: 11,807,008 B
Max: 268,435,456 B

1:54:00 PM 1:54:15 PM 1:54:30 PM 1:54:45 PM 1:55:00 P

E Heap size [l Used heap
[Hesp | pemcen

Size: 116,862,976 B
Maoc 268,435,456 8

e
100 M8+ f

18810 PM

Used: 5,887,5528

1:58:20 M 115830 PM 1158:40 P

@ Heap size [Used heap

Fig. 4. Memory Usage

1. Heap-size is used less than before.
2. Used-heap is better than before with no sudden change.

3. Heap using-efficiency is better than before: average ratio between used-heap
and heap-size is increased.

Rule-Based Techniques Using Abstract Syntax Tree 177

5 Conclusions

This study proposes architecture of a plug-in that support code optimization
and secure programming techniques. After that, we build this plug-in for Java-
environment Eclipse and evaluate results of performance of Java application
before and after using plug-in to confirm it worth.

Code optimization and secure programming have a big number technique,

and this study only works with four of them. So future works should extend
set of rules to confirm application of AST on this field. Furthermore, refac-
toring process can be better, for example can be done automatically or semi-
automatically.

References

AN

o

Viega, J., Messier, M.: Secure Programming Cookbook for C and C+-+: Recipes
for Cryptography, Authentication, Input Validation & More. O’Reilly Media, Inc.,
Sebastopol (2009)

Wheeler, D.A.: Secure programming for linux and unix howto (2003)

Oaks, S.: Java Security. O’Reilly, Sebastopol (1998). (ISBN 1565924037)

Bloch, J.: Effective Java. Addison-Wesley Professional, Amsterdam (2008)

Aho, A.V., et al.: Compilers: principles, techniques, & tools. Pearson Education
India (2007)

Gross, T.K.R.: Code optimization of pipeline constraints (1983)

Leupers, R.: Code Optimization Techniques for Embedded Processors: Methods,
Algorithms, and Tools. Springer Publishing Company, Incorporated, New York
(2010)

Pham, H.: System Software Reliability. Springer, London (2006)

	Rule-Based Techniques Using Abstract Syntax Tree for Code Optimization and Secure Programming in Java
	1 Introduction and Motivation
	2 Basic Techniques of Java-Application Development
	2.1 Code Optimization
	2.2 Secure Programming
	2.3 Abstract Syntax Tree

	3 Rules and Applying in Abstract Syntax Tree
	3.1 Building Rules
	3.2 Using Rules to Detect Potential Elements in Source Code
	3.3 Using Rules to Modify Source Code

	4 Experimental Results
	4.1 Environment Descriptions
	4.2 Eclipse Plug-In Tool Descriptions
	4.3 Experimental Results

	5 Conclusions
	References

