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Abstract. Mobile devices have become almost ever-present in our daily
lives and increasingly so in the professional workplace. Applications put
company data, personal information and sensitive documents in the
hands of busy nurses at hospitals, company employees on business trips
and government workers at large conferences. Smartphones and tablets
also not only store data on-device, but users are frequently authorized
to access sensitive information in the cloud. Protecting the sensitivity of
mobile devices yet not burdening users with complicated and cumber-
some active authentication methods is of great importance to the security
and convenience of mobile computing. In this paper, we propose a novel
passive authentication method; we model the micro-behavior of mobile
users’ interaction with their devices’ soft keyboard. We show that the
way a user types—the specific location touched on each key, the drift
from finger down to finger up, the force of touch, the area of press—
reflects their unique physical and behavioral characteristics. We demon-
strate that using these micro-behavior features without any contextual
information, we can passively identify that a mobile device is being used
by a non-authorized user within 5 keypresses 67.7% of the time. This
comes with a False Acceptance Rate (FAR) of 32.3% and a False Rejec-
tion Rate (FRR) of only 4.6%. Our detection rate after 15 keypresses is
86% with a FAR of 14% and a FRR of only 2.2%.

Keywords: Keystroke Dynamics, User Authentication, Passive Authen-
tication, Multi-factor Authentication, Continuous Authentication, Bio-
metrics, Micro-behavior, Soft Keyboards, Mobile Security, Android.

1 Introduction

Imagine a nurse has been using a mobile tablet to access and record sensitive pa-
tient information (such as in Figure 1). She is suddenly called away for an urgent
question and without realizing it she leaves the tablet on the table—unlocked
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and still in the medical application. A curious or even malicious bystander picks
up the tablet and searches though medical histories; they get unfettered ac-
cess to private, personal information with not so much as a warning. Consider
also the case where the nurse did lock the tablet; this attentive bystander may
have easily learned a short PIN just by watching, passing right through tra-
ditional security barriers [9]. Active authentication can help protect devices at
rest, but mobile, dynamic environments need mechanisms to detect and stop
these security breaches in real-time. Passive, behavioral authentication measures
are needed to counter these threats. We envision an application, KeySens, that
develops a model of a user’s micro-behavior and can detect when the phone is in
a different person’s hands. This application could then limit access or prompt for
additional authentication upon detection. Towards that end, we have developed
a proof-of-concept application and analysis models that demonstrate that users
do have distinctive typing micro-behavior.

Fig. 1. Mobile devices such as iPads have become very popular among professionals.
In this example, a nurse working at a dermatology clinic uses an iPad to take photos
of a patient’s skin, add notes, fill in forms and upload directly to the cloud.

1.1 Authentication Techniques

Authentication is the process of confirming that something or someone is what
they say they are. The processes for authentication are many and diverse, and
they have existed in the computing world since the beginning. Over time, the
security field has categorized these into three primary groups [1]:

Something you know e.g. a password, security question, or ID number

Something you have e.g. a security token, ID card, or trusted device

Something you are e.g. a physical or behavioral trait such as a fingerprint or
a keystroke dynamics model [14]

Most of these categories rely on active authentication, requiring direct user at-
tention and input. While an effective protection schema to restrict unauthorized
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access, traditional active authentication procedures are of limited use on mo-
bile platforms. Users switch between tasks rapidly and are authenticating with
dozens of services every day. Pausing and asking for passwords each time gets
tedious and frustrating; users may choose to switch to less secure services with
lower barriers to entry.

Passive authentication procedures are needed—ones that allow for transpar-
ent, low-friction authentication for known users but can detect and block un-
known ones. Micro-behavior metrics are seen as a promising avenue for tackling
this challenge. They are inherent or latent characteristics of the user and as such,
they are very hard to impersonate. It is extremely challenging to fake a finger-
print, a retina, a vein pattern, a facial structure, or a hand geometry [9]. It also
turns out that it is challenging to fake a micro-behavior metric such as signature,
voice timbre, or a user’s keystroke dynamics [4]. Mobile phones, equipped with
a variety of powerful sensors and empowered with fairly substantial computing
resources, are a perfect domain for deploying behavioral analysis to bolster their
current security mechanisms.

hello my name is ed|

Fig. 2. Screenshot from an early version of the soft keyboard application comparing
user typing patterns. In this example, a new user “Ed” presses different locations on
keys (shown as yellow dots) than the normal user (grey dots) of this mobile device.

1.2 Contributions of This Research

This paper addresses how micro-behavioral metrics can be used to differenti-
ate between users on mobile devices. This will be used for the development of
a soft-keyboard application that can passively authenticate users in real-world
environments. Keyboards and keystroke dynamics have been the subject of a
wide body of prior research, looking to identify users based on how they type,
not just what they type. We extend this research to the mobile platform and
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leverage data available only on touchscreens to develop user models that work
in real-world environments. A trial application has been developed that collects
raw keypress information to be analyzed offline. Figure 2 is a screenshot from
an early version of this application, visualizing how a new user (‘Ed’) may have
different typing patterns than the typical user (‘Mr. Grey Dots’).

In contrast to traditional keyboard dynamics research, we analyze not only
how rapidly a user types, but also a variety of soft-keyboard specific micro-
behavior features. These include where on the key the user pressed, how much
the user drifts over the course of a keypress, and the orientation of the phone.

Using this data, plus a variety of statistical tools, we can generate a certainty
score of whether the user’s phone is in a stranger’s hands. This score, when com-
bined with a larger application and decision engine, will be used in future work
to block access to applications or ask for additional authentication information
when an non-authorized user is detected. For this demonstration we leverage
other users’ keypress data to help train the micro-behavioral model, but we en-
vision a system where all data is collected and stored on the phone and a model
is trained offline separate from other user data.

1.3 Applications

With the potential to provide passive, transparent authentication on any mobile
device with very little inconvenience, micro-behavior metrics have a wide range
of target applications. Environments where sensitive data is accessed by busy,
mobile people—one of the hardest areas to secure—can be further protected
with these models. A few examples:

— Companies can help protect their data hosted on employees’ phones (whether
the hardware is company-owned or personally owned);

— Delivery persons or IT administrators who may need to place their tablets
down to carry things can reduce risk of unauthorized access;

— Parents who lend their devices to children or friends can feel comfortable
knowing they are protected against impersonating emails or other messages;

— Business travelers have reduced risk upon loss or theft of their device;

— Nurses who carry mobile devices to maintain patient records can be protected
from prying eyes if they were to place the device down;

Additionally, with a content-agnostic and always aware view of typing patterns,
these environments can be protected even in the event a non-authorized user
learns the primary user’s password through shoulder surfing, discovery of a note,
or social engineering.

2 Related Work

While to our best knowledge there has not been prior published research on
this particular topic, there has been a wide variety of high-quality, instructive
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research on similar topics. These areas include desktop keystroke dynamics us-
ing traditional methods [1], mobile phone keypress dynamics using traditional
methods [18] and key inference using side-channel sensors [13]. This research
can focus on either structured text such as passwords/shared secrets or dynamic
text that tracks keystroke patterns over the duration of a typing session. The
testing environment in these studies could be either controlled or uncontrolled,
describing whether the users are in a lab or on their personal machines. Addi-
tionally, studies can either focus on authentication of a single user or identifica-
tion from among a pool of users [1]. They can also study a wide variety of
features, depending on researcher interest and the capabilities of the target
equipment.

2.1 Desktop Keystroke Dynamics

Desktop computer keystroke dynamics research has a long and rich history. A
wide variety of extracted features, learning algorithms, success metrics and test-
ing environments have been studied [1,14]. While more research has been focused
on static text that can observe the patterns of password typing, there are a num-
ber of studies that focus on uncontrolled environments with dynamic text [2].
These studies, limited by the capabilities of physical keyboards, tend to gather
information about typing latencies, cadences, or error rates. Some special key-
boards can also provide pressure information, though this is not common in
consumer-grade products. With our application, we leverage the additional data
gathering power of a touch screen keyboard and can extend beyond features
measurable on physical keyboards.

2.2 Mobile Phone Keypress Dynamics

Mobile phones have been getting increased attention over the last few years as
security threats develop and risks are further revealed. The access to additional
data from their touchscreens defines a research environment with both added
benefits (e.g. more data) and added challenges (e.g. greater mobility, more dy-
namic environments). A number of studies have addressed keypress dynamics
on mobile phones, though many use similar feature sets as on desktops [11].
Some, however, including a quite successful one on PINs by Zahid et al., analyze
additional features such as the difference in digraph time between adjacent and
non-adjacent keys [18]. Our work builds on this existing work by focusing on the
mobile keypress features not possible on traditional desktops.

2.3 Mobile Phone Side-Channel Inference

Another growing area of research is the ability to leverage the other sensors
on mobile phones (notably accelerometers and gyroscopes) to infer keypresses
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without direct access to keypress data. By measuring the changes in orientation
[3], accelerometer readings [13,3], and/or gyroscopes [3], applications with very
few special privileges [15] can provide attackers insight into passwords or PINs.
Applications posing as games or with other innocuous guises could tap into
these sensor channels in the background and infer keypresses. We have internally
discussed, though not examined, how a gaming application could generate its
own training data through in-game menus. While we focus on the direct analysis
of touches, we leverage this area of research to guide the processing of our own
orientation data.

2.4 Other Features Used to Aid Authentication

The many sensors and input methods of mobile devices may be used to develop
other micro-behavior metrics for authentication. Work on using accelerometer
patterns to detect anomalous behavior was done by Zhu et. al. to success in their
application SenSec [20]. Use of higher-level patterns from call /SMS frequency,
ratios of known to unknown numbers, GPS locations and browsing history have
been studied by Shi et.al [17]. Additionally, swiping patterns can also be used
to differentiate between people, as shown to be a very accurate predictor in
Touchalytics [6].

3 Microbehavior Modeling of Soft Keyboard Interaction

3.1 Soft Keyboard Interaction

Soft keyboards are a relatively new form of input method editor (IME). Many
smartphones ship with no physical keyboard, instead opting for keyboards con-
trolled by the touchscreen (e.g. Figure 2). An image of a keyboard appears on
screen and users tap the keys they would like to send. Challenges arise, however,
because of the lack of physical feedback from buttons. Improper estimates of
finger tap locations due to the small keys getting completely covered by fingers
in addition to finger drift due to the smooth surface make these keyboards some-
times less appealing to use. However, many of these disadvantages help enable
researchers to track these touch patterns over time to build a user profile. We
took advantage of these features to build an trial input method editor (IME) to
gather example user data. This application (implementing a custom Keyboard-
View for raw touchscreen access) records absolute pointer positioning and size/
pressure data for each finger or stylus. On most Android phones, there can be
up to 4 or 5 touchscreen events per keypress, giving us an abundance of data
with which to work.

3.2 User Keypress Variations

While typing, users have a variety of different typing rhythms and the physio-
logical traits of their hands, joints and fingertips ensure that no two users type
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exactly alike. Alongside traditional desktop-like features such as experience level
and posture, soft-keyboard typing seems to be influenced by hand size, finger
length, fingertip size, muscle development, posture and position, one-handed or
two-handed typing, orientation of the phone, user tiredness, coldness of fingers,
focus of the user (mobile users are often partially engaged in other activities),
and whether the user is walking, standing, sitting, lying down, or riding in a car,
bus or subway. Additional influences are size/shape of the phone, screen, and
external phone cases. Combined with technology literacy and familiarity with
the typing application, real-world analysis of mobile keypress dynamics reveals
itself as a significant challenge. We have considered these influencing factors and
analyzed the available features on Android phones and have designed a feature
set (Section 3.3) to match appropriately.

3.3 Feature Selection

After analyzing the prior research on keyboards as well as the smartphone-
specific information described above, we developed our set of features to capture
and analyze. These will be used to help train our model and be will analyzed for
patterns between users. Later in the paper are a few visualizations of how these
features can vary between users.

Location pressed on key is our primary micro-behavior metric and is recorded
per key as an ordered pair (Xoffset’ Yoffset)v expressed from that key’s center.

Length of press from finger down to finger lift, a traditional metric, has much
greater variation on mobile phones, but does improve model performance.

A user’s force of press or pressure is available as a unitless value between 0
and 1 on many Android devices [16]. This allows for tracking of metrics such
as distributions of mazimum touch pressure, but is complicated by inconsistent
scales between device models.

Similarly, the user’s size of touched area is also available as a unitless value
between 0 and 1 [16].

We can also analyze variability in size and pressure information within a
single keypress. This allows analysis of pressure and size dynamics for the user.

Another feature, drift, records how much the user’s finger moves between
pressing down and lifting up and at what angle they slid.

Additionally, with easily available sensor data from accelerometers and gyro-
scopes, information about orientation (where the phone faces while held) could
help improve comparisons and anomaly detection. This proved to be challenging
to correlate between handsets, but the addition of a calibration session could
enable successful consideration of this feature.

4 Application Considerations

4.1 Data Privacy and Security

By collecting so much data about each touch event on the keyboard, we are able
to compare a wide variety of features between users and develop an improved
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model for user authentication. However, much of this information is highly sen-
sitive or confidential. We cannot expect users to willingly use a keylogger on
their personal devices and we certainly do not want to expose scores and scores
of key sequences in the unfortunate event of server compromise. Given that we
do comparisons key-by-key, it was necessary to find an obfuscation strategy that
allows us to know which key was pressed, but cannot let someone find out when
it was pressed. Thus, we remove timestamp information from the keypresses
and order them by a cryptographically secure random number generator (Java’s
SecureRandom class) so that the original sequences are not reorder-able. This,
combined with block-level encryption and large-batch HTTPS transfers to our
server help protect user data while allowing us access to the information we need.

4.2 Power Consumption

Mobile devices are highly sensitive to power consumption considerations. Users
expect that applications not only improve their mobile experience, but do so
with limited impact on battery life [7]. It was observed from our users that the
soft keyboard application was consuming less than 4 percent of the phone’s bat-
tery life. For most, it did not even show up in the listing (alongside power hogs
like Maps, Music). Further analysis of current draw is needed, but power con-
sumption is markedly low. This will likely increase, however, once the behavioral
model computation is done directly on the handset.

4.3 Development Concerns and Programming Challenges

While developing and testing an Android keyboard, a variety of challenges pre-
sented themselves:

— Multiple fingers need to be tracked independently. Android represents multi-
touch gestures in combined Objects, but fingers in the same gesture must be
recorded separately using independent identifiers.

— Phones have different size screens; press locations and offsets need to be
scaled.

— The Android operating system has depreciated the high-level construct ‘Ori-
entation’ as of API level 8, and correlating phone orientation information is
very challenging between devices.

— When users intend to press a key—for example ‘k’—and accidentally press
‘5, we pick up misleading data points about where they tend to press on
the ‘j” key and miss out on a valuable data point about ‘k’. Almost all keys
have outliers of this type due to the occlusion of the actual touch location by
the rest of the finger [8]. We monitor for users’ corrections and modify the
‘intended key’ appropriately. This enables us to collect typical press infor-
mation even upon mistakes, and we can analyze which keys are frequently
mistakenly pressed.
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5 Experimental Design

5.1 User Recruitment

A short recruitment drive resulted in a group of 13 trial users. The users were
mostly technology literate students, as well as a few professors. To ensure there
were a sufficient number of test users and to encourage natural typing behav-
iors, our application was designed to closely mirror the features of other android
keyboards. We feel that spending time on the user experience side of appli-
cation development was a worthwhile investment for increased user retention
and positive reactions to the typing environment. If users have to spend a long
time adjusting to the new system, their early data can be misleading or even
counterproductive when developing a training model.

5.2 Data Collection

A three week long collection period resulted the a group of 13 active users con-
tributing a total of roughly 86,000 keypresses (with highly variable contributions
from each user) and about 430,000 touch data points. This gives some indica-
tion about how much data can be collected in a short period of time, especially
when gathering keypress information in all contexts, not just from passwords or
controlled phrases.

5.3 Training System Design

When designing learning algorithms, it is very important to ensure good training
practices are followed [12]. Model training, validation and testing are important
parts of the process and should be considered carefully. When analyzing, user
data is split into five sections, the first four randomly sampled from the first two
weeks of collection. The final set of testing data is from at least 3 days after the
rest (to test in user environments independent from training data). Our results
are generated from the ‘final testing data.’

1. Training data for primary generative or discriminant models (50% =~ 3000
keypresses from user, 2000 from each of 3 other random users)

Cross validation for primary model (15%)

Testing data for model and training data for key-frequency scaling (10%)
Cross-validation for key-frequency scaling (10%)

Final testing data (15%)

St

6 Modeling Micro-behavior of Users’ Keyboard
Interaction

6.1 Discriminant Model

We developed two models for comparison testing between users—each suited for
different environments. The method of analysis we used for the results in this
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paper is offline supervised learning trained with data from other users. While not
as scalable as a purely generative version, this has some additional advantages—
better non-authorized user recognition, better battery life by reducing on-phone
computation, and more securely stored behavioral data (on server rather than
directly on phone) [19]. This technique trains small neural networks for each key,
using samples of other users’ behavior as ‘non-authorized user’ training examples
[5]. A high-level diagram explaining this technique can be seen in Figure 3 and
the following paragraph contains a detailed explanation.
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Fig. 3. A high-level diagram of how the discriminant algorithm is designed. Per-key
neural networks generate confidence scores weighted against training size. These are
aggregated into a combined score for a 5-key sliding window to generate likelihood of
non-authorized user.

This model leverages the multi-user data collection environment and takes ad-
vantage of the high number of training keypresses. While more computationally
expensive, this facilitates much higher recognition rates and fewer errors. Each
key with a reasonable amount of training data (we set threshold at 15 keypresses)
is trained with its own two-layer, feed-forward neural network. Scaled conjugate
gradient back-propagation is the learning method [5]. We used 10 neurons for
the one hidden layer to ensure there is sufficient power in the analysis. The per-
formance function is the mean squared error, but another performance function
checks after training to ensure the network is not ill-fitted. This may ask net-
works to retrain if they settle in poor local minima (e.g. classifying everything as
the regular user). The output from these neural networks are then weighted by
how many keypresses were used to train that key. The recent confidence scores
are averaged using a simple mean and this is compared against a threshold. The
threshold (and the per-key weighting) is set by using a regularized logistic regres-
sion algorithm [5]. The cost function for the algorithm is shown in Equation 1.
To improve scalability and to allow for non-networked computation, this model
will later be replaced with a single-user generative model (described below).
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6.2 Generative Model

Our intention is to further develop our generative model that can detect anoma-
lies without network access or comparison to other users. A generative model
is needed for this approach. For a single user’s features, historical distributions
can be determined and models (Gaussian or otherwise) developed [10]. Then,
upon new data input, the probability that each feature has come from the user
is calculated. Aggregated for all of the features, these probabilities give a per-key
confidence score. Additionally, as per an evaluation by Killourhy and Maxion, an
outlier count feature was added that tallies the number of recent outliers (shown
to be effective at detecting anomalies on desktops) [10]. In a similar fashion to
the discriminant model, number of historical keypresses at that key serves as
the weight relative to other recent keypresses. See Figure 4 for a visual explana-
tion. This weighting is done through the same logistic regression as described in
the ‘discriminant model” section but is expanded to include the input features
processed by that model’s neural network [5].

P(pos|user)
| ——

Prey \ Z valy, Conf (t,) = Confidence

H‘ P(drift|user)

b | = Paripe [P anPn —rale| Conf(to) |
o / valy| Conf(tq) | 5
o

P(time|user) valy,| Conf(t_,) §

Prime val.s| Conf(t_3) g'

P(nluser '

.o o (nluser) P vale Conf(t_y) | |

Fig. 4. A high-level diagram of how the generative algorithm is designed. It calculates
feature probabilities individually, aggregates them to a confidence score for a single key
press and uses a 5-key sliding window to generate likelihood of non-authorized user.

6.3 Feature Distributions

Described below are a few of the key metrics we analyzed for aptness of dis-
crimination. The visualizations are generated from similarly-sized samples rep-
resenting a variety of users and have been selected to be representative of typical
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variation of micro-behavior. Note again that we do not have contextual informa-
tion such as movement speed, time of day, or number of hands typing, so this
data is not filtered in that way.

Variability in Keypress Location was predicted to be the best differentiator
between users, and it turned out to be correct. Figure 5 displays how there are
particular patterns that develop for users on specific keys. ‘User 1’ is almost
always in the bottom right, while ‘User 2’ is usually right around the vertical
center of the key but with wide horizontal variability. Observe also that there
are two area of concentration for ‘User 2.” Based on some contextual knowledge
about that user’s behavior we found that the left concentration is from the left
finger, while the right concentration is from the right finger. Figure 6 compares
5 different users’ press locations on a single key, holding ‘User 1’ constant for
reference.

With the key press location data, we applied a bivariate Gaussian distribution
for each key. The formula for bivariate covariance is in Equation 2 [5].

n

cov = 711 Z(w’ —w)(w; —w), (2)

i=1
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Fig. 5. Two-User Comparison of Keypress Locations on ‘spacebar’. Observe how users
tend to clump, and how ‘User 2’ presses in seemingly distinct areas with their left
thumb versus right thumb.

Keypress Length, a common metric of authentication on desktops, turned out
to be ineffective at discriminating users on mobile devices. While experienced
desktop users tend to type faster than inexperienced ones [2], mobile users type
in a much wider range of circumstances and at a much wider range of rates.
Keypress length does, however, divide users into three general categories: fast,
medium, and slow typers. If a user is very consistent, a deviation could reveal
an unauthorized user.
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Fig. 6. Quad-comparison of Keypress Locations on ‘0’. ‘User 1’ and the axes are static.
This shows how different users have (sometimes widely) varying spreads and centers.

Drift was found to have different angle distributions depending on the user.
Due to touchscreen noise, drift is only counted if a finger’s last contact is more
than 4 pixels from point of first contact. The numerical cutoff is referred to as
the drift threshold. See Figure 7 for a visualization of drift angle distributions
where the origin is normalized location of first contact.

The data for drift is by no means normally distributed, but tends to clump
into a number of distinct areas for particular users. By grouping angles into a
finite number of buckets (akin to the rose histograms below), we can calculate
the historical probability of a particular drift direction against which to compare
new data. Our formula for such analysis is below:

P(driftluser;0) = aqrife * P(anyDriftluser) x P(0luser) (3)

Pressure, Size and Orientation revealed themselves to be rather challenging
to manage features. For an individual user it is possible to measure the average
and max pressure of the finger. It is, however, very challenging to correlate this
data between users on different styles of handset; different screen technologies
report pressure using different scales.

Additionally, the size of a user’s finger on the screen is frequently not possi-
ble to compare between different phone styles (but can be analyzed for anomalies
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Fig. 7. Comparison of finger drifts between users. The center of each circle is the nor-
malized location where the user first pressed down. The angles describe which direction
the user drifted (but not how far). The ray lengths are the frequency of drifts in that
direction.

for one user). The size is a unit-less value and can vary widely from device to
device. Further research on multiple users using identical handsets is required.

Orientation suffers from a similar problem, though it should be possible to
ask testing users for a calibration session upon installation. This may allow
regularization between devices.

7 User Identification Results

7.1 Success and Error Metrics

When evaluating the success of a model or a process, it is important to define
the metrics used. Our primary objective is to identify ‘non-authorized users’
quickly, accurately, and repeatably. This is essential in creating a functional
authentication system. Our other main objective is to minimize how often the
primary user is flagged as another user—an inconvenience. For these metrics we
define Detection Rate as the frequency of successfully detecting ‘non-authorized
users’, False Rejection Rate (FAR) as the frequency of flagging the primary user
as ‘non-authorized’ and the False Acceptance Rate (FAR) as the frequency of
failing to flag a ‘non-authorized user’ as such [12].

7.2 Attack Detection

Our discriminant algorithm trained on multiple users performed well in test-
ing, detecting an median of 67.7% of simulated ‘non-authorized users’ within 5
keypresses. Our False Acceptance Rate (FAR) was 32.3% and we had a False
Rejection Rate (FRR) of only 4.6%. For longer input sessions of 15 keypresses,
our detection rate rose to 86.0% with a FAR of 14.0% and a FRR of only 2.2%.
Models were trained with 3000 keypresses from the ‘primary user’ and 2000 from
each of 3 other users. It was then tested against 550 ‘primary user’ keypresses
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and 500 ‘non-authorized user’ keypresses from a variety of other users. A few key-
presses from each user were ignored due to lack of training data for those keys (a
potential concern for analyzing symbol-heavy passwords). The ‘non-authorized
users’ in the testing sets were not used for training data. The test data from the
primary trainee was from at least 3 days after the training data to ensure inde-
pendent (though not assuredly distinct) environments. The performance matrix
and receiver operating characteristics (ROC) curves (for a number of different
users) are in Figure 8.

Success Metrics for Discriminant Model A Sample of Receiver Operating Curves
1
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Fig. 8. Testing performance and receiver operating characteristics for discriminant
model. 67.7% of simulated ‘mon-authorized users’ were caught within a 5 keypress
sliding window with a False Acceptance Rate of 32.3% and a False Rejection Rate
of only 4.6%. The ROC curves represent a subset of all tests indicating variability of
detection rates between users.

As seen in the ROC curves (a subset of all tests), there is a sizable spread to
the recognition rates between users. This needs to be further explored, however
it indicates that some users are easier to tell apart than others. Running a model
trained on ‘User 1’ with two different sets of example ‘non-authorized users’ can
generate very different detection rates.

Our results do suffer from a significant hole, however. Because we strip times-
tamp information from the data before logging, we cannot recreate exact strings
to use as testing data. We counter this as best we can by creating each test
string with data from a single log file (which typically contain only a few min-
utes of typing data). Further testing needs to be done on data known to be
in ordered strings, however actual keylogging will only be acceptable in more
limited environments.
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8 Discussion and Next Steps

The next step of this research is to develop an on-device analysis tool that en-
ables a live, learning model of users’ behavior and the ability to flag suspicious
activity (preferably without requiring network access). This could enable rapid
recognition of suspicious activity without network lag, and also improve scalabil-
ity without requiring additional server resources. The computational load would
likely fairly substantial, but because it could be run only while the user is typing,
it should not burden the phone’s resting battery life.

Additional studies will be necessary to better understand a user’s typing dy-
namics over time and in variable situations. Additional contextual information
about phone usage could be used to improve accuracy and the robustness of
the algorithm. Moreover, testing environments where users are using unfamiliar
phones for the first time will enable direct comparison between unauthorized
and primary users and may better reflect attack scenarios.

Collaboration between research groups can also be a highly fertile ground for
future work. The groups working on user interface interaction characterization
or side-channel keypress inference could be excellent teammates combining ex-
pertise on touch information and motion sensor readings. Also, groups looking
into the trend towards swipe-based keyboards could leverage some of these tech-
niques to develop similar models. Perhaps individual users’ swiping gestures are
also unique enough for micro-behavior authentication.

With this micro-behavior information and potential for improved phone se-
curity, these kinds of applications should be of great interest to businesses try-
ing to improve “Bring Your Own Device” security policies. A stipulation of
private phone usage could be a requirement to use a behavioral-modeling key-
board. Company provided phones could also integrate these features into a semi-
customized OS that could analyze any user-level input method.

8.1 Deploying Behavioral Modeling to Secured Mobile Devices

After examining a variety of Android operating system functions and features,
it became clear that there are a few security challenges the system still faces.
Were behavior-modeling keyboards to be integrated into a public or private
Android distribution, our team recommends a few enhancements that could
improve device security:

— Weaken the potential for side-channel attacks by disabling sensors while
entering text into password fields. This could substantially reduce the chance
of reconstructing strings via accelerometer or gyroscope data.

— Require use of the default Android keyboard (or a manufacturer-vetted ap-
plication) during password or sensitive text entry. Risk from malicious key-
boards is likely to grow in the future and users may not carefully read privacy
policies or permissions for their applications [15].
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9 Conclusion and Future Work

Protecting user devices in mobile, dynamic environments is of essential impor-
tance in the academic, business, and personal worlds. We have taken a dramatic
step towards developing passive keyboard authentication on smartphones. We
demonstrated that using these micro-behavior features, we can passively detect
that a mobile device is being used by a ‘non-authorized user’ within 5 keypresses
67.7% of the time. This comes with a False Acceptance Rate of 32.3% and a False
Rejection Rate of only 4.6%. For longer input sessions of 15 keypresses, our de-
tection rate rose to 86.0% with a False Acceptance Rate of 14.0% and a False
Rejection Rate of only 2.2%.

Our long-term objective is to integrate a fully developed KeySens applica-
tion with our team’s larger, more inclusive sensor suite, SenSec, to provide
multi-dimensional pattern recognition features [20]. Accelerometers, gyroscopes,
awareness of opened applications, and other such features can help demonstrate
the feasibility of an always-aware authentication structure. This larger project
also has a technique for completely blocking access to applications and request-
ing an active authentication if the confidence score drops too low. We hope
that our work will inspire further research into this subject. Passwords and
PINs alone cannot protect mobile users. By deploying them in conjunction with
micro-behavior metrics and other authentication techniques, mobile devices can
become an ever-safer place in the computing world.
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