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Abstract. With the booming mobile market and increasing capability
of mobile devices, mobile platforms like Android emerge from end-user
to industrial application areas. This paper sketches an approach to im-
plement industrial safety-critical embedded systems with fail-safe state
on the mobile platform Android. The approach consists of safety-critical
software design patterns, a real-time extension to the Android platform
and fail-safe application life cycle management.
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1 Introduction

Safety-critical systems are those systems or applications in which failure can lead
to serious injury, loss of life, significant property damage, or damage to the envi-
ronment [3]. The industrial safety-critical embedded systems should be carefully
designed with the help of the well-established and common design techniques to
fulfill the real-time and safety requirements.

While smartphones and tablets are classified as embedded devices, they serve
as the key computing and communication choice for other embedded devices.
Modern smartphones contain a wide variety of networking technologies and a set
of powerful embedded sensors, such as GPS, accelerometer, gyroscope, compass,
and camera. The availability of these capabilities and technologies has opened
new applications across a wide variety of domains, and allow them to become
an attractive and complementary choice for safety-critical embedded systems.
However, their operating systems must be modified and extended to support the
reliability and real-time requirements for safety-critical systems.

Fail-safe state in safety-critical system is a state which, in the event of failure,
can be identified as being safe without risk. In many design methods, a safety
function should be executed in the case of failure to reach a fail-safe state. For
smartphones, the application life cycle should be carefully studied and investi-
gated to find the best way to integrate the required safety function.
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2 Applying Safety Patterns on Mobile Platforms

The design of safety-critical embedded systems is considered to be a complex
process to fulfill two types of requirements: functional and non-functional re-
quirements. The first part includes the function to be performed, while the non-
functional requirements involve the attributes of a system as it performs its job.
They include a set of requirements like high reliability and safety, availability,
low cost and small size. While the influence of these requirements varies from
one domain to another, all safety-critical systems must guarantee an acceptable
level of safety. The concept of design patterns, which introduces an abstract rep-
resentation for how to solve general design problems have been widely used in
hardware and software. In the field of safety-critical embedded systems, a col-
lection of common design methods has been presented in a previous work as a
catalogue of safety pattern [1].

2.1 Mobile Application Life Cycle and Safety Function

Android schedules its applications and services on application level using states
and state transitions. The states and state transitions are often called life cycles.
Depending of the state an application or service is in, it has access to certain
resources (RAM, CPU, ...). For instance, if an Android application is in the
state running it has access to all resources of the device. If the application is
shut down or killed, it has no access to any resources.

Safety-critical system with fail-safe state can be executed on Android as ser-
vices or applications. In previous work on application and service life cycles, we
analyzed which would be the best way to prevent a service from being shut down
and how to make sure that an application executes specified actions before being
shut down. If a system with fail-safe state is executed on Android as a service,
the service should be bound to an Android application and display an icon in
the Android notification bar. Both actions increase the priority of the service
from, as it is displaying information (in the notification bar or in the bound
application), which immediately contribute to the user experience [4].

If a system with fail-safe state is executed on Android as an application, the
application life cycle callback methods should be used to trigger fail-safe actions
in case of application state changes [5]. As on Android usually only one single
application can be active at a time, applications often change their states. An
application being responsible for the fail-safe state system can act and react best,
if it is in the state running. If it changes its state, it might not be able to execute
fail-safe actions any more. From our previous work on Android application life
cycles, we know that during regular operation a running Android application
always calls the life cycle callback method onPause(). This method should be
used in safety-critical applications to trigger appropriate fail-safe actions.

2.2 Real-Time Requirements and Real-Time Extension

Most safety-critical embedded systems have real-time requirements, as they must
react on specific conditions within predefined time intervals. The integration of
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smartphones in safety-critical environments urges for modifications and exten-
sions of available platforms to support applications with real-time requirements.

RTAndroid is a modified version of the Android 2.2 platform extended with
a real-time capable scheduler, which reduces maximal scheduling latencies for
real-time applications from over a second to just a few milliseconds [6]. The ap-
proach uses the RT PREEMPT patch to equip Android’s Linux kernel with basic
real-time support, but additionally allows reliable priority-based process schedul-
ing for background services and a non-blocking automatic memory management.
Furthermore, RTAndroid is fully backward compatible to already existing An-
droid components and applications. New features and real-time components can
be used in the standard Android manner, e.g. simply by extending introduced
classes like a real-time service.

Fail-safe state systems can be executed on RTAndroid using reliable back-
ground services. Instantiating a new service based on the new ServiceRT class
in RTAndroid prevents the corresponding process from being shut down or killed
by the system. Thus, safety-critical applications can be executed in real-time pri-
oritized Linux processes with non-blocking, concurring garbage collector. In this
case, the application stays responsive and precise scheduling guarantees bounded
reaction times to upcoming events, such that a fail-safe state can be entered.

3 Example Pattern

Chemical process control is considered as one of common examples for real-time
and safety-critical system with multiple inputs and outputs. Let us have a small
experimental reactor to perform a specific chemical reaction. It is clear that such
an application includes a set of measured values like temperature, pressure, gas
concentration and many others. Any failure in such system could lead to critical
situation. The Monitor-Actuator Pattern [2] is suitable for this case due to the
low availability requirement and the existing fail-safe state. As shown in Fig.1,
the pattern consists of two heterogeneous channels that run independently: The
main actuation channel can be a microcontroller that reads the measured values
from input sensors and provides a check on the input data and the system itself to
ensure the correct processing of the desired operations. The Monitoring channel
is used to improve the safety of the system by providing a continuous monitoring
for the actuation channel. It takes the information from the set point source and
the actuator sensors and compares it with the provided set points to detect
possible faults in the actuation channel. In the case of improper operation, it
forces the actuation channel to enter the fail-safe state. The monitoring channel
should be independent from the actuation channel, so Android device is selected
in our approach to perform this task. The heterogeneous redundancy in the two
channels reduces the possible concurrent failure. Finally, the real-time extension
and the life cycle assessment ensure the real-time requirement for this application
and the proper time to call the safety function to enter the fail-safe state.
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Fig. 1. The Monitor-Actuator Pattern

4 Conclusion

The design of safety-critical embedded systems requires the integration of com-
mon design methods with the recent advances in information technologies. In
this paper we presented a conceptual approach to implement safety-critical sys-
tems with fail-safe state on Android devices by using appropriate safety design
patterns. Moreover, a real-time extension and a corresponding life cycle man-
agement have been used for Android to ensure the non-functional requirements
in the developed application. As shown in the example, the proposed approach
is more suitable for the cases with low availability and clear fail-safe sate.
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