
A Method and Tool Support for Automated
Data Flow Testing of Java Programs

Van-Cuong Pham(B) and Pham Ngoc-Hung

Faculty of Information Technology, VNU University of Engineering and Technology,
Hanoi, Vietnam

{cuongpv.mi11,hungpn}@vnu.edu.vn

Abstract. This paper proposes a method and a tool support for auto-
mated data flow testing of Java programs. The key purpose of this
method is to detect improper uses of data values due to coding errors.
Given source code of a Java program, the proposed method analyzes and
visualizes the program as a data flow graph. All test paths for covering
all definition-use pairs of all variables are then generated. A test case cor-
responding to each generated test path is produced by identifying values
to the input parameters so that the test path is executable. The expected
outputs of these test cases are identified automatically. An implemented
tool supporting the improved method and experimental results are also
presented. This tool is promising to be applied in practice.

Keywords: Software testing · Data flow testing · White-box testing ·
Data flow anomaly · Data flow coverage.

1 Introduction

Software testing has been considered as the major solution in improving quality
of software systems. Currently, software testing techniques can be divided into
two kinds such as black-box testing and white-box testing. However, software
companies focus only on the black box testing techniques in order to validate
whether software products meet the customer requirements. By this approach,
they only detect the errors/mistakes which can be observed by users. As a result,
all potential errors of program code can be not detected. Moreover, detecting
such errors has been recognized as a key difficult and expensive task in practice.
In addition, the testers in charge this task are required high level knowledge and
skills for analyzing source code. These issues are still open problems in software
companies, especially in Vietnam.

Data flow testing has been known as a key white box testing technique that
can be used to detect improper uses of data values due to coding errors [4].
These errors are inadvertently introduced in a program by programmers. For
instance, a software programmer might use a variable without defining it, or
he/she may define a variable, but not initialize it and then uses that variable
in a predicate (e.g. int x; if(x==100);) [4]. The problem of errors in variables

P.C. Vinh et al. (Eds.): ICCASA 2013, LNICST 128, pp. 157–167, 2014.
DOI: 10.1007/978-3-319-05939-6 16, c© Springer International Publishing Switzerland 2014

158 V.-C. Pham and P. Ngoc-Hung

Fig. 1. Limitation of different fault detection techniques.

is common problems of programmers. In addition, Ntafos [10] has reported on
the results of an experiment comparing with the effectiveness of three test selec-
tion techniques. The data flow testing, control flow testing, and random testing
detected 90 %, 85.5 %, and 79.5 % respectively, of the known defects. Further-
more, Fig. 1 shows the limitation of different fault detection techniques [10].
These facts imply that data flow testing is one of the most effective methods for
examining structure of programs. Although there are some methods and tools
supporting data flow testing such as BPAS - ATCGS (Basic Program Analyzer
System - Automatic Test Case Generation System) [8], JaBUTi [9], DFC (Data
Flow Coverage) [3], etc, these methods only generate all paths for covering given
source code. In fact, we need a tool that assists the tester in creating test data [5]
that include expected output. Some free versions only allow testing the programs
that are fixed in these tools and they are difficult to be extended in order to sat-
isfy the specific data flow testing purposes of a certain software company.

This paper presents a method for data flow testing of Java programs. Given
source code of a program, this method analyzes and visualizes the program
as a data flow graph. All test paths corresponding to all paths of the data flow
graph for covering all definition-use pairs of all variables in the program are then
generated. All test cases of generated test paths are produced by giving values
to the input parameters. The set of the values to the input parameters and
expected outputs of the produced test cases are also generated automatically. In
order to show the practical usefulness of the proposed method, a tool supports
the method is implemented. The obtained experimental results by applying this
tool for some typical programs are completely reliable in detecting all errors
about using data variables. In addition, this tool is a free version, open source,
and promising to be applied in practice.

The paper is organized as follows. We first review some background in Sect. 2.
Section 3 describes a method for data flow testing of Java programs. Section 4
shows the implemented tool and experimental results. Finally, we conclude the
paper in Sect. 5.

A Method and Automated Tool for Data Flow Testing of Java Programs 159

2 Background

This section presents some basic concepts which are used in our work as follows.
A definition of a variable x (denoted def) when the variable x is assigned

a new value. When a variable x is used to compute in a statement, it is called
a computation use (denoted c-use) of the variable x. Similarly, if the variable
x is used in the predicate of conditional statement, it is called a predicate use
(denoted p-use) of the variable x. A variable is defined in a statement and is
used in another statement which may occur immediately or several statements
after the definition called a definition-use (denoted def-u) pair of that variable.

Data flow graph(DFG) is a directed graph G = {N,E}, where N is a finite
set of nodes and each node represents a c-use or def ; E is a finite set of directed
edges and each edge represents a p-use; n0, nf ∈ N are entry node and exit node
respectively. A path is a finite sequence of nodes connected by edges. A complete
path is a path whose first node is the start node and whose last node is an exit
node. A path is definition clear path (denoted def-clear path) w.r.t a variable if
it contains no new definition of that variable. A test path is a path for covering
a def-u pair of a variable in a program. A complete path is executable if there
exists an assignment of values to input variables and global variables such that all
the predicates evaluate to true, thereby making the path executable. Executable
paths are also known as feasible paths [1]. For example, source code of a program
and its data flow graph are shown in Fig. 2(a) and Fig. 2(b) respectively.

Fig. 2. Source code and its data flow data flow graph.

Definition 1. (DEF). A definition of a variable v ∈ V at node n ∈ N , denoted
DEF (v, n), such that DEF (v, n)= true if variable v is defined at node n and
DEF(v,n)= false otherwise.

160 V.-C. Pham and P. Ngoc-Hung

Fig. 3. Relationship among data flow testing criteria.

Definition 2. (C-USE). A computation of a variable v ∈V at node n∈N ,
denoted C-USE(v,n), such that C-USE(v,n)= true if variable v is used to com-
pute at node n and C-USE(v,n)= false otherwise.

Definition 3. (P-USE). A predicate of variable v ∈ V at edge e ∈ E, denoted
P-USE(v,e), such that P-USE(v,e)= true if the variable v is used at edge e and
P-USE(v,e)= false otherwise.

Definition 4. Definition use path (du-path): A path (n1, ..., nj , nk) is a defin-
ition use path (denoted du-path) w.r.t. x if node n1 has a def of x and either
node nk has a c-use of x and (n1, .., nj , nk) is def-c simple path w.r.t. x or edge
(nj , nk) has a p-use of x and (n1, ..., nj , nk) is a def-c loop-free path w.r.t. x [1].

Depending on the criterion selected, Frankl, Weyuker [1], and Parrish [2] have
defined seven types of data flow testing criteria and relationship among them is
shown in Fig. 3.

3 A Method for Data Flow Testing

This section presents a method for data flow testing of Java programs. Given
source code of a program, this method analyzes and visualizes the program as
a data flow graph. Next, finding all paths in the generated data flow graph for
covering all def-u pairs of all variables in the program. Finally, all test cases
corresponding to the generated test paths are created by giving values to the
input parameters. The expected outputs of these test cases are also computed
automatically.

Let U be a program, V = {v1, v2, .., vn} be a set of variables of U , G = {N,E}
be a data flow graph of U , and P be a set of du-path paths.

A Method and Automated Tool for Data Flow Testing of Java Programs 161

Algorithm 1. Finding all path for each variable in program

1: Initially, P = empty, V , G {P is a set du-paths of all variables, V is a set variables,
G is a data flow graph}

2: for each variable v in V do
3: for each node m in N do
4: for each node n in N do
5: if du-c(v,m,n)=true then
6: Pdef−c = Pc(v,m, n)
7: end if
8: end for
9: for each edge e in E do

10: if du-p(v,m,e)=true then
11: Pdef−c+ = Pp(v,m, e)
12: end if
13: end for
14: for each path p in Pdef−c do
15: if p is def-c path and p is complete path then
16: P.add(p)
17: end if
18: end for
19: end for
20: end for
21: return

3.1 Test Path Generation
In this part, we propose a method for finding these paths. We are interested in
finding all paths for covering all def-u pairs of all variables in a program U .

Definition 5. (du-c). A variable v ∈ V and node m and n ∈ N . du-c(v,m,n)
= true if DEF (v,m)= true and C-USE(v,n)= true else du-p(v,m,e)= false
otherwise.

Definition 6. (du-p). A variable v ∈ V , m ∈ N, and e ∈ E. du-p(v,m,e)= true
if DEF (v,m)= true and P-USE(v,e) else du-p(v,m,e)= false otherwise.

Definition 7. (Pc). For each v ∈ V , ∀m,n ∈ N , if du-c(v,m,n)= true, existing
a set of paths, denoted Pc, where ∀p ∈ Pc has first node is m and last node is n.

Definition 8. (Pp). For each v ∈ V , ∀m ∈ N and ∀e ∈ E if du-p(v,m,e)= true,
existing a set of paths, denoted Pp, where ∀p ∈ Pp has first node is m and last
edge is e.

First, we will identify all paths which cover all def-u pairs of all variables.
The set of these paths denotes Pdef−u, where Pdef−u = Pc ∪ Pp. After that,
examining all paths in Pdef−u, ∀p ∈ Pdef−u, if p is def-c path and complete path,
then the path p is added into P .

162 V.-C. Pham and P. Ngoc-Hung

The following is more detailed presentation of the method to find test paths.
This method is shown in Algorithm 1. In this algorithm, we use an array data
structure which contains the paths. These paths are generated by driving the
path from a definition to a use of a variable in a program. Initially, the algorithm
sets the array P to the empty (line 1). For each variable v ∈ V (line 2), we
identify a variable is defined and used at (line 5) and (line 10). Next, a set of
paths is generated from a def-u pair (line 6 & 11). After having the set of path
P , for each p in P , if p is def-c path and complete path (line 15), then add p into
P (line 16). The algorithm iterates the entire process by looping from line 2 to
line 20 until all variables in V are visited. The algorithm terminates and exits
the program (line 21).

Depending on the criterion selected [1], we find the appropriate path for
each data flow testing criteria. For example, with regard to the All-defs criteria,
if DEF (v,m)= true, selecting a path p ∈ P and path p has first node is m.
Similarly, other data flow testing criteria are also identified by removing some
inappropriate paths in P .

3.2 Test Case Generation

Test cases are generated by identifying the set of values to the input parameters
and the set of expected outputs for each test path.

Definition 9. (fe). ∀e ∈ E, ∀v ∈ V , a boolean function, denoted fe, where fe:
2|V | → {true, false}.

For each p ∈ P , select a complete path pc so that pc contains path p. The set
of edges in pc that contains a p-use is Ep = {e|P-USE(v,e)= true, e ∈ pc, v ∈ V }.
Let Fe = {fe|∀e ∈ Ep, fe = boolean} be a set of boolean functions and V ′ ∈ 2|V |

be a set of variable parameter. In order to pc is an executable path, then we have
to determine the values to the input parameters so that fe = true, ∀fe ∈ Fe. By
improving the exhaustive search algorithm [7], the problems about generating
test data have been solved partly. First, the Fe is divided into three main groups
as follows.

Fe1 = {fe(v)|v ∈ V ′, fe(v) ∈ Fe, fe(v) = C}, (1)

where ∀fe ∈ Fe1, fe only has a variable and the sign of fe is the sign of
equality(=) and C is a constant.

Fe2 = {fe(v)|v ∈ V ′, fe(v) ∈ Fe, fe(v) �= C}, (2)

where ∀fe ∈ Fe2, fe only has a variable and the sign of fe is different with the
sign of equality and C a constant.

Fe3 = {fe(V ′)|Length(V ′) ≥ 2, fe(V ′) ∈ Fe, fe(V ′) + A = C}, (3)

where ∀fe ∈ Fe3, fe has more than one variable, C is a constant, and A is a
quantity which is added so that fe(V ′) + A = C.

A Method and Automated Tool for Data Flow Testing of Java Programs 163

Next, finding the solution of Fe1 and Fe2 and research spaces of Fe3 are also
the solution of Fe1 and Fe2. Finally, we use exhaustive research method [7] to
identify final solution for whole Fe. For example, p ∈ P has five expressions as
follows: 5x = 10, x > 1, y > 1, y < 13, and x2 + y2 > 100 in which x, y are
parameters and x, y ∈ [MIN,MAX]. By applying the above principles, we have

Fe1 =

{
5x = 10
x ∈ [MAX,MIN]

⇒
{
x = 2

After that, Let x = {2} be a condition instead of x = [MIN,MAX] in Fe2 as
follows.

Fe2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x > 1
y > 1
y < 13
x ∈ [MIN,MAX]
y ∈ [MIN,MAX]

⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x > 1
y > 1
y < 13
x = {2}
y ∈ [MIN,MAX]

⇒
{
x = 2
1 < y < 13

Finally, we use exhausted research method for Fe3 where domain value of x is
{2} and domain value of y is (1, 13) as follows.

Fe3 =

⎧⎪⎨
⎪⎩
x2 + y2 > 100
x = {2}
y ∈ (1, 13)

⇒
{
x = 2
10 ≤ y ≤ 12

The solution of Fe3 as well as Fe is (2, 10), (2, 11), and (2, 12).
After obtaining the values to the input parameter, we will identify the expected

output base on these values. Expected results are generated by using a mecha-
nism called test oracle. For this purpose, we have used an alternate program for
generating expected results. This means that using two different functions for the
same problem, each function is described in different way but they return the same
result when they set the same input values. Assume that P’ is a program which is
built so that U(2|V |) = U ′(2|V |). U ′ is used to identify expected output. Table 1
shows test results is created from the test path p.

Table 1. A test case of U is created from the path p

No. Path Input Expected output(P’) Actual output(P) Pass

1 p=(e1, e2, e3, e4, e5) x = 2, y = 10 8 8 True
x = 2, y = 11 9 9 True
x = 2, y = 12 10 11 False

Similarly, we have to do the same for the other test paths and having a
complete test suite for each data flow testing criteria.

4 Experiment and Discussion

This section presents our implemented tool for data flow testing and experi-
mental results by applying this tool for some examples. We also discuss the
advantages and disadvantages of the proposed method.

164 V.-C. Pham and P. Ngoc-Hung

Fig. 4. Interface of the implemented tool.

Table 2. The test results of the examples for All-du-paths criteria

No. Name Number of paths Predicate errors Computation errors

1 calculateBill 26 7 3
2 calSumNumeric 14 3 0
3 calFactorial 11 4 2

4.1 Experiment

In order to show the effectiveness of the proposed method, we have implemented
a tool, named JDFT. The tool is developed in Java and use a third party package
name PMD (Programming Mistake Detector) [6], to analyze the given source
code and display the generated data flow graph of the program. Figure 4 shows
the user interface of JDFT. First, given source code of a Java program, this tool
analyzes and visualizes the program as a data flow graph. Second, the JDFT finds
all def-u pairs of all variables in the program. The test paths are then created
based on finding the paths in data flow graph for covering def-u pairs. Third,
this tool identifies the values to the input parameters which satisfy these test

Table 3. The test results of the examples for All-du-paths criteria

No. Name Number of paths Predicate errors Computation errors

1 calculateBill 28 0 0
2 calSumNumeric 16 0 0
3 calFactorial 13 0 0

A Method and Automated Tool for Data Flow Testing of Java Programs 165

paths and computing expected outputs of the test cases for the selected input.
Finally, the test results are analyzed by comparing the actual output with the
expected output of each test case.

We are also tested JDFT by using some typical examples in which the
calculateBill is used to calculate the bill of a cellular service, the calSumNumeric
is used to calculate the sum of integer divisible by 2 and the calFactorial is used to
calculate the factorial of n. There are some common errors related to improper uses
of control structure statements and computed statements in the applied examples.
All examples, JDFT tool, and help document are available at the site1. The results
forAll-du-paths of these examples are shown in Table 2. For the calculateBill, this
tool detects 7 errors about using control structure statements and 3 errors about
using computed statements. Similarly, for the calSumNumeric is 3 and 0 and
the calFactorial is 4 and 2 respectively. After fixing errors in Table 2, we use the
JDFT to test these examples again and the obtained results of this purpose are
shown in Table 3. There is not any error in the fixed programs detecting by the
tool.

The above results are clear to show the practical usefulness of the imple-
mented tool. In addition, this tool also can detect the unnecessary statements
of the program under testing.

4.2 Discussion

The proposed method is a complete solution for automated data flow testing. It
not only solves the key issues of white-box testing that generates test data, but
also solves the problem about generating expected outputs.

Firstly, with regard to generate test data, dividing boolean functions into
three main groups helps us to minimize the disadvantages of exhaustive method
[7] that is running time. Generally, these functions will tend to fall into group
1 and group 2. Therefore, finding solution for these group is easy, whereas the
boolean functions of group 3 is fewer and research space of this group is also
solution of group 1 and group 2 hence calculation time is reduced significantly. In
addition, although there are some methods to generate test data such as Genetic
Algorithm [12], Ant Colony Algorithms [11], these methods are restricted about
basic data types, while our method has solved all basic data types. However,
it is still the restrictions as in some cases where the program includes complex
boolean expressions, the calculation time is still high.

Secondly, for generating expected output, there are some automatic meth-
ods for generating expected output such as Statistical Oracle [13], Neural Net-
work [14], and MT [15], but these methods are normally unavailable or too
expensive to apply. By using an alternate program, this method is not only
simple, but it is also easy to apply for software companies. Moreover, it also
helps programmers have multiple perspectives on one problem, but this can also
make workload of programmers as well as the volume of program code increase
significantly.
1 http://www.uet.vnu.edu.vn/uet/∼hungpn/JDFT

http://www.uet.vnu.edu.vn/uet/~{}hungpn/JDFT

166 V.-C. Pham and P. Ngoc-Hung

Finally, comparing with other data flow testing tools has not been done, but
the obtained experimental results are clear to show that the method is promising
to be applied in industry.

5 Conclusion and Future Work

We have presented a method for data flow testing of Java programs. The key idea
of this method is to generate all test cases such that they cover all def-u pairs of
all variables used in the Java program under testing. The expected outputs of
the generated test cases are also computed automatically by using an alternate
program. A tool supports the proposed method is implemented in Java. Some
typical examples are tested in order to show practical usefulness of the tool. The
obtained experimental results are clear to show that the implemented tool can
detect several common errors in coding.

Future work, we focus on solving the problem about test data, especially
find out test paths which are not executable to remove unnecessary statements
due to these statements is never executed. We are also investigating to apply
some practical programs with their sizes are larger than the sizes of the applied
systems in order to show the practical usefulness of the implemented tool. In
addition, more experiments are needed in order to evaluate and compare the
proposed method and the existing methods for data flow testing. Moreover, we
also are going to apply this tool in some Vietnamese software companies.

Acknowledgments. This work is supported by the project no. QG.12.50 granted by
Vietnam National University, Hanoi (VNU).

References

1. Rapps, S., Weyuker, E.J.: Selecting software test data using data flow information.
IEEE Trans. Softw. Eng. 11(4), 367–375 (1985)

2. Parrish, A.S., Zweben, S.H.: On the relationships among the all-uses, all-DU-paths,
and all-edges testing criteria. IEEE Trans. Softw. Eng. 21(12), 1006–1009 (1995)

3. Bluemke, I.: A coverage analysis tool for java programs. In: The 4th IFIP TC
2 Central and East European Conference on Advances in Software Engineering
Techniques, pp. 215–228 (2009)

4. Copeland, L.: A Practitioner’s Guide to Software Test Design. STQE Publishing,
Massachusetts (2004)

5. Narmada, N., Mohapatra, D.P.: Automatic test data generation for data flow test-
ing using particle swarm optimization. Commun. Comput. Inform. Sci. 95(1), 1–12
(2010)

6. PDM Homepage, http://pmd.sourceforge.net/
7. Exhaustive research, http://en.wikipedia.org/wiki/Brute-force search
8. BPAS-ATCGS Homepage, http://www.cs.ucy.ac.cy/∼cs04pp2/WebHelp/index.

htm
9. JaBUTi Homepage, http://jabuti.incubadora.fapesp.br (access, December 2007)

http://pmd.sourceforge.net/
http://en.wikipedia.org/wiki/Brute-force_search
http://www.cs.ucy.ac.cy/~cs04pp2/WebHelp/index.htm
http://www.cs.ucy.ac.cy/~cs04pp2/WebHelp/index.htm
http://jabuti.incubadora.fapesp.br

A Method and Automated Tool for Data Flow Testing of Java Programs 167

10. Ntafos, S.C.: On required element testing. IEEE Trans. Softw. Eng. 10(6), 795–803
(1984)

11. Ghiduk, A.S.: A new software data-flow testing approach via ant colony algorithms.
UniCSE (2010). ISSN: 2219–2158

12. Girgis, M.R.: Automatic test data generation for data flow testing using a genetic
algorithm. J. UCS 11(6), 898–915 (2005)

13. Mayer, J., Guderlei, R.: Test oracles using statistical methods. In: Proceedings of
the First International Workshop on Software Quality, Lecture Notes in Informatics
P-58, pp. 179–189 (2004)

14. Vanmali, M., Last, M., Kandel, A.: Using a neural network in the software testing
process. Int. J. Intell. Syst. 17(1), 45–62 (2002)

15. Hu, P., Zhang, Z., Chan, W.K., Tse, T.H.: An empirical comparison between direct
and indirect test result checking approaches. In: Proceedings of the 3rd Interna-
tional Workshop on Software Quality ssurance (SOQUA06), pp. 6–13 (2006)

	A Method and Tool Support for Automated Data Flow Testing of Java Programs
	1 Introduction
	2 Background
	3 A Method for Data Flow Testing
	3.1 Test Path Generation
	3.2 Test Case Generation

	4 Experiment and Discussion
	4.1 Experiment
	4.2 Discussion

	5 Conclusion and Future Work
	References

