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Abstract. Location-based applications (LBAs) running on smartphones
offer features that leverage the user’s geolocation to provide enhanced
services. While there exist LBAs that require continuous geolocation
tracking, we instead focus on LBAs such as location-based reminders
or location-based advertisements that need a geolocation fix only at rare
points during the day. Automatically and intelligently triggering geolo-
cation acquisition just as it is needed for these types of applications
produces the tangible benefit of increased battery life. To that end, we
implemented a scheme to intelligently trigger geolocation fixes only on
transitions between specific modes of transportation (such as driving,
walking, and running), where these modes are detected on the smart-
phone using a low-power, high-resolution activity recognition system.
Our experiments show that this approach consumes little power (approx-
imately 225 mW for the activity recognition system) and correctly trig-
gers geolocation acquisition at transitional moments with a median delay
of 9 seconds from ground-truth observations. Most significantly, our sys-
tem performs 41x fewer acquisitions than a competitive accelerometer-
assisted binary classification scheme and 243x fewer than continuous
tracking over our collected data set.

1 Introduction

Location-based applications (LBAs) running on modern commodity smartphones
offer features that leverage the user’s current or past physical location to pro-
vide some enhanced service. For example, commercial smartphone LBAs cur-
rently exist that automatically acquire geolocation fixes (represented as latitude,
longitude coordinates) in order to keep the user’s health statistics [10], derive
vehicular traffic conditions [38], and warn drivers of nearby hazards [36].

While such capabilities are compelling, they are limited in practice due to the
high rate of energy consumption from the geolocation fix acquisition process.
A fix can be attained through GPS, which has high precision outdoors but
cannot function indoors, or trilateration using WiFi or cellular towers, which
can work indoors but with typically lower precision depending on the density of
surrounding signal sources [5,35,13].
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Although our work is relevant to either means of geolocation positioning,
we note that GPS achieves the most accuracy but at the highest battery cost.
Studies have shown that continuous use of GPS can deplete a smartphone’s
battery within one day [20,29,21]. As a result, researchers in the area of energy-
efficient geopositioning have looked at better ways of performing fix acquisitions,
for example through duty-cycled scheduling with accelerometer-assisted motion
detection [1,39,22]. However, such approaches are based on the fundamental
assumption that LBAs need continuous geolocation tracking.

In this paper we focus on LBAs that require automated geolocation fixes only
at specific points of the day to facilitate user engagement, thereby allowing an
underlying system to trigger fix acquisition very rarely. Examples are:

• Location-based reminders: Smartphone applications like Apple’s voice-driven
Siri [2] allow the user to set reminders whose UI alert is activated only at a
target location, such as an alert for “Remind me to finish writing the report
when I get home.”

• Location-based advertising: Advertisement offers, such as coupons, can be
proactively pushed to users who are in the vicinity of a business [32].

• Location-based tourist recommendations: Tourists who drive and walk
through a city can be shown recommended places to visit [6].

Because these types of LBAs require only rare geolocation fixes, namely at the
location where the user becomes engaged with the LBA, continuous tracking is
wasteful. Instead, battery power could be conserved if the geolocation software
could trigger a fix acquisition in a just-in-time manner. Using a location-based
reminder as an example, an ideal oracle system would acquire a fix right as the
user reaches the target location, and the resulting proximity would then activate
the reminder.

In this paper we approximate such an oracle by defining transitional periods
between transportation modes to be opportune points to acquire a geolocation
fix. For example, if the user has been driving and then transitions to walking,
then most likely the user has parked his car and gotten out to walk, and that
moment would be an opportunity to acquire a fix. Other identifiable transitions
would also be good opportunities.

We implemented the above scheme to intelligently trigger geolocation fixes
only on transitions between specific modes of transportation, where the modes
are detected on the smartphone using a low-power, high-resolution activity recog-
nition system that acquires real-time 3-D accelerometer data, performs signal
processing to extract features, and applies a trained machine learning model to
determine the most likely means of transportation (such as driving, walking, run-
ning, bicycling, or idling). Our experiments show that this approach consumes
little power (approximately 225 mW for the activity recognition system) and cor-
rectly triggers geolocation acquisition at the correct transitional moments with a
median delay of 9 seconds from ground-truth observations. Most significantly, it
performs 41x fewer acquisitions than a competitive accelerometer-assisted binary
classification scheme and 243x fewer than continuous tracking over our collected
data set.
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The rest of this paper is organized in the following manner. In Section 2 we
discuss related work in the area of energy-efficient geolocation positioning. In
Section 3 we provide an overview of our system, and in Sections 4 and 5 we
describe our high-resolution activity recognition component and our transition-
triggered geolocation fix acquisition systems, respectively. We show experimental
results in Section 6 and then conclude in Section 7.

2 Related Work

Our work differs from previous research in the area of energy-efficient geolocation
acquisition (e.g. [8,17,39]) in that we do not make the assumption that LBAs
require continuous tracking. Instead, we focus on LBAs that need a geolocation
fix only at specific and rare points in the day.

Previous researchers in this area have observed that (continuous) geolocation
acquisitions can be disabled during phases of the day when the user is idle, such
as when the user is asleep. One approach to implementing this scheme is to use
the accelerometer at a coarse-grained resolution to detect only two states: idle
versus non-idle [1,39,34,16,27]. These works do not exploit the fact that non-idle
states can be broken down further to identify transitions between them. Other
approaches detect non-idle states by using GPS itself as a sensor [17,37,11].

The work in [22] uses high-resolution activity recognition with the accelerome-
ter to identify different modes of activity, which can then be used to inform GPS
duty-cycle scheduling. Again, this work differs from ours is that they assume a
need for continuous tracking; specifically, they look to expend a battery energy
budget. The work in [26] uses the accelerometer to distinguish between standing
and sitting to assist localization down to stores in which people tend to stand
or sit (such as grocery stores and coffee shops).

In our work we define a finite state machine (FSM) that uses specific transi-
tions between known user state vertices to trigger geolocation acquisition. The
work in [37] also uses a FSM but for the opposite problem: they use sensors
(including GPS) to determine the unknown user state.

Previous efforts have also looked at exploiting historical data. For example,
the work in [28] adapts GPS duty-cycling based on whether location uncertainty
has exceeded a threshold for a given location and time historical combination.
The work in [25] discovers association rules that allow low-power sensors to
replace high-power sensors. Our work differs in that our system does not require
accumulated history.

Our system uses an activity recognition component to determine the user’s
mode of transportation so that transitions between them can be detected. Ac-
tivity recognition is the process of inferring the user’s physical behavior from
sensor data and stems from work in the body-sensor community. Early research
(e.g. [4,31,19,7,15]) relied on custom sensor hardware mounted on the human
body. Modern smartphones with built-in sensors are now the platform of choice
for mobile activity recognition research. Recent work (e.g. [23,22,18,33]) has
demonstrated that on-device recognition is feasible and benefits from the fact
that users carry smartphones with them throughout most of the day.
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3 Design Overview

While there exist many location-based application (LBA) domains that require
continuous geolocation tracking, such as health monitoring and vehicular traffic
aggregation, we instead focus on LBAs for which continuous tracking is super-
fluous and unnecessarily depletes the battery; indeed, such LBAs may need a
geolocation fix only at rare points during the day. Automatically and intelli-
gently triggering geolocation acquisition just as it is needed for these types of
applications produces the tangible benefit of increased battery life for users.

As a concrete example, consider a user who wants to set a location-based
reminder. While the user is at work, he creates an alert that should activate
when he arrives at his targeted home. We make the assumption that his home’s
address is in his smartphone’s addressbook and has already been resolved to a
geocoordinate. Such a reminder can be implemented in a number of ways:

• Continuous tracking. The system can continuously track the user as he
drives from work to home. To save power, it can use coarse-grained but lower-
power cellular tower geopositioning to determine the user’s location with an
error of about 300m to 400m [8]. When the user is within that error range
to his home, the system may switch to GPS to get accuracy to within 10m.
Once the user is within a proximity tolerance of the target, the reminder
system activates the alert.

• Just-in-time fix. The system can, somehow, trigger one geolocation fix
just as the user arrives at his home, and because he is within a proximity
tolerance, the reminder system activates the alert.

• Sensor fingerprinting to derive semantic location. The system can use
sensor fingerprints (i.e. features extracted from on-device sensors) to infer
that the user has arrived at his home, which is a semantic location rather
than a geocoordinate. Previous work has looked at WiFi, Bluetooth, audio,
light, and other sensors as inputs to a classifier [3,9]. Since this approach
requires training fingerprints to be taken, its generalizability is still an open
question.

Our scheme follows the just-in-time approach. While triggering a geolocation
fix acquisition before knowing that the user has arrived at a location may seem
oracular, we posit that such triggering can be implemented in a general manner
by observing transitions between user activity states, where each state represents
a mode of transportation. Our key assumption is that particular transitions are
indicative of moments in time when the user is amenable to engagement with
an LBA, and so a fix should be triggered on these transitions.

We implemented our scheme on Android smartphones, and Figure 1 shows a
block diagramof the system.At the bottom-most layer, a low-power accelerometer-
only activity recognition component generates a continuous stream of inferred hu-
manmodes of transportation. This component uses a supervisedmachine learning
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Fig. 1. High-level architecture of our system. The black boxes are software components
while white boxes are data or models.

classifier that loads a trained C4.5 decision tree model into memory, reads
real-time accelerometer signals, and produces a classification label. While the ac-
tivity recognition is accurate on single-activity behavior in lab environments,
it produces endemic misclassification errors when faced with real-world,
mixed-activity behavior. To address this problem, we apply a smoothing window.
The activity recognition is discussed in Section 4.

The transition manager listens to the stream of smoothed activity labels and
manages a finite state machine (FSM) to detect relevant transitions. The ver-
tices and edges in the FSM have labels that correspond to the possible activity
recognition labels. The transition manager is discussed in Section 5.

The output of the transition manager are transition messages sent to any lis-
tening application, and in our Android-specific implementation, these messages
are realized as Android Intents. Upon receiving such a message, the listening
LBA should then acquire a geolocation fix and check to see if the the resulting
geolocation coordinate satisfies its LBA-specific logic. For example, the coordi-
nate could trigger a location-based reminder or a location-based advertisement.

An alternative implementation could have the transition manager acquire the
geolocation and then include the resulting coordinates in its Intent message to all
listeners. However, this approach would bypass Android’s security and privacy
model where each application must declare its use of geolocation services (in its
manifest file), which is then surfaced to the user in the application’s description
before it can be downloaded from the Google Play store.
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Fig. 2. Activity recognition end-to-end data collection, training, and classification

4 High-Resolution Activity Recognition

Smartphone-based physical activity recognition [4,22,18] infers human activities
by analyzing on-board smartphone sensor signals, and in our framework we use
supervised machine learning to make these inferences. The end-to-end system
comprises two distinct phases, as shown in Figure 2. First, in an offline train-
ing phase, test participants perform various physical activities while wearing
smartphones that run data-collection software. After extracting relevant sensor
features, the model is then trained that maps such features back to the physical
activities. Second, in an online classification phase that runs on a smartphone,
the model is deployed onto smartphones and loaded by our activity recognition
manager component to perform on-board, real-time classification of sensor data
that can drive higher-level applications.

The activity recognition manager’s sole input is the accelerometer, and the
periodic output is a callback containing an activity represented as a string, such
as Running; downstream clients then implement callback listener functions to
receive them. We defined the following activities: Walking, Running, Driving,
Bicycling, and Idling (which comprises standing and sitting).

4.1 Offline Model Training

To train the machine learning model, we had users perform single-activity,
scripted behavior while an Android application (running on a Samsung Nexus S
smartphone) recorded tri-axis accelerometer readings at 32 Hz and labelled them
with the user’s activity.

In each resulting file, we trimmed off the first 10 and the last 10 seconds’
worth of samples. There were 17 total users, all from our research lab and in
the age range of late-20s to 50s. The data totalled 397 minutes, or over 6 hours,
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across the activities mentioned earlier: walking (on a flat surface), walking up
stairs, walking down stairs, running, bicycling, driving, standing, and sitting.
We asked the users to hold the phones in any way they wanted, but most ended
up placing the phone in their front right pants pocket. For sitting, users placed
the phone either in that pocket or on their desk. For driving, users placed the
phone either in that pocket, in a bag, or on a windshield-attached cradle. For
bicycling, users placed the phone in a belt-mounted hip holster.

Because the phone can be oriented in different directions on a person’s body,
we normalize the accelerometer readings into three orientation-independent time
series: Cartesian magnitude of the acceleration vector; magnitude of projection
onto the true horizontal plane; and projection onto the true vertical axis. To
derive the latter two time series, our projection algorithm computes the dynamic
component of device acceleration in the true global vertical plane and the true
horizontal plane perpendicular to the vertical plane. Our projection algorithm
is based on past work [24,22].

The resulting three time series (Cartesian magnitude of the acceleration vec-
tors, magnitude of projection onto the true horizontal plane, and projection onto
the true vertical axis) are then captured with a 128-sample sliding window with
50% overlap.

For each of the three time series, we computed features using both the time
and frequency domains. To obtain frequency domain information, we ran an FFT
and follow standard steps to compute a correctly-scaled magnitude frequency
response. We are constantly evaluating new features, but at the time of this
writing, the features we use are:

• time-domain mean
• time-domain standard deviation
• time-domain real-valued discrete power
• time-domain entropy
• frequency-domain energy
• the frequency fmax with the highest magnitude
• the magnitude of fmax

• the frequency fweighted−mean calculated as the weighted mean of the top-5
highest-magnitude frequencies weighted by magnitude

• the weighted variance of the top-5 highest-magnitude frequencies weighted
by magnitude.

These 9 features are extracted from each of the 3 time series, resulting in 27
total features that are concatenated together into one feature vector.

We used the Weka [14] off-the-shelf machine learning program to build our
model offline on a desktop computer. The software provides a variety of different
machine algorithms, including Naive Bayes, SVM, and kNN, and after testing
them, we found that the C4.5 multi-class decision tree [30] produced the best
results. Additional benefits of using a decision tree are that its memory footprint
is low (less than 10 kB resident in memory) and its time to classify a feature



Intelligent Energy-Efficient Triggering of Geolocation Fix Acquisitions 111

vector is small (on the order of milliseconds), characteristics that are important
when executing on a phone. Classifying a real-valued feature vector is a matter
of walking down a tree structure and making a single floating-point comparison
at each level, and in our work the decision tree never grew taller than 10 levels.
The resulting trained model is serialized to a JSON file that contains data struc-
tures, statistics, and other metadata that are deserialized later on the phone
by the activity recognition manager. The serialization format is JSON rather
than binary, resulting in a file that is portable and can be can be deployed and
updated separately from the other activity recognition components.

4.2 On-Device Classification System Architecture

The on-device classification system comprises several software stages and a
trained model. Referring back to Figure 2, the sensor acquisition layer is the
interface between the classification system and the sensor API provided by the
smartphone’s operating system. This layer is responsible for (i) reading the phys-
ical hardware sensors, such as the accelerometer (and other sensors like the
microphone and compass in future work), and (ii) preparing the data into a
structure for later processing.

The activity recognition manager runs as a system-wide singleton service
that (i) loads the JSON-encoded classication model built during the training
phase, (ii) reads accelerometer input from the sensor acquisition layer to extract
features, and (iii) executes the real-time activity classification. Clients regis-
ter themselves as listeners to the manager, which then invokes client callback
functions whenever a relevant activity has been recognized by the classifier.

4.3 The Need for Smoothing

We augmented our classifier with an smoothing algorithm that improves classi-
fication for real-world usage. As we show later in Section 6, the system achieves
a 10-fold cross-validated accuracy of 98.4%. While this result is appealing and
is in alignment with the methodology and results reported in other activity
recognition work (e.g. [22,18]), it is misleading because it applies only to the
single-activity, scripted activity behavior recorded during the training phase.
Even with the use of cross-validation, two problems arise: (1) the built model
may be overfit for the data; and (2) mixed-activity, naturalistic human behavior
contains many motions and transitions that were not captured during training.
As a result, the classifier can return incorrect labels in real-world use.

To avoid any such choppiness, we implemented a simple smoothing algorithm
with a majority vote within a trailing window (of parameter size N). As we show
later, this choice of N affects the trade-off between the number of geolocation fix
requests and the delay (in terms of time and distance) between the fix request
and ground-truth observed transitions.
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Fig. 3. Geolocation fixes are triggered only on major activity transitions controlled by
a finite state machine. A fix is acquired on transitions indicated by the solid edges.

5 Activity Recognition Transition-Triggered Geolocation
Fix

Given the availability of the low-power activity recognition system described in
the previous section, we can use its output states (comprising recognized modes
of transportation) as input into our just-in-time geolocation fix component.

As mentioned in Section 3, we posit that certain transitions between modes
of transportation are indicative of points in time which are more conducive to
user engagement with LBAs. For example, when the user makes the transition
Driving → Walking, it may indicate that he has gotten out of his car after hav-
ing arrived at a desired destination. This spot would then be a good opportunity
for an LBA to acquire a geolocation fix to see if it satisfies its LBA-specific logic.

Note that in the case of a location-based reminder with the user’s home as
the target destination, this approach will still trigger a geolocation acquisition if
the user stops somewhere else first, such as at a gas station. Nonetheless, as we
show show in Section 6, these additional acquisitions are still less frequent than
continuous tracking.

Referring back to Figure 1, a transition manager component observes the
smoothed activity recognition stream and keeps track of the current and im-
mediately previous user state. By observing these two states, the manager can
identify transitions between certain activities, where these transitions are repre-
sented in our system as edges within a finite state machine (FSM).

Our reference FSM is shown in Figure 3. Note that most of the vertices in the
system correspond to the available known activity labels that can be produced
by the activity recognition component. The only special vertex is the one for
long idling, which we define to be idling (that is, sitting or standing) for more
than 20 minutes.

When a transition between states is detected by the transition manager, the
FSM is checked to determine if the transition qualifies for a geolocation fix
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acquisition. The solid edges in the FSM are those transitions that we selected
to trigger an acquisition. They were heuristically selected to be those where an
LBA would most likely take advantage of a new geolocation.

Different FSMs defining different transitions can be used in place of this one.
In the future we will also look at ways to discover appropriate transitions auto-
matically rather than heuristically; building a Hidden Markov Model is one such
approach.

Note here the advantage of using a high-resolution accelerometer-only activa-
tion recognition system such as the one we implemented. Unlike previous work
[1,39,34,27] where accelerometers are used to differentiate between only binary
states (idling vs. non-idling), our work leverages the distinction between mul-
tiple classes of non-idling, such as between driving and running. Note further
that being able to be detect these distinctions using only the accelerometer pro-
vides a battery consumption advantage over other approaches that use GPS as
a sensor[17,37,33,11].

However, the use of transitions to trigger geolocation acquisition suggests a
clear limitation. If the user does not change his mode of transportation, then our
system will not be able to detect any transitions at all. For example, it may be
the case that the user continuously walks from his home to work, never stopping
at any point. To address this problem, we additionally implemented an optional
background service that performs fixed duty-cycling with a parameterized period
to serve as a backup.

6 Evaluation

We implemented and ran our system on two commodity Android smartphones, a
Samsung Galaxy S II (released in the U.S. in May 2011) and a Samsung Nexus S
(released in the U.S. in December 2010). The key result from our experiments is
that while our activity recognition transition-triggered design incurs more delay
to identify ground-truth events versus competing schemes, it requires signifi-
cantly fewer geolocation fix acquisitions, up to 41x fewer acquisitions than an
accelerometer-assisted binary classification scheme and 243x fewer than contin-
uous tracking over our collected data.

6.1 Activity Recognition Results

Our activity recognition system, described in Section 4, generates the raw user
activity stream indicating the user’s mode of transportation. Using our training
data set collected from 17 users, our system demonstrates a 98.4% per-window
classification accuracy over our activities with 10-fold cross-validation. The con-
fusion matrix is shown in Table 1. We found that walking up and down stairs
were confused often with walking on a flat surface, so we aggregate them to-
gether into our final classifier. Similarly, standing and sitting are aggregated
into idling. The end result is an output of five activities: Walking, Running,
Driving, Biking, and Idling.
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Table 1. Confusion matrix for activity classification. Overall accuracy is 98.4%.

Predicted
Walking Sitting Running Standing Driving StairsDown StairsUp Biking

A
ct
u
a
l

Walking 99.05% 0.00% 0.09% 0.06% 0.12% 0.15% 0.34% 0.18%
Sitting 0.00% 99.24% 0.00% 0.51% 0.13% 0.00% 0.00% 0.13%
Running 0.42% 0.00% 99.48% 0.00% 0.00% 0.00% 0.00% 0.10%
Standing 0.00% 1.33% 0.00% 97.52% 1.14% 0.00% 0.00% 0.00%
Driving 0.16% 0.06% 0.00% 0.13% 99.00% 0.00% 0.00% 0.65%

StairsDown 16.83% 0.00% 0.00% 0.00% 0.00% 80.20% 2.97% 0.00%
StairsUp 29.63% 0.00% 0.00% 0.00% 0.00% 7.41% 62.96% 0.00%
Biking 0.56% 0.00% 0.00% 0.00% 2.33% 0.00% 0.00% 97.11%

We further evaluated the power consumption of the activity recognition sys-
tem using a Monsoon Solutions Power Monitor, a hardware power meter that
directly provides electricity through connected leads and measures the resulting
power draw. The results from both test devices are shown in Table 2. We found
that the continuous recognition consumes up to approximately 225 mW. Note
that the activity recognition’s signal processing, feature extraction, and classifi-
cation consume very little power, whereas the baseline idle CPU (kept alive with
a wake lock to ensure that the system continues to run even if the screen is off)
consumes the most. As point of reference, the power consumption of the Galaxy
S II to acquire a GPS fix is 771 mW, including the baseline CPU.

Table 2. Power consumption of the activity recognition system on commodity smart-
phones, where the phones were run in “airplane mode” with no WiFi and the screen
off. Total power on the Galaxy S II is 224.92 mW.

Smartphone
Baseline idle CPU
with wake lock

Accelerometer
sampling to 32 Hz

Feature extraction
and classification

Samsung Nexus S 167.15 mW 18.03 mW 4.49 mW

Samsung Galaxy S II 184.34 mW 35.53 mW 5.05 mW

6.2 Activity Recognition Transition-Triggered Geolocation Fix

The following subsections provide an evaluation to quantify the performance of
activity recognition transition-triggering against competing schemes. Note that
the system runs successfully on our test smartphones and correctly triggers ge-
olocation acquisition fixes on transitions between specific modes of transporta-
tion; however, to fully evaluate the system with varying parameters, we recorded
data traces and ran offline experiments to expedite our work. Both the online
and offline execution used the same software code base.

In these experiments we asked users to carry two clock-aligned Android phones
to collect two streams of data over the course of entire days, including overnight.
First, to collect ground truth transitions, users carried a phone running a
program that could record the immediate time and geocoordinate when a button
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is pressed. We asked users to press this button at transition moments between
modes of transportation which could be appropriate for a LBA to acquire a
fix. Second, to collect traces of sensor data, users carried another phone
which they kept with them in any position they wanted. The program on this
phone continuously recorded accelerometer data and geolocation data. Note that
both the ground truth transitions and sensor data collection could have been
performed on the same phone, but we did not want the physical interaction for
ground-truth marking to produce anomalous sensor data.

In this data set we collected sensor readings totaling 547,583 minutes (or 6.34
days). During this time, users also collected 124 ground-truth transition events of
their choice that they believed represented opportunistic locations where a LBA
could provide value. These locations turned out to include the users’ home, work-
place, shopping malls, gas stations, restaurants, and other places. Geolocation
fixes were acquired through either GPS or WiFi/cell tower trilateration.

Given the two data streams, we evaluated our system against competing
geolocation-triggering schemes along the following dimensions:

1. What is the recall of each scheme – that is, what fraction of ground-truth
transitions were correctly recognized?

2. What is the delay between the ground-truth observation and the triggered
geolocation fix acquisition in terms of time and distance?

3. How many fix acquisitions are triggered by each scheme?

6.3 Geolocation Fix Acquisition Triggering Schemes

We evaluated four algorithms for triggering a geolocation fix acquisition:

• Continuous Tracking. This approach triggers a geolocation fix as often as
possible, where the collected data came directly from the sensor-collection
phone as described earlier. To enable this approach, we used Android’s Lo-
cationManager class and asked for callbacks from either GPS or network
services, where the callbacks are set with a minimum time of 1 millisecond
and minimum distance of 0.1 meters. However, as we show later, the callback
minimum time is not necessarily honored by the underlying location service.

• Continuous Tracking with Fixed Duty Cycling. This approach triggers
acquisitions with a 15-second inter-acquisition period.

• Accelerometer-Assisted, Binary States. This approach is representa-
tive of current state-of-the-art research work [1,39,34,27] where the accelerom-
eter is used to detect idling versus non-idling. Here, we evaluate a 4-second
segment of accelerometer data, and if the user is idling, then geolocalization
is deactivated, whereas if the user is not idling (that is, moving), then the
geolocation fixes are acquired as often as possible (using the same settings
as Continuous Tracking).

• Activity Recognition-Triggered, Window N. This approach represents
our work, where we apply our activity recognition software on the collected
sensor data and apply a smoothing window of size N (which varies between
5 and 40). The system then triggers a geolocation fix acquisition only on the
transitions shown in the FSM of Figure 3.
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6.4 Recall

We first evaluate the recall of each triggering scheme by quantifying the frac-
tion of the 124 ground-truth transition events that were correctly identified for
geolocation triggering. We say that a true-positive identification of a ground-
truth event occurs when the scheme performs triggering within 60 seconds of
the ground-truth, where a particular triggering can be associated with only one
other ground-truth event. In Table 3 we show the recall of each triggering scheme.

Table 3. Recall of ground-truth observations for each triggering scheme

Triggering Scheme Recall

Continuous Tracking 0.8952

Continuous Tracking w/Fixed Duty Cycling 0.8952

Accelerometer-Assisted, Binary States 1.0000

Activity Recognition-Triggered, Window 5 1.0000

Activity Recognition-Triggered, Window 10 0.9677

Activity Recognition-Triggered, Window 20 0.9274

Activity Recognition-Triggered, Window 30 0.8306

Activity Recognition-Triggered, Window 40 0.7097

Most surprisingly, Continuous Tracking, with and without Fixed Duty Cy-
cling, performed relatively poorly despite the fact that they supposedly trigger
geolocation fixes often. The problem is that while the Android API allows the
developer to set the minimum time between the automatic geolocation callbacks,
it is only a hint to the underlying system software or device driver [12], which
may instead provide the callbacks as it sees fit (for example, it may aggressively
try to reduce power by conserving geolocation fix invocations). Indeed, we occa-
sionally observed long lapses (on the order of 15 minutes) between consecutive
geolocation fixes with Continuous Tracking regardless of whether the user was
moving or not. In the future we look to explore this issue more fully.

The Accelerometer-Assisted, Binary States scheme performs well with 100%
recall, which is representative of the fact that transitions between transportation
modes are captured by the binary accelerometer classifier.

Our Activity Recognition-Triggered, Window N scheme exhibits 100% recall
with a window size of 5 but suffers decreasing recall with increasing N. The
recall diminishes because a longer smoothing window causes activity recognition
convergence to take longer, resulting in missed ground-truth transitions.

6.5 Delay

We next evaluated each scheme with respect to the delay between the ground-
truth transition events and the triggered geolocation acquisition. Figure 4 shows
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the median time delay in units of seconds. We observe that the Continuous
Tracking scheme has a low time delay, and as expected the Continuous Track-
ing with Fixed Duty Cycling set to a 15-second period has a longer delay.
The Acceleration-Assisted, Binary States has the lowest time delay, again il-
lustrating its ability to turn on triggered geolocation fixes as soon as it detects
any movement. Our Activity Recognition-Triggered, Window N scheme incurs
longer delay than, but is competitive against, both Continuous Tracking and the
Accelerometer-Assisted Binary States scheme with N=5. Note, though, that it
again demonstrates decreasing performance with increasing window size. Activ-
ity recognition simply responds slower when the smoothing window is large.

Fig. 4.Median time delay in units of seconds between ground-truth event and triggered
geolocation acquisition

Figure 5 shows the median distance delay in units of meters, where we calcu-
lated the Haversine distance from the latitude and longitude coordinates. Note
that any distance between the time of the ground-truth event and the time of
the triggering is dependent on the mode of transportation; for example, walking
will most likely produce a shorter distance than driving. Nonetheless, we observe
similar relative behavior between the schemes as with the time delay. It is im-
portant to further note that the small distances involved here, on the order of
30-40 meters, is close to the 10m accuracy of GPS and at or below the known
accuracy of cellular network trilateration.
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Fig. 5. Median distance delay in units of meters between ground-truth event and
triggered geolocation acquisition

6.6 Number of Fix Acquisitions

We now quantify the core advantage offered by our system. Figure 6 shows the
number of geolocation fix acquisitions for each scheme over the entire data set.

As expected, the Continuous Tracking schemes generate the most geoloca-
tion fixes, and even though the callbacks may be throttled as we observed
in earlier subsections, its total number is higher than the other schemes. The
Accelerometer-Assisted, Binary States scheme is more efficient, acquiring 5.9x
fewer fixes than Continuous Tracking and 1.6x fewer than Continuous Tracking
with Fixed Duty Cycling; its main advantage is that it disables geolocation fixes
when the user is idle, such as when the user is sleeping.

It can be seen that our Activity Recognition-Triggered scheme is even more
efficient and significantly reduces the number of geolocation fix aquisitions. With
N=5, our scheme produces 243x fewer fixes than Continuous Tracking and 41x
fewer than Accelerometer-Assisted, Binary States.

The advantage of our scheme here stems from its intelligent transition-based
triggering. Continuous Tracking acquires geolocation fixes without regard for
user events because it is missing the high-level information offered by sensor
fusion, for example when coupled with the accelerometer. The Accelerometer-
Assisted, Binary States scheme improves upon Continuous Tracking, but while
it can eliminate geolocation fixes when the user is idle, it can neither distinguish
with sufficient detail nor exploit the transition movements that humans emit.
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Fig. 6. Total number of triggered geolocation fix acquisitions over the data set

Additionally, we observe that the longer windows for the Activity Recognition-
Triggered schemes reduce the number of geolocation fixes. A longer window will
provide more smoothing over the raw activity stream produced by the classifier,
reducing choppiness and spurious transitions due to mixed user activities. Note,
though, that this smoothing and its apparent reduction in fix acquisitions cause
longer delays and reduce recall (due to more missed events), as seen in previous
experiments. Nonetheless, we note that the N=40 configuration triggered 3x
fewer fixes than the N=5 configuration. In the future we will continue looking
into ways of achieving high recall and low delay while invoking fix acquisition as
seldom as possible.

All the schemes require that the CPU be active, and in the absence of a precise
power-consumption model we rely on the number of geolocation fix acquisition
as a close proxy for power usage. In the future we look to develop a power
model [29] to study the schemes’ battery usage trends.

7 Conclusion

In this paper we consider a subset of location-based applications (LBAs) that
require geolocation fix acquisition only at specific and rare points in the day.
For LBAs like location-based reminders, performing continuous tracking wastes
battery power; instead, the most efficient solution is to able to trigger a single
geolocation fix at the target location, which would then activate the LBA-specific
logic. We make the assumption that such triggering can occur on transitions
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between user modes of transportation, where particular transitions are indicative
of points in time when the user is amenable to engagement with an LBA.

To detect transitions, we implemented a low-power, high-resolution activity
recognition system that can detect modes of transportation like walking, driving,
running, and idling, and to trigger the geolocation fixes, we built a finite state
machine, where specific edges (such as Driving → Walking) trigger a fix. Our
experiments show that our system performs triggering with low power and low
time/distance delay between ground-truth transitions and the triggering events.
Most significantly, our system performs 41x fewer acquisitions than a competitive
accelerometer-assisted binary classifier and 243x fewer than continuous tracking
over our collected data set.
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