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Abstract. We propose a logical framework for modelling and verifying
context-aware multi-agent systems. We extend CTL∗ with belief and
communication modalities, and the resulting logic LOCRS allows us to
describe a set of rule-based reasoning agents with bound on time, memory
and communication. The set of rules which are used to model the systems
is derived from OWL 2 RL ontologies. We provide an axiomatization
of the logic and prove it is sound and complete. We show how Maude
rewriting system can be used to encode and verify interesting properties
of LOCRS models using existing model checking techniques.
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1 Introduction

The vision of pervasive computing technology intends to provide invisible com-
puting environments so that a user can utilize services at any time and
everywhere [1]. Context-awareness is a key concept in pervasive computing.
In context-aware pervasive computing every user may have several comput-
ing devices, where information can be collected by using tiny resource-bounded
devices, such as, e.g., PDAs, smart phones, and wireless sensor nodes [2]. These
systems interact with human users, they often exhibit complex adaptive behav-
iours, they are highly decentralised and can naturally be implemented as multi-
agent systems. An agent is a piece of software that requires to be reactive,
pro-active, and that is capable of autonomous action in its environment to meet
its design objectives.

In the literature, various logical frameworks have been developed for mod-
elling and verification of multi-agent systems [3]. However, such frameworks may
not be very suitable to model context-aware applications. This is because, most
of those existing frameworks consider propositional logic as a simple knowledge
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representation language which is often not suitable for modelling real life com-
plex systems. For example, propositional logic cannot directly talk about prop-
erties of individuals or relations between individuals. Much research in perva-
sive computing has been focused on incorporation of context-awareness features
into pervasive applications by adapting the semantic web technology (see e.g.,
[4–6]), where description logic (DL)-based ontology languages are often used for
context representation and reasoning. DL is a decidable fragment of first order
logic (FOL). In [6], it has been shown how context-aware systems can be mod-
elled as resource-bounded rule-based systems using ontologies. In that paper, the
resources required by the agents to solve a given problem were considered the
time and communication bandwidth. But not the space requirements for reason-
ing. Since context-aware systems often run on resource limited devices, memory
requirement is an important factor for their reasoning. In this paper, we propose
a logical framework based on the earlier work of Alechina and colleagues [7–9],
and the resulting logic LOCRS allows us to describe a set of ontology-driven
rule-based reasoning agents with bound on time, memory, and communication.
In addition to the incorporation of space (memory) requirements for reasoning
in [7], LOCRS also uses first order Horn clause rules derived from OWL 2 RL
ontologies. While the frameworks presented in [7,8] provide a useful basis for
experimentation with both the logical representation and verification of hetero-
geneous agents, it has become clear that a more expressive logical language is
required if these frameworks are to be used for real world context-aware agents.
Though the logic developed by [9] is based on FOL, memory bounds have not
been imposed in that framework. The proposed framework allows us to deter-
mine how much time (measured as rule-firing cycles) are required to generate
certain contexts, how many messages must be exchanged among agents, and how
much space (memory) is required for an agent for the reasoning. For verifica-
tion, we show how we can encode a LOCRS model using the Maude LTL model
checker [10] and verify interesting resource-bounded properties.

The remainder of the paper is organized as follows. In Sect. 2, we discuss how
contexts are represented using OWL 2 RL and SWRL. In Sect. 3, we describe
our model of communicating multi-agent context-aware systems. In Sect. 4, we
develop logic LOCRS , in Sect. 5 we present an example system and experimental
results, and conclude in Sect. 6.

2 Context Modelling

We view context is any information that can be used to identify the status of an
entity. An entity can be a person, a place, a physical or a computing object. This
context is relevant to a user and application, and reflects the relationship among
themselves [11]. A context can be formally defined as a (subject, predicate, object)
triple that states a fact about the subject where — the subject is an entity in
the environment, the object is a value or another entity, and the predicate is
a relationship between the subject and object. According to [11], “if a piece
of information can be used to characterize the situation of a participant in an
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interaction, then that information is context”. For example, we can represent
a context “Fiona is the caregiver of Tracy” as (Fiona, isCareGiverOf, Tracy).
Here, the caregiver of a patient is dynamically identified based on the care status
of the caregiver. For context modelling we use OWL 2 RL, a profile of the new
standardization OWL 2, and based on pD∗ [12] and the description logic program
(DLP) [13]. We choose OWL 2 RL because it is more expressive than the RDFS
and suitable for the design and development of rule-based systems. An OWL
2 RL ontology can be translated into a set of Horn clause rules based on [13].
Furthermore, we express more complex rule-based concepts using SWRL [14]
which allow us to write rules using OWL concepts. In our framework, a context-
aware system composed of a set of rule-based agents, and firing of rules that infer
new facts may determine context changes and representing overall behaviour of
the system.

For illustration, we construct an ontology-based context-aware model for a
healthcare epilepsy scenario adapted from [15]. The scenario is based on the
monitoring of epileptic patients to detect epileptic seizures. An epileptic alarm
may activate several actions such as warning the patient about potential danger,
informing patient’s caregivers to take appropriate actions, and sending SMS
messages to patient’s relatives who are currently near to the patient.

“The goal of the epileptic patients’ monitoring context-aware system is to
detect the seizures, and to react in the following ways: (i) notify the epileptic
patient of an upcoming seizure; and (ii) notify his/her nearby caregivers of an
upcoming seizure of the patient by showing a map with the location of the patient.
The caregivers who receive the notification for help should be (i) assigned as one
of the caregivers of that particular patient; (ii) available for helping; and (iii)
physically close to the patient. Upon a notification for help, caregivers may either
accept or reject the request for helping the epileptic patient. When a particular
caregiver accepts to help, the other caregivers who had received the notification
for help are informed that a certain caregiver has already accepted to help that

Fig. 1. A fragment of the epileptic patients’ monitoring ontology
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Fig. 2. Example SWRL rules

patient” [15]. Using Protégé [16], we build an OWL 2 RL ontology to capture
the static behaviour of the system. A fragment of this ontology is depicted in
Fig. 1. The dynamic aspect of the system is captured using SWRL rules. A snap-
shot of some SWRL rules is given in Fig. 2. In order to design a context-aware
rule-based system from the above ontology, we extract Horn clause rules using
the technique described in [6]. We show an example system encoding in Maude
in Sect. 5 based on the logic developed in Sect. 4.

3 Context-Aware Agents

In our model a multi-agent context-aware system consists of nAg (≥ 1) individ-
ual agents Ag = {1, 2, . . . , nAg}. Each agent i ∈ Ag has a program, consisting
of Horn clause rules of the form P1, P2, . . . , Pn → P (derived from OWL 2
RL and SWRL), and a working memory, which contains ground atomic facts
(contexts) taken from ABox representing the initial state of the system. In the
rule, the antecedents P1, P2, . . . , Pn and the consequent P are context informa-
tion. The antecedents of the rule form a complex context which is a conjunction
of n contexts. In a resource-bounded system, it is quite unrealistic to presume
that a single agent can acquire and understand available contextual informa-
tion and infer new contexts alone. Thus sharing knowledge among agents is
an efficient way to build context-aware systems. In our model, agents share
a common ontology and communication mechanism. To model communication
between agents, we assume that agents have two special communication prim-
itives Ask(i, j, P ) and Tell(i, j, P ) in their language, where i and j are agents
and P is an atomic context not containing an Ask or a Tell . Ask(i, j, P ) means
‘i asks j whether the context P is the case’ and Tell(i, j, P ) means ‘i tells j that
context P ’ (i �= j). The positions in which the Ask and Tell primitives may
appear in a rule depends on which agent’s program the rule belongs to. Agent i
may have an Ask or a Tell with arguments (i, j, P ) in the consequent of a rule;
e.g., P1, P2, . . . , Pn → Ask(i, j, P ) whereas agent j may have an Ask or a Tell
with arguments (i, j, P ) in the antecedent of the rule; e.g., Tell(i, j, P ) → P is
a well-formed rule (we call it trust rule) for agent j that causes it to believe i
when i informs it that context P is the case. No other occurrences of Ask or
Tell are allowed. When a rule has either an Ask or a Tell as its consequent, we
call it a communication rule. All other rules are known as deduction rules. These
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include rules with Asks and Tells in the antecedent as well as rules containing
neither an Ask nor a Tell . Note that OWL 2 is limited to unary and binary pred-
icates and it is function-free. Therefore, in the Protégé editor all the arguments
of Ask and Tell are represented using constant symbols and these annotated
symbols are translated appropriately when designing the target system using the
Maude specification.

4 Logic LOCRS

A DL knowledge base (KB) has two components: the Terminology Box (TBox )
T and the Assertion Box (ABox ) A. The TBox introduces the terminology of a
domain, while the ABox contains assertions about individuals in terms of this
vocabulary. The TBox is a finite set of general concept inclusions (GCI ) and
role inclusions. A GCI is of the form C � D where C, D are DL-concepts and a
role inclusion is of the form R � S where R, S are DL-roles. We may use C ≡ D
(concept equivalence) as an abbreviation for the two GCI s C � D and D � C
and R ≡ S (role equivalence) as an abbreviation for R � S and S � R. The
ABox is a finite set of concept assertions in the form of C(a) and role assertions
in the form of R(a, b).

Definition 1 (Interpretation of DL-knowledge bases). An Interpretation
of a DL knowledge base is a pair I =< ΔI , .I > where ΔI is a non-empty set
(the domain of interpretation) and .I is a function that maps every concept to
a subset of ΔI , every role to a subset of ΔI × ΔI , and each individual name to
an element of the domain ΔI .

An interpretation I satisfies the concept assertion C(a), denoted by I |=
C(a), iff aI ∈ CI and it satisfies the role assertion R(a, b), denoted by I |=
R(a, b), iff (aI , bI) ∈ RI , where a and b are individuals.

We now introduce the logic LOCRS which is an extension of the logic devel-
oped by [7]. Let us define the internal language of each agent in the system.
Let the set of agents be Ag = {1, 2, ...., nAg}, C = {C1, C2, . . . Cn} be a finite
set of concepts, R = {R1, R2, . . . , Rn} be a finite set of roles, and A be a finite
set of assertions. We also define a set Q = {Ask(i, j, P ), T ell(i, j, P )}, where
i, j ∈ Ag and P ∈ C ∪ R. Note that C and R are the sets of concepts and roles
that appear in A. Let 	 = {r1, r2, . . . , rn} be a finite set of rules of the form
P1, P2, . . . , Pn → P , where n ≥ 0, Pi, P ∈ C ∪ R ∪ Q for all i ∈ {1, 2, . . . , n}
and Pi �= Pj for all i �= j. For convenience, we use the notation ant(r) for the
set of antecedents of r and cons(r) for the consequent of r, where r ∈ 	. Let
g : ℘(A) → 	 be a substitution function that uses a forward-chaining strategy to
instantiate the rule-base. We denote by G(	) the set of all the ground instances
of the rules occurring in 	, which is obtained using g. Thus G(	) is finite. Let
r̄ ∈ G(	) be one of the possible instances of a rule r ∈ 	. Note that C(a),
R(a, b), Ask(i, j, C(a)), Ask(i, j, R(a, b)), Tell(i, j, C(a)), and Tell(i, j, R(a, b))
are ground facts, for all C ∈ C, R ∈ R. The internal language L includes all the
ground facts and rules. Let us denote the set of all formulas by Ω which is finite.
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In the modal language of L we have belief operator Bi for all i ∈ Ag. We assume
that there is a bound on communication for each agent i which limits agent
i to at most nC(i) ∈ Z

∗ messages. Each agent has a communication counter,
cp=n

i , which starts at 0 (cp=0
i ) and is not allowed to exceed the value nC(i).

We divide agent’s memory into two parts as rule memory (knowledge base) and
working memory. Rule memory holds set of rules, whereas the facts are stored
in the agent’s working memory. Working memory is divided into static memory
(SM (i)) and dynamic memory (DM (i)). The DM (i) of each agent i ∈ Ag is
bounded in size by nM (i) ∈ Z

∗, where one unit of memory corresponds to the
ability to store an arbitrary formula. The static part contains initial information
to start up the systems, e.g., initial working memory facts, thus its size is deter-
mined by the number of initial facts. The dynamic part contains newly derive
facts as the system moves. Only formulas stored in DM (i) may get overwritten
if it is full. Note that unless otherwise stated, in the rest of the paper we shall
assume that memory means DM (i). For convenience, we define the following
sets: CPi = {cp=n

i | n = {0, . . . , nC(i)}}, CP =
⋃

i∈Ag
CPi.

The syntax of LOCRS includes the temporal operators of CTL∗ and is defined
inductively as follows:

– 
 (tautology) and start (a propositional variable which is only true at the
initial moment of time) are well-formed formulas (wff) of LOCRS ;

– cp=n
i (which states that the value of agent i’s communication counter is n) is

a wff of LOCRS for all n ∈ {0, . . . , nC(i)} and i ∈ Ag;
– BiC(a) (agent i believes C(a)), BiR(a, b) (agent i believes R(a, b)), and Bir

(agent i believes r) are wffs of LOCRS for any C ∈ C, R ∈ R, r ∈ 	 and
i ∈ Ag;

– BkAsk(i, j, C(a)), BkAsk(i, j, R(a, b)), BkTell(i, j, C(a)), and BkTell(i, j,
R(a, b)) are wffs of LOCRS for any C ∈ C, R ∈ R, i, j ∈ Ag, k ∈ {i, j},
and i �= j;

– If ϕ and ψ are wffs of LOCRS , then so are ¬ϕ and ϕ ∧ ψ;
– If ϕ and ψ are wffs of LOCRS , then so are Xϕ (in the next state ϕ), ϕUψ (ϕ

holds until ψ), Aϕ (on all paths ϕ).

Other classical abbreviations for ⊥, ∨, → and ↔, and temporal operations:
Fϕ ≡ 
Uϕ (at some point in the future ϕ) and Gϕ ≡ ¬F¬ϕ (at all points in
the future ϕ), and Eϕ ≡ ¬A¬ϕ (on some path ϕ) are defined as usual.

The semantics of LOCRS is defined by LOCRS transition systems which are
based on ω-tree structures. Let (S, T ) be a pair where S is a set and T is a binary
relation on S that is total, i.e., ∀s ∈ S · ∃s′ ∈ S · sTs′. A branch of (S, T ) is an
ω-sequence (s0, s1, . . .) such that s0 is the root and siTsi+1 for all i ≥ 0. We
denote B(S, T ) to be the set of all branches of (S, T ). For a branch π ∈ B(S, T ),
πi denotes the element si of π and π≤i is the prefix (s0, s1, . . . , si) of π. A LOCRS
transition system M is defined as M = (S, T, V ) where

– (S, T ) is a ω-tree frame
– V : S×Ag → ℘(Ω∪CP ); we define the belief part of the assignment V B(s, i) =

V (s, i)\CP and the communication counter part V C(s, i) = V (s, i)∩CP . We
further define V M (s, i) = {α|α ∈ DM (i)}. V satisfies the following conditions:
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1. |V C(s, i)| = 1 for all s ∈ S and i ∈ Ag.
2. If (s, t) ∈ T and cp=n

i ∈ V (s, i) and cp=m
i ∈ V (t, i) then n ≤ m.

– we say that a rule r : P1, P2, . . . , Pn → P is applicable in a state s of an agent
i if ant(r̄) ∈ V (s, i) and cons(r̄) /∈ V (s, i). The following conditions on the
assignments V (s, i), for all i ∈ Ag, and transition relation T hold in all models:
1. for all i ∈ Ag, s, s′ ∈ S, and r ∈ 	, r ∈ V (s, i) iff r ∈ V (s′, i). This describes

that agent’s program does not change.
2. for all s, s′ ∈ S, sTs′ holds iff for all i ∈ Ag, V (s′, i) = V (s, i)∪{cons(r̄)}∪

{Ask(j, i, C(a))}∪{Tell(j, i, C(a)}∪{Ask(j, i, R(a, b))}∪{Tell(j, i, R(a, b)}.
This describes that each agent i fires a single applicable rule instance of a
rule r, or updates its state by interacting with other agents, otherwise its
state does not change.

The truth of a LOCRS formula at a point n of a path π ∈ B(S, T ) is defined
inductively as follows:
– M, π, n |= 
,
– M, π, n |= start iff n = 0,
– M, π, n |= Biα iff α ∈ V (s, i),
– M, π, n |= cp=m

i iff cp=m
i ∈ V (s, i),

– M, π, n |= ¬ϕ iff M, π, n �|= ϕ,
– M, π, n |= ϕ � ψ iff M, π, n |= ϕ and M, π, n |= ψ,
– M, π, n |= Xϕ iff M, π, n + 1 |= ϕ,
– M, π, n |= ϕUψ iff ∃m ≥ n such that ∀k ∈ [n,m) M, π, k |= ϕ and M, π,m |=

ψ,
– M, π, n |= Aϕ iff ∀π′ ∈ B(S, T ) such that π′

≤n = π≤n, M, π′, n |= ϕ.

We now describe conditions on the models. The transition relation T cor-
responds to the agent’s executing actions 〈acti, act2, . . . , actnAg〉 where acti is
a possible action of an agent i in a given state s. The set of actions that each
agent i can perform are: Rulei,r̄,β (agent i firing a rule instance r̄ and adding
cons(r̄) to its working memory and removing β), Copyi,α,β (agent i copying α
from other agent’s memory and removing β, where α is of the form Ask(j, i, P)
or Tell(j, i, P), and Idlei (agent i does nothing but moves to the next state).
Intuitively, β is an arbitrary facts which gets overwritten if it is in the agent’s
dynamic memory DM (i). If agent’s memory is full |V M (s, i)| = nM (i) then we
require that β has to be in V M (s, i). Not all actions are possible in a given state.
For example, there may not be any matching rule instances. When the counter
value reaches to nC(i), i cannot perform copy action any more. Let us denote the
set of all possible actions by agent i in a given state s by Ti(s) and its definition
is given below:

Definition 2 (Available actions). For every state s and agent i,
1. Rulei,r,β ∈ Ti(s) iff r ∈ V (s, i), ant(r̄) ⊆ V (s, i), cons(r̄) /∈ V (s, i), β ∈ Ω or

if |V M (s, i)| = nM (i) then β ∈ V M (s, i);
2. Copyi,α,β ∈ Ti(s) iff there exists j �= i such that α ∈ V (s, j), α /∈ V (s, i),

cp=n
i ∈ V (s, i) for some n<nC(i), α is of the form Ask(j, i, P ) or Tell(j, i, P),

and β as before;
3. Idlei is always in Ti(s).
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Definition 3 (Effect of actions). For each i ∈ Ag, the result of performing
an action acti in state s is defined if acti ∈ Ti(s) and has the following effect on
the assignment of formulas to i in the successor state s′:

1. if acti is Rulei,r,β: V (s′, i) = V (s, i) \ {β} ∪ {cons(r̄)};
2. if acti is Copyi,α,β , cp=n

i ∈ V (s, i) for some n ≤ nC(i): V (s′, i) = V (s, i) \
{β, cp=n

i } ∪ {α, cp=n+1
i };

3. if acti is Idlei: V (s′, i) = V (s, i).

Now, the definition of the set of models corresponding to a system of rule-
based reasoners is given below:

Definition 4. M(nM , nC) is the set of models (S, T, V ) which satisfies the fol-
lowing conditions:

1. cp=0
i ∈ V (s0, i) where s0 ∈ S is the root of (S, T ), ∀i ∈ Ag;

2. ∀s, s′ ∈ S, sTs′ iff for some tuple of actions 〈acti, act2, . . . , actnAg〉, acti ∈
Ti(s) and the assignment in s′ satisfies the effects of acti, ∀i ∈ Ag;

3. ∀s ∈ S and a tuple of actions 〈acti, act2, . . . , actnAg〉, if acti ∈ Ti(s),∀i ∈ Ag,
then ∃s′ ∈ S s.t. sTs′ and s′ satisfies the effects of acti, ∀i ∈ Ag;

4. The bound on each agent’s memory is set by the following constraint on the
mapping V : |V M (s, i)| ≤ nM (i),∀s ∈ S,i ∈ Ag.

Note that the bound nC(i) on each agent i’s communication ability (no
branch contains more than nC(i) Copy actions by agent i) follows from the fact
that Copyi is only enabled if i has performed fewer than nC(i) copy actions in
the past. Below are some abbreviations which will be used in the axiomatization:

– ByRulei(P, n) = ¬BiP ∧ cp=n
i ∧

∨
r∈�∧cons(r̄))=P (Bir∧

∧
Q∈ant(r̄) BiQ). This

formula describes the state before the agent comes to believe formula P by
the Rule transition, n is the value of i’s communication counter, P and Q are
ground atomic formulas.

– ByCopyi(α, n) = ¬Biα∧Bjα∧ cp=n−1
i , where α is of the form Ask(j, i, P ) or

Tell(j, i, P ), i, j ∈ Ag and i �= j.

Now we introduce the axiomatization system.

A1 All axioms and inference rules of CTL∗ [17].
A2

∧

α∈DM (i)

Biα → ¬Biβ for all DM (i) ⊆ Ω such that |DM (i)| = nM (i) and

β /∈ DM (i). This axiom describes that, in a given state, each agent can
store maximally at most nM (i) formulas in its memory,

A3
∨

n=0,...,nC(i)

cp=n
i ,

A4 cp=n
i → ¬cp=m

i for any m �= n,
A5 Bir∧

∧
P∈ant(r̄) BiP ∧cp=n

i ∧¬Bicons(r̄) → EX(Bicons(r̄)∧cp=n
i ), i ∈ Ag.

This axiom describes that if a rule matches, its consequent belongs to some
successor state.
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A6 cp=n
i ∧¬Biα∧Bjα → EX(Biα∧cp=n+1

i ) where α is of the form Ask(j, i, P )
or Tell(j, i, P ), i, j ∈ Ag, j �= i, n < nC(i). This axiom describes transitions
made by Copy with communication counter increased.

A7 EX(Biα∧Biβ) → Biα∨Biβ, where α and β are not of the form Ask(j, i, P )
and Tell(j, i, P ). This axiom says that at most one new belief is added in
the next state.

A8 EX(Biα∧ cp=n
i ) → Biα∨ByRulei(α, n)∨ByCopyi(α, n) for any α ∈ ∪Ω.

This axiom says that a new belief can only be added by one of the valid
reasoning actions.

A9a start → cp=0
i for all i ∈ Ag. At the start state, the agent has not performed

any Copy actions.
A9b ¬EX start. start holds only at the root of the tree.
A10 Bir where r ∈ 	 and i ∈ Ag. This axiom tells agent i believes its rules.
A11 ¬Bir where r /∈ 	 and i ∈ Ag. This axiom tells agent i only believes its

rules.
A12 ϕ → EXϕ, where ϕ does not contain start. This axiom describes an Idle

transition by all the agents.
A13

∧
i∈Ag

EX(
∧

α∈Γi
Biα ∧ cp=ni

i ) → EX
∧

i∈Ag
(
∧

α∈Γi
Biα ∧ cp=ni

i ) for any
Γi ⊆ Ω. This axiom describes that if each agent i can separately reach a
state where it believes formulas in Γi, then all agents together can reach a
state where for each i, agent i believes formulas in Γi.

Let us now define the logic obtained from the above axiomatisation system.

Definition 5. L(nM , nC) is the logic defined by the axiomatisation A1 - A13.

Theorem 1. L(nM , nC) is sound and complete with respect to M(nM , nC).

Sketch of Proof. The proof of soundness is standard. The proofs for axioms and
rules included in A1 are given in [17]. Axiom A2 assures that at a state, each
agent can store maximally at most nM (i) formulas in its memory. Axioms A3
and A4 force the presence of a unique counter for each agent to record the
number of copies it has performed so far. In particular, A3 makes sure that at
least a counter is available for any agent and A4 guaranties that only one of
them is present. In the following, we provide the proof for A5. The proofs for
other axioms are similar.

Let M = (S, T, V ) ∈ M(nM , nC), π ∈ B(S, T ) and n ≥ 0. We assume that
M, π, n |= Bir ∧

∧
P∈ant(r̄) BiP ∧ cp=m

i ∧ ¬Bicons(r̄), for some r ∈ 	, and
|V M (s, i)| ≤ nM (i). Then P ∈ V (πn, i) for all P ∈ ant(r̄), and cons(r̄) /∈
V (πn, i). This means that the action performed by i is Rulei,r,β . According to the
definition of M(nM , nC), ∃s′ ∈ S ·πnTs′ and V (s′, i) = V (πn, i)\{β}∪{cons(r̄)}.
Let π′ be a branch in B(S, T ) such that π′

≤n = π≤n and π′
n+1 = s′. Then we

have M, π′, n + 1 |= Bicons(r̄) ∧ cp=m
i . Therefore, it is obvious that M, π, n |=

EX(Bicons(r̄) ∧ cp=m
i ).

Completeness can be shown by constructing a tree model for a consistent
formula ϕ. This is constructed as in the completeness proof introduced in [17].
Then we use the axioms to show that this model is in M(nM , nC). Due to space
limitations we omit the proof of this result. �
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5 Maude Encoding

We build a multi-agent rule-based system whose rules are derived from the ontol-
ogy of the healthcare epilepsy scenario described in Sect. 2. The system consists
of four agents: Patient (1), Planner (2), CareGiver (3), and HealthProfessional
(4). The set of rules and initial working memory facts that are distributed to
the agents are shown in Table 1. For the specification and verification of the
system we use Maude LTL model checker. The choice of LTL is not essential,
it is straightforward to encode a LOCRS model for a standard model checker.
We use LTL because it is the logic supported by the Maude system used in our
case study. We chose the Maude LTL model checker because it can model check
systems whose states involve arbitrary algebraic data types. The only assump-
tion is that the set of states reachable from a given initial state is finite. Rule
variables can be represented directly in the Maude encoding, without having to
generate all ground instances resulting from possible variable substitutions.

Due to space limitation we omit the encoding here, however, it is similar
to [6], apart from the implementation of agents memory bounds. We verified a
number of interesting resource-bounded properties of the system including the
following:

Table 1. Horn-Clause rules for the epileptic patients’ monitoring context-aware system
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G(B1EpilepticAlarm(′Tracy)
→ X nB1Tell(1 , 2 , hasNotifiedPlanner(′Tracy ,′ DownTown))

∧ (msg1=m) ∧ (nM (1 ) ≥ l))

the above property specifies that whenever there is an epileptic alarm for Tracy,
agent 1 notifying agent 2 that “Tracy” has hazardous activity and she is located
in “DownTown” within n time steps, while exchanging m messages and space
requirement for agent 1 is at least l units, and

G(B2Tell(1 , 2 , hasNotifiedPlanner(′Tracy ,′ DownTown))
→ X nB2AcceptRequest(′Fiona,′ Tracy) ∧ (msg2=m) ∧ (nM (2 ) ≥ l))

which specifies that whenever agent 2 gets notified that “Tracy” has hazardous
activity and she is located in “DownTown” it believes that care giver Fiona
accepts the request within n time steps, while exchanging m messages and space
requirement for agent 2 is at least l units.

The above properties are verified as true when the values of n, m, and l are
3, 1, and 3 in the first property, and the values of n, m, and l are 9, 3, and 2 in
the second property. However, the properties are verified as false and the model
checker returns counterexamples when we assign a values to n, m, and l which
are less than 3, 1, and 3 in the first property, and values to n, m, and l which
are less than 9, 3 and 2 in the second property.

6 Conclusions and Future Work

In this paper, we presented a formal logical framework for modelling and verifying
context-aware multi-agent systems. Where agents reason using ontology-driven
first order Horn clause rules. We considered space requirement for reasoning in
addition to the time and communication resources. We modelled an ontology-
based context-aware system to show how we can encode a LOCRS model using
Maude LTL model checker and formally verify its resource-bounded properties.
In future work, we would like to develop a framework that will allow us to design
context-aware system automatically from a given scenario described in natural
languages. This requires extracting specification to build its corresponding ontol-
ogy for the desired system.
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