
An Efficient Method for Automated Control
Flow Testing of Programs

Quang-Trung Nguyen(B) and Pham Ngoc-Hung

Faculty of Information Technology, VNU University of Engineering and Technology,
Lahore, Pakistan

{trungnq.mi11,hungpn}@vnu.edu.vn

Abstract. This paper presents a method for automated control flow
testing of unit programs. The key idea of this method is to combine the
black-box and white-box techniques in order to minimize the complex-
ity of white-box testing. Instead of performing black-box and white-box
separately, the proposed method uses the test inputs that are gener-
ated by black-box to reduce searching space of white-box testing. The
method then continually eliminates arcs in remaining space to find non-
duplicated test paths. Therefore, the proposed method is able to operate
white-box testing with less effort than the current method.

1 Introduction

Unit testing has been recognized as a key phase in improving software quality
in practice. Two techniques to operate unit testing are white-box and black-
box. Generally, black-box technique is inexpensive as well as easy to create test
cases and to test unpredictable behavior. However, it cannot detect internal
errors. On the contrary, control flow testing which has been known as a major
technique of white-box is more efficient for this problem. Unfortunately, this
technique requires deep understanding and high-level skill to analyze source
code. Because it is performed manually so it is very costly and inefficient. It is
believed that automatic testing is a solution to perform these types of testing
more effectively. Indeed, two techniques black-box and white-box have difference
pros and cons, and both of them, by them self, cannot supersede each other.
In software companies, that black-box and white-box are performed separately
takes a lot of time and effort. From the above-mentioned, what we need to find
out is how to create an efficient automatic tool combining black-box’s advantages
and white-box’s ones to produce a small set of test input data.

For recent years, there are many researches putting effort to minimize the
size of test inputs. For example, Gupta and Soffa [5] have studied the ways of
gathering coverage requirements so that each group can be covered by a test case,
which followed by guiding test case generation to produces a test case satisfies
multiple coverage requirements. Based on basis path testing concept [1], Ahmed
S. Ghiduk, O. Said and Sultan Aljahdali [6] introduced strategy using genetic
algorithm for automatically generating basis test paths. Bertolino and Marre [2]

P.C. Vinh et al. (Eds.): ICCASA 2013, LNICST 128, pp. 133–143, 2014.
DOI: 10.1007/978-3-319-05939-6 14, c© Springer International Publishing Switzerland 2014

134 Q.-T. Nguyen and P. Ngoc-Hung

proposed a path generation method by using a reduced CFG. Guangmei et al [3]
presented an automatic generation method of basis set of paths which is built
by searching the CFG by depth-first searching method. On the other hand, with
spanning sets, Martina Marre and Antonia Bertolino [4] reduced and estimated
the number of test cases to satisfy coverage criteria.

This paper proposes a method to take advantage of both black-box and
while-box techniques with the purpose of performing control follow testing of
programs efficiently. Instead of focusing on whole CFG of the given unit, this
method only uses a simplified CFG of it. The simplified CFG has been generated
by removing the testing paths that are covered by the test cases of the black-
box testing. Hence, the size of CFG is significantly reduced, which is followed by
reducing effort in white-box testing. In addition, this method avoids duplicated
paths with graph reduced before and during the searching process. It is also
potentially performed to reuse test cases in the context of program evolution.
Consequently, software companies have method for getting high quality set of
test inputs with low cost.

The paper is organized as follows. Firstly, we introduce definitions and the-
orems for reducing graph in Sect. 2. The method, and two major steps of the
proposed method will be shown in Sects. 3 and 4. In Sect. 5 we evaluate time
complexity of two algorithms mentioned in Sects. 3, 4, and the whole of our
method. Finally, Sect. 6 is conclusion.

2 Background

In this section, we show some basic definitions and theorems of graph theory
that will be used through the paper.

Control flow graph which is a directed graph represents graphically the infor-
mation needed to select the test cases. A control flow graph G = (N,A) consists
of a set N of nodes or vertices, and a set A of directed edges or arcs, where
a directed edge e = (T (e),H(e)) is an ordered pair of adjacent nodes, called
Tail and Head of e, respectively: we say that e leaves H(e) and enters T (e). If
H(e) = T (e′), e and e’ are called adjacent arcs. For a node n in N, indegree(n)
is the number of arcs entering and outdegree(n) the number of arcs leaving it.

A program control flow may be mapped onto a flow graph in different ways.
In this paper, we use a flow graph representation called ddgraph (decision-to-
decision graph) which is particularly suitable for the purposes of branch. The
following is a formal definition of ddgraph.

Definition 1. (Ddgraph). A ddgraph is a graph G = (N,A) with two distin-
guished nodes n1 and n0(the unique entry node and the unique exit node, respec-
tively), such that any node n ∈ N is reached by n1 and reaches n0, and for
each node n ∈ N , except n1 and n0, (indegree(n) + outdegree(n)) > 2, while
indegree(n1) = 0, outdegree(n1) = 1, indegree(n0) > 0, outdegree(n0) = 0.

A path P of length q in a ddgraph G is a sequence P=(e1, e2, .., eq) where
T (ei+1) = H(e) for i = 1,. . . , q-1. P is said to be a path from e1 to eq, or

An Efficient Method for Automated Control Flow Testing of Programs 135

Fig. 1. Source code, control flow graph and ddgraph of tree method.

from H(e1) to T(eq). A node n reaches an arc n’ if there is a path P in G from
n to n’. A path, in ddgraph, is call complete path if it is path from n1 to n0.

Figure 1 shows the source code, traditional CFG and ddgraph form of a java
unit. This method is the most complete case of ddgraph. In this case, the normal
white-box technique needs select at least |N | − 1 path where |N | is number of
nodes in ddgraph for covering all branches of the unit.

Definition 2. (Redundant arc). In ddgraph G, An arc e is call redundant arc if
indegree(T (e) > 1, outdegree(H(e)) > 1.

Theorem 1. We can remove redundant arc without remove connective property
of G.

Proof. Assuming that we have a ddgraph G = (N,A) with two distinguished
nodes n1 and n0 and e ∈ A. By Definition 2, the arc e is redundant arc which
indegree(T (e)) > 1. So, it is clear that, when we eliminate arc e in G, we can
find at least one path from n1 to T(e) , it mean that T(e) can be reached by n1.
Similarly, because of having outdegree(H(e)) > 1, there is always at least one
path form H(e) to n0. Thus, we can conclude that G does not loss connective
property when eliminating redundant arcs. �

Theorem 2. In ddgraph G = (N,A), with a complete path p (path from n1 to
n0), we always reduce at least one arc e ∈ p.

Proof. let P = (e1, e2, ...eq) is a complete path in ddgraph G, with H(e1) = n1

and T (en) = n0. We assume that theorem is false. Hence, a path p has no
redundant arc if any arc e of P; indegree(T (e)) = 1 or outdegree(H(e)) = 1.
The arc e1 has H(e1) = n1 so outdegree(H(e1)) = 1. And because the G have
no loop, we can infer that indegree(T (e1)) = 1. Because of being a node of the
ddgraph G, T (e1) satisfies the inequality indegree(T (e1)) + outdegree(T (e1)) >
2. So The inequality outdegree(T (e1)) > 1 is true. Next, the edge e2 has

136 Q.-T. Nguyen and P. Ngoc-Hung

outdegree(H(e2) = outdegree(T (e1) > 1. Likewise, the arc e2 is not redundant
arc, so indegree(T (e2)) = 1. In summation, we can infer that outdegree(T (e2) >
1. Similarly, by considering the other arc ex of P (with 2 < x < q − 1),
indegree(T (ex)) = 1 and outdegree(T (ex)) > 1 are satisfied. At the arcs eq
where T (eq) = n0, we have outdegree(H(eq) > 1 so there will be at least two
arcs from the node H(eq). Because indegree(n0) = 1, suppose that the arc ey
has T (ey) �= n0. Ddgraph G has not cycles, therefore, we will always find at
least one way to the n0 which does not contain en from T (ey). As a result,
indegree(T (eq)) > 1 is true. In other words, it means that the arc eq can be
reduced and the theorem is true. �

3 Generating Simplified Ddgraph

In order to operate control flow testing, we need to perform two major steps
which are selecting paths and generating test inputs. The proposed method does
not focus on selecting paths in whole CFG. Instead, it selects paths in sub CFG
of program. Hence, in order to get sub ddgraph and take advantage of black-box,
the first step of the proposed method simplifies the original ddgraph. Then, in
the second step, the method finds test paths covering branches of sub ddgraph,
followed by generating set of a test inputs corresponding to these paths.

This section presents the first step which is interested in reducing all the
redundant arcs covered by black-box. The procedure named SIMPLIFY which
is shown in Algorithm 1 is to operate this step. Generally, the inputs of this pro-
cedure are the test input data generated by black-box and an original ddgraph.
And the output of it is a sub ddgraph of the input ddgraph. To specify, classical
CFG, first, is used for symbolic execution [7] to find paths corresponding to black
box test inputs. Then, the list of visited arcs will be chosen from this paths. For
example, in Fig. 2, with set of black-box’s path B = {P1, P2, P3}, where P1 =
(e1, e2, e5), P2 = (e1, e2, e4, e7, e8), and P3 = (e1, e2, e4, e7, e9), the visited list is
extracted as follow: V = {e|∀e ∈ P1

⋃
P2

⋃
P3}, so V = {e1, e2, e4, e5, e7, e8, e9}.

After having V , the redundant arcs are eliminated from ddgraph. To begin,
if the visited list is empty then the process stops (line 1). Conversely, each arc
will be removed from the visited list and the graph if it is a redundant arc (line 2
to 7). After eliminating redundant arcs from the ddgraph, the redundant nodes
which have just one arc entering and leaving on it can appear in ddgraph G.
In ADJUST1 procedure presented in Algorithm 2 (line 8), all this nodes are
eliminated from graph. Then the arcs binding to the redundant nodes are bound
to create new arcs in both graph and visited list (line 8). Lastly, the visited list
is checked to remove arcs not existing in ddgraph (line 9 to 13). After all, the
process above is repeated until the visited list is empty.

When an arc is eliminated the number of outcomes in its head node and
the number of incomes in its tail node will decrease by one. Hence, after that
some arcs are not redundant anymore. For example, in Fig. 2(a), there are two
redundant arcs from node 8 to node 1 but after one of them is removed the other
is not redundant.

An Efficient Method for Automated Control Flow Testing of Programs 137

Algorithm 1. SIMPLIFY procedure
Input: Ddgraph G, set of visited arcs
Output: Ddgraph G’ with smaller size
1: while visited list is empty do
2: for all e in visited list do
3: if indegree(T (e)) > 1&&outdegree(H(e)) > 1 then
4: A = A − e
5: visited list = visisted list-e
6: end if
7: end for
8: ADJUST1(G, visited list)
9: for all e in visited list do

10: if e � G then
11: visited list = visited list − e
12: end if
13: end for
14: end while

Fig. 2. Simplifying process of the ddgraph.

Figure 2 shows ddgraph in different status in three rounds of simplifying
process corresponding to visited list V . In more detail, with the redundant arcs
e5, e8, and e9 in first step, the arcs e5, e9, nodes 3 and 8 are reduced to generate
ddgraph in Fig. 2(b). Then, the visited list V remains three arcs {e1, e2,4, e7,8}.
In second round, after eliminating the arc e7,8, the visited list V consists of two
arcs e1 and e2,4. However the arc e2,4 does not exist in the ddgraph in Fig. 2(c),
thus it is removed. The V remains one arc e1 which is not a redundant arc thus
the reducing process exits.

4 Generating Test Input Data

With the sub ddgraph, the working space of method was significantly declined.
Then, in this section, the method focuses on selecting non duplicated paths and
generating the set of test input corresponding to selected paths.

138 Q.-T. Nguyen and P. Ngoc-Hung

Algorithm 2. ADJUST1 procedure
Input: graph G, set of arcs
Output: DGraph G’, set of arcs correspond to G’

1: for all nodes n in N do
2: if indegree(n)=1 && outdegree(n)=1 then
3: for all e ∈ visited list do
4: if T(e) = n then
5: ei = e
6: end if
7: if H(e) = n then
8: ej = e
9: end if

10: end for
11: enew = (H(ei), T(ej))
12: visited list = (visited list - ej - ei + enew)
13: for all e in A do
14: if T(e) = n then
15: ei = e
16: end if
17: if H(e) = n then
18: ej = e
19: end if
20: end for
21: enew = (H(ei), T(ej))
22: A = (A - ej - ei + enew)
23: N = (N - n)
24: end if
25: end for

According to the Theorem 2 described in Sect. 2, a complete path always has
at least one redundant arc. Thus, after finding complete paths, at least one arc
may be reduced to create smaller ddgraph. In the proposed method, the selecting
process continually finds complete paths and reduces redundant arcs and nodes
until the ddgraph has only one arc.

The selecting process is presented in the procedure named FIND BASIC
which is shown in Algorithm 3. The following is a more detailed presentation of
the method to select test paths. Initially, a set of return paths is created (line
1). Then, a path with start arc is created. If the generated path is complete (line
8), it means that the ddgraph has just one arc, then the path is added to the set
of return paths (line 9) and the finding process ends (line 10). Otherwise, it is
added to the stack (line 14). From line 15 to 32 is the deep-first-search process
with an alteration. All redundant arcs in each found complete path are removed
from the ddgraph (line 21 to 24). After the reduction, the graph is adjusted
with the redundant eliminated nodes and the arcs which are bound together in
ADJUST2 procedure presented in Algorithm 4 (line 26).

An Efficient Method for Automated Control Flow Testing of Programs 139

Algorithm 3. FIND BASIC procedure
Input: Ddgraph G
Output: Set of complete paths covers all branches of G

1: Create array of paths A
2: while true do
3: Create s stack S
4: for all arcs e in G do
5: if H(e) = n1 then
6: create a path p
7: add e to p
8: if p is complete path then
9: add p to A

10: return A
11: end if
12: end if
13: end for
14: S.pop(p)
15: while S is empty do
16: for all arcs e in G do
17: if e is adjacent p then
18: add e to p
19: if p is complete path then
20: add p to A
21: for all arcs e in p do
22: if indegree(T (e)) > 1&&outdegree(H(e)) > 1 then
23: A = A − e
24: end if
25: end for
26: ADJUST2(G)
27: else
28: S.push(p)
29: end if
30: end if
31: end for
32: end while
33: end while

Figure 3 shows a ddgraph in the finding process which is implemented to
generate a set of path covering all branches of it. For instance, in Fig. 3(a), after
finding path P1 = (e1, e3, e7), arc e7 and node 4 are reduced. Then, in step 2, arc
e3,6 and node 2 are eliminated in path P2 = (e1, e3, e6). Finally, after reducing arc
e4 and with ddgraph having only one arc e1,2,5 , the finding process is done. The
process returns set of paths S = {(e1, e3, e7), (e1, e3, e6), (e1, e2, e4), (e1, e2, e5)}
covering all branches of the ddgraph.

140 Q.-T. Nguyen and P. Ngoc-Hung

Fig. 3. Finding process.

5 Time Complexity

In this section, we estimate the time complexity of the proposed method. It can
be calculated based on the time complexity of two major Algorithms 1 and 3. The
time complexity of the method depends on many factors, such as the number of
decision nodes, the shape of graph, and the coverage of black-box test cases. In
the worst cases, if simplifying process is not operated, it may be approximately
O(n4). In almost cases, when combining black-box, the time complexity of the
proposed method is approximately O(n2log(n)). The following explains how the
proposed method can reach time complexity O(n2log(n)).

At first glance, the time complexity of the proposed method is the maximum
of the simplifying process’s time complexity and the selecting process’s one. So,
the time complexity of generating simplified ddgraph and the one of generating
simplified ddgraph are considered, respectively. First, the generating simplified
ddgraph is presented in Algorithm 1. In the while loop of Algorithm 1, we can
easily see that the codes from line 2 to line 7 which reduce redundant arcs have
time complexity O(n). And, O(n) is the time complexity of codes eliminating
not existed arcs from line 9 to 13. ADJUST1 procedure presented in Algorithm 2
has two loops. Thus, ADJUST1’s time complexity is approximately O(n2). The
SIMPLIFY procedure’s time complexity depends on how many arcs in the visited
list. In practice, when black-box’s path covers all branches of the ddgraph, the
SIMPLIFY procedure is not operated. But in order to estimate time complexity,
we can assume that the SIMPLIFY procedure is performed when all branches
are visited. So, in the worst case, in Fig. 1(c), when ddgraph has shape like
complete binary tree, in each round we can reduce 1 from the height of tree
when half of arcs which are connected to ending node are removed. Height H of
tree is calculated as follows: H = log(|N | − 1) + 1. So we have time complexity
of SIMPLIFY procedure is approximately O(n2log(n)).

In the FIND BASIC procedure presented in Algorithm 3, the time complexity
depends on how many arcs can be reduced from the path found by DFS. With
the best case, the ddgraph which has series of condition nodes, the FIND BASIC
procedure is performed just one time. On the contrary, in the worst case, with
ddgraph such as Fig. 1(c), we can reduce one arc from a found path and the loop

An Efficient Method for Automated Control Flow Testing of Programs 141

Algorithm 4. ADJUST2 procedure
Input: graph G
Output: Ddgraph G’

1: for all nodes n in N do
2: if indegree(n)=1 && outdegree(n)=1) then
3: for all e in A do
4: if T(e) = n then
5: ei = e
6: end if
7: if H(e) = n then
8: ej = e
9: end if

10: end for
11: enew = (H(ei), T(ej))
12: A = (A - ej - ei + enew)
13: N = (N - n)
14: end if
15: end for

Table 1. Black-box test input paths.

No. Usage Member score Date Path

1 0 50 5 e1, e3, e19
2 0 150 25 e1, e3, e18
3 100 50 5 e1, e2, e5, e6
4 400 150 25 e1, e2, e5, e7, e8
5 600 50 5 e1, e2, e4, e11, e13, e17
6 600 50 25 e1, e2, e4, e11, e12, e15
7 600 150 5 e1, e2, e4, e11, e13, e16
8 600 150 25 e1, e2, e4, e11, e12, e15
9 600 300 5 e1, e2, e4, e11, e13, e16
10 600 300 25 e1, e2, e4, e11, e12, e14

will be repeated |N | − 1 times. Furthermore, depth-first searching algorithm
is executed repeatedly. In each Depth-first searching loop, we use ADJUST2
produre so that time complexity can be calculated as O(|A|) ∗ O(|N | ∗ |A|),
approximate O(n3). Hence, when being performed just one time in the best
case, it has O(n3) time complexity. And in the worst case, it has O(n4) time
complexity.

Although the FIND BASIC procedure needs a lot of time but after being
simplified, the size of ddgraph is very small. We can examine the example of
calculateBill method in java. The source code, CFG, and ddgraph of calculateBill
is available at1. This method implements calculating bill task of restaurant. The
input of this method are usage, member’s score and date. The Table 1 shows that
1 http://www.uet.vnu.edu.vn/∼hungpn/calculateBill.jpg/

http://www.uet.vnu.edu.vn/~hungpn/calculateBill.jpg/

142 Q.-T. Nguyen and P. Ngoc-Hung

Table 2. While-box test inputs.

No. Path Constraints Test input

1 (e1, e2, e4, e10) Usage > 0 Usage = 500.0
Usage ≥ 500
((40) + 50 + Usage) ≤ 600

2 (e1, e2, e5, e7, e9) Usage > 0 Usage = 201.0
Usage < 500
Usage > 200
((40) + 50 + Usage + (Usage − 50) ∗ 0.1) < 400

10 sets of black-box test inputs covering almost of branches of the ddgraph. As
a result, the ddgraph of this method was declined from graph having 11 nodes,
19 arcs to graph having 3 nodes and 3 arcs. Thus, white-box has to find two
paths S = {(e1, e2, e4, e10), (e1, e2, e5, e7, e9)} for covering all branches of the sub
graph. In summary, the final result is that the complexity time of whole process
is approximately O(n2log(n)). The Table 2 shows the result of the while-box’s
test inputs corresponding with the test paths and constraints of them.

6 Conclusion

As show above, with all black-box’s test paths eliminated, the control flow test-
ing significantly reduces complexity. The time complexity of this method declines
from O(n4) when performing white-box separately to O(n2log(n)) when com-
bining with black-box. In addition, by continually removing the redundant arcs
and nodes after finding complete paths, the proposed method can generate set
of test inputs, which followed by yielding non duplicated paths. As a result, by
take full advantage of black-box result, this method can select a small set of
test inputs that cover all branches of graph with little effort. Does this method
not only propose an approach get most of the black-box, it is also completely
operated to reuse test cases in the context of program evolution.

Albeit, the proposed method has not supported for program unit with loop
yet but in future, for solving this problem, we will focus on detecting and sepa-
rating loop from graph to present it under no loop graph form. Now, this method
is being implemented as a plugin of Eclipse for control flow testing java unit.
In the next time, we will complete the plugin for evaluating performance of this
method in practice.

References

1. McCabe, T., Thomas, J.: Structural testing: a software testing methodology using
the cyclomatic complexity metric. NIST Special Publication 500–99, Washington,
D.C. (1982)

An Efficient Method for Automated Control Flow Testing of Programs 143

2. Bertolino, A., Marre, M.: Automatic generation of path covers based on the control
flow analysis of computer programs. IEEE Trans. Softw. Eng. 20(12), 885–899
(1994)

3. Guangmei, Z., Rui, C., Xiaowei, L., Congying, H.: The automatic generation of
basis set of path for path testing. In: Proceedings of the 14th Asian Test Symposium
(ATS’05) (2005)

4. Marre, M., Bertolino, A.: Using spanning sets for coverage testing. IEEE Trans.
Softw. Eng. 29(11), 974–984 (1993)

5. Gupta, R., Soffa, M.L.: Employing static information in the generation of test
cases. Softw. Test. Verification Reliab. 3(1), 29–48 (1993)

6. Ghiduk, A.S., Said, O., Aljahdali, S.: Basis test paths generation using genetic
algorithm. In: International Conference on Computing The Information Technology
(ICCIT), pp. 303–308 (2012)

7. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

	An Efficient Method for Automated Control Flow Testing of Programs
	1 Introduction
	2 Background
	3 Generating Simplified Ddgraph
	4 Generating Test Input Data
	5 Time Complexity
	6 Conclusion
	References

