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Abstract. Cloud computing has greatly increased the utility of mobile
devices by allowing processing and data to be offloaded, leaving an inter-
face with higher utility and lower resource consumption on the device.
However, mobility leads to loss of connectivity, making these remote
resources inaccessible, breaking that utility completely during offline pe-
riods. We present a concept for reconciling the fragile connectivity of
mobile devices with the distributed nature of cloud computing. We pre-
dict periods without connectivity on the mobile devices before they occur
and cache process states for applications running on distributed cloud
back-ends. The goal is to maintain partial or full utility during offline
periods, and thereby to enable an improved user experience. We demon-
strate prediction must include real-time behavioral information in addi-
tion to location and temporal models. The approach is implemented for
mobile phones which learn to quantify human behavior using activity
recognition, and then learn patterns in that behavior which lead to dis-
connectivity. We evaluate it for a streaming music scenario, where data
is cached before the user goes offline, allowing seamless playback. The
results show that theoretically we can successfully predict 100% of dis-
connection events on average 8 minutes in advance (std. dev. 46 secs.)
with minimal false-positive caching in this scenario, although in the wild
these events could prove more difficult to predict.

Keywords: predictive caching, activity recognition, mobile cloud com-
puting, connectivity prediction, mobile apps.

1 Introduction

Smart phones have become pervasive and ubiquitous technology in first and
second-world countries. These phones have a tremendous utility in our daily
lives, changing the way we conduct many activities [3]. A great deal of this
innovation is due to the combination of cloud and server-side computing with
local user interfaces on the mobile devices. Cloud computing allows resource
consumption to be distributed across many machines. The location of a certain
piece of data or execution is not of interest, nor is it known to the user, as long
as they maintain connectivity with those instances [9]. This allows the scale of
operations to be increased and distributed across many machines, reducing the
time for computation for certain types of operations [9]. Pervasive mobile devices

G. Memmi and U. Blanke (Eds.): MobiCASE 2013, LNICST 130, pp. 140–157, 2014.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014



Activity-Based Predictive Caching 141

on the other hand are drastically different in terms of their usage modality.
Devices are carried or worn by users, meaning their physical location is of the
utmost importance [3]. The devices present an interface to the user, where the
interface itself cannot be distributed or remote. Furthermore, since the devices
are carried with the user, they are therefore mobile, where mobility inherently
implies that loss of connectivity is inevitable [3].

The disparity between these two concepts leads to a conundrum: cloud com-
puting greatly enhances the utility of smart phones when they are connected,
but their mobility means at times this connection will be lost. Furthermore, often
this increased utility is most needed during times of high mobility, for example
using map services while traveling. We present a novel approach for maintaining
utility during periods of mobile disconnectivity in order to reconcile these two
concepts with each other. In order to solve this problem, resources normally ac-
cessible in the cloud must be relocated locally to remain usable when the device
is offline. Once the device has lost connectivity, it is already too late to fetch
the required resources, therefore the connectivity change must be predicted. Al-
lowing users to explicitly do this themselves is a possibility, but as the number
of devices and applications which we use daily grows, this becomes infeasible.
The reconciliatory concept we propose is as follows: we look to predict discon-
nection events before they occur, allowing required resources to be pre-fetched
and thereby maintaining at least some utility during offline periods.

The goal is to predict changes in connectivity and detect events which result
in insufficient connectivity for applications. Algorithms on the devices monitor
the behavior of the human using the device’s sensors, generating a time line of
quantified human behavior. Within this time line, algorithms then search for and
recognize patterns in that behavior which lead to connectivity events. When one
of these patterns is identified in real time, the device is alerted before the event
occurs, allowing applications running on the device to precache data. Predicting
connectivity has been conducted successfully using location [13,15] and time of
day [14] as indicators of connectivity patterns. However, for this scenario that
information alone does not contain the necessary cues for caching.

Take for example leaving your house every day, where you lose wifi connec-
tivity when you leave. Your location barely changes before you leave the area of
connectivity, meaning location-based systems will only be able to react to loss
of connectivity, instead of proactively predicting it. While time of day would
quite often be a good predictor for leaving, e.g. going to work every day, one of-
ten leaves the house at irregular times of day as well. These unscheduled events
would not be predictable and would have the same repercussions as not hav-
ing a prediction-based caching solution for cloud apps. Furthermore, leaving a
friend’s house would cause the same problems because you don’t do that ev-
ery day, and the location is different than previously recorded [15]. However,
identifying someone leaving the house based on observations of their behavior is
almost trivial and could be done by any child: putting on your shoes, maybe a
jacket as well, leaving the apartment, going down the stairs, etc.. Therefore, we
argue that any system which honestly attempts to bridge the gap between cloud
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and mobile computing must take all three parameters into account: time, loca-
tion and human behavior information. We implement a proof-of-concept which
runs on a mobile device and attempts to do exactly this using applied machine
learning techniques. Since connectivity prediction using location and time of day
are large fields and have both been explored independently and in conjunction
[13,14], we look at cases in which activity can be used to recognize connectivity
state changes which are otherwise unpredictable. We evaluate the approach by
observing the performance of the algorithm as it adapts to the behavior of an
individual in an experiment described in Sec. 4. The experiment replicates a sit-
uation where temporal and location-based connectivity approaches fail, thereby
showing the added benefit of using physical behavior as a further indicator.

This evaluation is carried out in two phases and the results are presented in
Sec. 5. First we evaluate how well the system performs using the user’s own
annotations of his behavior as a basis for prediction. We then evaluate the per-
formance of the same system using a timeline of behavioral information inferred
from activity sensing data by the device itself.

Using annotated information, the results indicate an overall f-score of only
0.56 for predicting changing connectivity. However, with respect to periods of
no connectivity the system performed much better, with a 100% prediction suc-
cess rate with an average of 8.2 minutes grace period, an f-score of 0.78 and
precision of 0.97. Using inferred behavior information caused little change with
f-score staying at around 0.58, where the success rate remained at 100% with
an average grace period of 8.28 minutes before the event. Based on a behav-
ioral recognition f-score of 0.85 with respect to the annotated labels, precision
dropped to 0.79, indicating more false positive predictions, causing damage in
terms of unnecessary caching. The final message is that even with imperfect be-
havior data we can still predict offline periods successfully, but have a higher cost
due to unnecessary caching. As behavioral recognition approaches perfection,
this overhead approaches 0, allowing systems to seamlessly integrate periods of
disconnectivity.

2 Related Work

Sensors integrated into wearable computing systems such as mobile devices can
be used to sense human behavior through activity recognition [1,4]. Using activ-
ity recognition to quantify human behavior allows devices, systems and appli-
cations to detect these activities or contexts in real time and adapt themselves
to that behavior, for example by predicting and highlighting the correct app on
a mobile device [16]. Using those sensor signals, statements can be made about
what that behavior will look like in the future through a process called activity
prediction [8]. At the same time, a timeline of recognized and quantified behavior
can also be used for predicting future properties, where using symbolic behav-
ioral data in place of numeric sensor data is advantageous in terms of memory
and computation for mobile devices [17].

Human beings are creatures of habit [4], making a history of human behav-
ior a good basis for predicting future activities. Using histories of mobile device
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connectivity to predict future connectivities however does not yield optimal re-
sults due to the fact that “fluctuations of radio quality are too large to make
long-term predictions” [5]. There are however other methods for predicting con-
nectivity which serve this purpose better, most focusing on location or time
information [15]. Location-based systems work on the basis of connectivity at
different locations [13], however, standard behavior at unknown locations causes
poor predictions [15]. Research has shown that modeling mobility patterns inde-
pendent of temporal information (e.g. weekend / weekday) will inevitably lead
to sub-optimal connectivity predictions [10]. Using temporal information alone
however can also be effective [2], but will inevitably fail if the subject changes
their routines or does something out of the ordinary.

Best results can be obtained when combining location with temporal infor-
mation for predicting connectivity [15]. However even this approach may fail if
the subject performs activities at unknown locations, as temporal information
only helps to refine location models, or outside of normal temporal routines when
connectivity may vary from the normal experience for certain locations [5]. Also,
as demonstrated in the introduction, there are still situations in which both time
and location are not enough to determine the future state of connectivity.

Resources and execution can be offloaded into the cloud conserving local re-
sources and increasing device utility [6]. However when connectivity is lost, any
processes still offloaded are lost and utility suffers. One method for counteracting
the loss of utility is to cache resources before going offline. Approaches which use
explicit input from the user to cache required resources (data) go back as far as
15 years [11]. More recently automated approaches have been introduced where
browsing habits can be used to evaluate and cache links which will probably be
clicked [19]. More recently, this concept has been adapted to allow automatic
pre-fetching of items with a high probability of being viewed based on a users
history and the current network state [7]. The concept we put forth here is to
incorporate physical human behavior into temporal and location-based predic-
tion models. We propose a scenario in which both temporal and spatial models
would fail, and demonstrate the added benefit of behavioral-based systems.

3 Methods

In order to demonstrate the novel concept for reconciling cloud and mobile com-
puting, we have constructed an archetype for predictive caching. Our system
quantifies human behavior using an activity recognition framework designed for
embedded recognition. This framework is based on previous work [4] and will
not be detailed here. The important aspect for this work is that it quantifies hu-
man behavior from motion sensor signals, in this case using supervised machine
learning approaches.

In order to preemptively cache resources from the cloud onto a mobile device
before we lose connectivity, the device must monitor the following states. The
observable state of the sensors embedded in the device S, also known as the
evidence, and the connectivity state of the device C. Based on these observations,
models can be built by the device from its own experience.
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3.1 Behavioral Quantification

The first model required describes human behavior as a function of the sensor
signals, allowing the device to recognize and quantify that behavior. This model
M consists of models m ∈ M for each distinct type of behavior α ∈ A of the
form p(S|a), where s ∈ S are observations from the sensors of the device. Using
this model, a prior distribution, and given a set of observations s, the device can
calculate a probability distribution over these models, or p(a|s) using Bayesian
inference and the law of total probability [12]. For each discrete type of human
behavior α, we model the belief function over the evidence, or extracted sensor
features, as a probability density function (PDF):

mα = P (S|α) =
K∑

k=1

πkN (S|μk, Σk)

We then use these PDFs to generate a posterior probability distribution across
behavioral states using the law of total probability and a prior distribution:

p(α|S) =
P (S|α)p(S)

p(α)∑A
αi

p(αi|S)

Using this posterior, we can then recognize human behavior by selecting the
most probable model at any given time as the behavior for that time slice:

argmax
α

p(α|S)

This inference, or activity classification, is conducted periodically, generating a
time line of human behavior A.

3.2 Connectivity Prediction

Based on the observations of the network connectivity states c ∈ C, transitions
φ ∈ Φ between network states can also be observed. By observing A and Φ in
parallel, A can be mined for behavioral patterns which occur directly before
specific transitions in Φ. Due to the temporal relationship between the two, a
pattern in A which is an antecedent to specific φ can be observed as having a
causal relationship with that transition. For a given pattern length tp, we model
the causal behavioral patterns for transitions with the same resulting state as a
Markov chain. Specifically, we model segments of behavior of length tp leading
up to those transitions.

In other words, the periods of behavior leading up to a change in network
connectivity state into a specific state are modeled together in order to be able
to later predict a transition into that state. This set of models is then used
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for predicting future changes in network state. Because we also model the null
transition, we can use the law of total probability again to generate a distribution
of probability across the models. The model with the highest probability is then
output as the predicted connectivity transition.

Each φij represents a switch from network state ci to state cj . The model
is then built by observing a history of transitions Φ between these states, and
calculating the transitional probabilities as a Markov process. The result is a
Markov model of transitional probabilities between all connectivity states of the
mobile device. For each transition φxi into a new connectivity state ci regardless
of the previous state cx, the activity time line of length tp leading up to the
transitions At−tp,t are modeled together in Markov model ωci ∈ Ω.

These activities are modeled as a Markov chain, where the model for transi-
tion into connectivity state ci takes the following form: ωci = (A, λ). where A
are the states, namely one each quantization of the human behavior (recognized
activity) extracted previously. λ are the transitional probabilities between ac-
tivities, modeled on the data At−tp,t leading up to the connectivity transitions,
or:

λ : A×A → A, where λij = p(αt = αi|αt−1 = αj)

For each connectivity state ci we now have a Markov chain modeling the human
behavior which “causes” transitions into that connectivity state, ωci . For a given
timeline of behavior A of length tp, we now need to be able to calculate the
probability that this history will lead to a transition, and if so which one. To
do this, all Markov chains are traversed in parallel by taking the product of the
transition required given A as evidence. Using the law of total probability, the
probabilities are normalized across all models, and the most probable model is
output as the prediction of the future connectivity state for the device:

Prediction = argmax
c

p(ωc|A)
∑C

ci
p(ωci |A)

3.3 Predictive Caching

The combined approaches for recognition and prediction are shown in Fig. 1.
Once the framework has predicted the future network connectivity state, this
information is provided to every software entity on the device which is inter-
ested. At this point each application must then form its own decision about
the appropriate action to take. The first input into this decision making pro-
cess is the level of connectivity required in order to deliver the user experience
which is wished. For example, for certain applications such as background data
synchronization tasks, low speed and bandwidth may be acceptable, while for
others such as streaming video applications, even slight reductions in connec-
tivity may be unacceptable. Once the threshold in connectivity for the app has
been predicted, the app can then decide to prepare itself for an offline period by
prefetching resources from the cloud.
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Fig. 1. The architecture of the proposed concept

The next decision is what to prefetch and cache. This decision is also based
on what is required for optimal performance, and what is predicted. For ex-
ample, using mobile map services with a slow connection may be enough to
perform online searches comfortably if the map data has been cached. For the
scenario evaluated here, as soon as the connectivity drops below the minimum
for streaming music, the user experience plummets and the data must therefore
be cached. Not only the type of data must be selected, but also which instance,
e.g. which song or songs, or which map area. Each app using the framework is
best equipped to understand what the usage profile of the user for that app is,
and therefore which resource is required to restore the local process’ state and
preserve the experience as best as possible. How much of the experience and
the utility can be preserved is dependent on the type of app, the user and the
scenario, and is therefore not evaluated. We examine how well the framework
provides apps with information about future connectivity, and the correctness
of that information.

3.4 Evaluation Metrics

In order to evaluate the system we need to first define what we want from it,
and then create metrics for assessing that [18]. What we want from the system
is to inform us of the connectivity changes in the future based on a pattern of
human behavior. What we know is the length of time over which these patterns
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occur, namely tp. Based on this information we can define metrics to evaluate
the system.

We define a true-positive (TP) prediction for a connectivity change to state
ci as the existence of transition ∃x|τxi ∈ tp within the time frame tp of prediction.
If the predicted transition to state ci does not appear within tp, or �x|τxi ∈ tp,
this is then classified as a false-negative (FN) prediction. A prediction of the
null transfer τnc when no transfer occurs ∀x,y|τxy /∈ tp, or the prediction of a
transfer to the current state of the system, are both counted as a true-negative
(TN). If the predictor predicts any transition τ �= τnc and no transition occurs,
or �x,y|τxy �= τnc, τxy ∈ tp, this is false-positive (FP) (i.e. FP of ‘no connection’
results in unnecessary caching). Using these values we can calculate accuracy,
precision, recall and f-score [12].

When evaluating the performance of prediction for transitions to a single class
alone, the evaluation is slightly adapted. The metric is applied only to instances
of that class alone, where all other classes are grouped together in a single class,
as a two class problem. The reason for this is that transition to and between
other states should not affect the results for a single class evaluation, which is
not the case without this exception. Transitions into other classes within tp are
no longer counted as false-positives, as when observing only that class and the
null class, these are then true-negatives.

These metrics allow us to evaluate the overall system performance. However
they do not capture one critical aspect of system behavior. Take the example
of retrieving something from the basement of an apartment building. In the
apartment we have WiFi and in the stairwell we have a mobile data connection.
In the basement for a short period we have no connection, followed by mobile
connectivity on the stairs and WiFi again in the apartment.

In this scenario, if the behavioral pattern window tp is larger than the length
of the offline window, then completely missing the prediction of the connectivity
loss would still result in an f-score of 1 as long as the other transitions inside the
window are correctly predicted. In order to account for this, a different metric is
required, which takes this into account. We define the prediction success rate
as the number of transitions to that state which are predicted inside of tp before
they occur, divided by the total number of network transitions. Note that as
with the other metrics, success rate can also be applied to a single transition
type.

In addition to whether or not a specific transfer is successfully predicted,
it is also important to note how far in advance the prediction came. Here we
introduce the time-to-eventmetric to evaluate how long the system has to react
to prediction information. The metric is defined as for all successful predictions,
the time between the window and the occurrence of the connectivity transition
event. It is important to note that as a result of the definition of success rate,
this value will always be less than tp. This information is especially critical for
predictive process state caching, as it indicates whether the system is actually
able to cache the required information in time before the connectivity event.
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(a) Jogging route (b) Commuting route

Fig. 2. The jogging route and the commute path taken in the data set

4 Experiment

In this work we propose to reconcile the concept of cloud computing with the
fragile connectivity of mobile devices. To evaluate behavior-based precaching as
a way to address these differences, we conducted an experiment in a specific
usage scenario with a cloud-based streaming music service.

4.1 Scenario

During a normal jogging route, the subject jogs through an open park where
there is little or no connectivity. He prefers to use a streaming music service
which tailors a playlist for him based on his preferences and those of his friends.
However, when he is in the park the slow connection is not sufficient to stream
music. He is a student, and therefore does this at different times of day, meaning
it is difficult to predict the event of jogging using temporal models. The beginning
of his jogging route is along the same path as his trip to campus, making it
difficult to differentiate the two using location models alone (see Fig. 2). Even
the speed at which he travels does not differentiate between going to campus
and going for a run, as he sometimes walks or rides his bike depending on his
mood and the weather. However, when looking at the physical behavior, there
are subtle differences between going to work and going jogging.

The challenge is that by the time the user enters the park, it is already too late
to begin precaching, meaning this information must be present beforehand. At
the time when the signal for precaching is required, both location and temporal
features for going to work and going jogging are indiscernible from each other.
In this case however, an intelligent version of the music service would not have
a problem deciding what needs to be cached (the process state) in order to
continue execution offline: the play-list.
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Fig. 3. Left: mobile phone running the novel framework and the SmartWatch showing
prediction state (color) and behavioral history. Right: the view for labeling activities
and controlling the framework state.

4.2 Framework

For this experiment an HTC Desire Bravo was used as a mobile sensing device.
The device contains a light and temperature sensor for sensing the environment,
as well as an acceleration and orientation sensor for sensing physical behavior.
The device was carried in the users pocket with the same orientation throughout
the entire experiment. Paired with the device was a SONY SmartWatch1 which
was used to visualize the state of the mobile device without disturbing it for
the purpose of activity recognition. The SmartWatch was also used as an input
device for the predictive framework. The application for the SmartWatch and
connected Android device can be seen in Fig. 3, where both the system output
and input mode can be seen. This device allows the subject to interact with the
monitoring device without having to physically touch it, thereby disturbing the
behavior monitoring as little as possible.

The prediction of future connectivity was realized with a software framework
running entirely on the device. The framework is implemented as a service for
Android which runs in the background. All sensors are sampled at a dynamic
sampling rate which is controlled by the operating system, with real sample rates
averaged around 30 Hz for the behavior sensors.

Signal features are extracted over 2 second windows of sensor data, with a
50% overlap between windows, outputting a feature vector every second. The
features calculated by the system are signal mean, median, standard deviation,
min-max difference, signal entropy, FFT frequency peak and FFT entropy. These
are calculated for each axis of the acceleration and orientation sensors individ-
ually as well. In practice only a subset of these features is required to achieve
the same accuracy or negligible reductions, reducing computational load on the
device. The necessary features were identified using standard feature selection
algorithms [12].

Each second these features are classified into 6 different motion classes, stand-
ing, sitting, walking, climbing stairs, running and ‘other’. This is done using a

1 http://www.sonymobile.com/us/products/accessories/smartwatch/

http://www.sonymobile.com/us/products/accessories/smartwatch/
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probabilistic classifier which models the data for each activity as a mixture of
Gaussians, where the number of components is estimated by the system using ex-
pectation maximization [12]. For this purpose, naive Bayes classifier was adapted
to be trained and to classify on the Android device. The framework is based on
previous systems which run on a mobile device and carry out both recognition
and prediction actions simultaneously [4].

4.3 Data Set

The data set collected here is from one individual and was collected of the
course of several weeks. The subject is male, 26 years old, 187 cm tall, weighs
87 kg, and is an Information Management student. The concept here is not
to deploy a single system which works for all subjects (generalized), but to
research an approach which allows devices to learn and adapt to their users
over time (personalized). We argue that to demonstrate this concept, a longer
term data set from a single subject is more suitable than having several shorter-
term instances from multiple subjects. The data set contains sensor data from
the acceleration, magnetic field, and GPS (not used for recognition) sensors on
the device. Activities performed were labeled by the subject himself, using a
touch-screen interface on the SmartWatch designed for this purpose. Network
connectivity was also recorded and is annotated in the data set. Each trip is
stored in a separate file where the type of trip, either jogging or commuting to
or from campus, is indicated in the file name.

From this data we selected 1450 minutes of sensor data to use for this experi-
ment. This contains 10 jogging runs of approximately 65 minutes each, including
a period of time before departing from, and after arriving at the apartment.
The daily trip to campus and back was also recorded, in total 10 round-trip
commutes, approximately 20 minutes each way. During jogging, loss of connec-
tion was simulated using a geo-fencing approach. Crossing the boundary of the
wooded area caused the mobile phone to lose network connectivity, motivating
the scenario. In practice the system encountered and quantified the connectivity
states of WiFi, UMTS, EDGE and NONE, but as EDGE did not occur at all
in the traces, and because it is also not sufficient for streaming music purposes,
this state was excluded from the evaluation and used as NONE whenever en-
countered. The daily commute begins with a similar pattern as going for a run,
but does not lose connectivity. This data set has been made public as part of
the contribution of this work2.

5 Evaluation

In this section the performance of the predictive caching algorithms during the
course of the study will be evaluated. The data presented here is generated
using a leave-one-out evaluation approach. For each different type of trip (either

2 www.teco.kit.edu/~gordon/precaching/data_set.zip

www.teco.kit.edu/~gordon/precaching/data_set.zip
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(b) ‘No connection’

Fig. 4. Results over tp using behavior labels

jogging, going to campus, or going home), one trip is set aside and the others
are used for learning with respect to activity recognition and the behavioral
pattern for causal transition modeling. The performance is then evaluated using
the data that was set aside. This process is repeated until each trip instance has
been used for evaluation once and the results are averaged across all iterations.

The evaluation is two fold. First we evaluate the ability of the reference im-
plementation to predict future connectivity. This is done using behavioral anno-
tations provided manually for the prediction process, representing the minimum
of error possible for behavioral information: the ability of a human to discern
these behaviors. Although these annotations contain only human error, a sys-
tem which attempts to recognize behavior automatically will introduce further
error into the behavior annotations. At best, the system will learn to decipher
these behaviors, but will never be able to perform better than the human, as
it uses the human labels for training, and is evaluated by how well it is able to
fit them. For this reason, the second part of the evaluation is concerned with
investigating the performance of the same system using the error-bound output
of a behavioral recognition system for prediction.

5.1 Proof-of-Concept

In this section we evaluate if behavior is indeed an indicator of future connec-
tivity. The basis for prediction in this section is a time line of activity labels
as annotated by the user through the SmartWatch interface. In the next sec-
tion the performance when using error-bound activity data will be evaluated. In
order to assess which behavioral patterns best allow us to predict connectivity
changes, we dynamically changed the length of time before the change in con-
nectivity state which was modeled tp. This parameter was varied from 30 seconds
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to 15 minutes and the accuracy, precision, recall and f-score were evaluated. The
results of this evaluation can be seen in Fig. 4(a).

The first thing to note is that accuracy is high, even for small window sizes.
Precision and recall are however quite poor, leading to a poor f-score as well.
This is caused by the imbalance between the few number of transitions from one
connectivity state to another, and the large amount of data containing no tran-
sition. For small window sizes, a high number of steps where no transition occurs
in the near future are correctly predicted as the ‘no change’ class. However, the
low f-score indicates that when transitions do occur in the near future, these are
misclassified. Accuracy is however known to be susceptible to non independently
and identically distributed (i.i.d.) data [18], and is therefore not of much interest
for this evaluation other than for indicating the correctness of the ‘no-change’
prediction.

As the window size increases so too do precision, recall and f-score, although
not monotonically. The periodicity would seem to indicate that there are patterns
of different lengths which are tell-tales of connectivity transitions, or possibly
different harmonics of the same pattern. As the number of ‘no-change’ windows
is reduced (longer patterns mean predictions extend longer into the future),
the accuracy falls. F-score reaches an optimum of around 0.56 at 9 minutes,
indicating the length for the most decisive patterns for predicting transitions in
this scenario. Nonetheless, the initial values here appear to be a negative result,
as an f-score of 0.56 would seem to indicate the inability of the system to allow
prefetching of distributed resources.

This would appear to be confirmed by Fig. 4(b) which shows the results only
for the specific transition to ‘no connection’. Again accuracy is not an indicator of
actual performance as the number of negative instances far outweighs the number
of positive instances. The f-score however far exceeds overall values in Fig. 4(a),
with an optimum at around 0.78 at a window length of 9 minutes. Interestingly,
the precision for the unconnected state prediction is exceptionally high at that
point as well at 0.93. This indicates that only in exceedingly few instances would
an app cache resources unnecessarily. The next step is to evaluate how many
instances of no connectivity were actually predicted ahead of time (success rate),
and how far ahead of time (time-to-event). We then evaluate the success rate
over the same window sizes to see what the user would experience from system
performance. Despite the poor results indicated by the the recall metric which
shows only 0.67 in Fig. 4(b) for a window length of 9 minutes, the success rate
is 100% with all offline periods being successfully predicted. So how is a perfect
prediction success rate possible with such low recall?

The low recall rates come about when many instances which should be pre-
dicted as ‘no connection’ are predicted as something else. The cause of these low
recall rates is that after having correctly predicted the loss of connectivity in
the future, the pattern for maintaining the loss of connectivity (the ‘no change’
model) becomes more dominant than the pattern for losing connectivity. How-
ever, while the transfer from a connectivity state to no connectivity is in the near
future, this is judged as a missed prediction. High precision however indicates
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Fig. 5. Time-to-event over tp using behavior labels (a) and inferred behavior (b).

that the system is not generating false positive predictions, meaning that our
streaming application is not caching when it doesn’t have to. While this would
not directly affect the user’s experience of the system with respect to listening to
music, it would have repercussions with respect to resource consumption. Most
importantly, caching when not necessary causes battery consumption due to pro-
cessing, storage and wireless communication, which will at some point negatively
affect user experience.

Now the next question is, did the predicted warning arrive in time to allow the
device to cache the playlist? In Fig. 5(a) the time-to-event for predicted loss of
connectivity is shown across window length. Here we can see clearly that for the
optimal behavioral pattern window of 9 minutes, a mean time-to-event of 8.20
minutes with a standard deviation of 46 seconds are obtained. Before the offline
periods the device uses mobile internet. The measured connection at the location
during caching is 1000 KBit/s, or 125 KByte/s, meaning 60 MB. Assuming 3.5
MB and 3 minutes play time per song, that equates to around 17 songs, or 51
minutes of music. The offline periods themselves last for 9.4 minutes on average,
meaning the user would even have the luxury of being able to skip 13 songs they
don’t like.

5.2 Error-Bound Behavior Data

In the section we evaluated the performance of the system when using error-
bound behavior data as recognized by the system using the sensors. The recog-
nition system is based on a previously published embedded classification system
for android phones [4] which has been simplified to the level described. During
the leave-one-out evaluation, the training data is used to model classifiers for
recognizing the behavior in real time from device sensors. The results of the
10-fold cross-validation are shown in Tab. 1. Here the classification errors can
be seen, representing error in the activity time line. The accuracy of the system
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is 0.97, but again this is not representative of system behavior due to non-i.i.d.
data [18]. In reality the behavioral recognition system achieves a recall of 0.91
and precision of 0.80, yielding an f-score of 0.85. These values are realistic for
many activity recognition systems, and better rates are often achieved in the
literature [1,4], making this a fair evaluation of the system.

Table 1. Confusion matrix in percent for the activity recognition chain

a b c d e f
Sit Stand Walk Stairs Jog Other

99.2 0.0 0.0 0.0 0.0 0.7 a

0.0 92.5 1.7 3.9 0.0 1.9 b

0.0 2.1 87.9 9.6 0.2 0.4 c

0.0 0.9 7.1 91.1 0.2 0.8 d

0.0 0.1 0.3 0.1 99.4 0.1 e

0.0 14.2 0.8 11.1 0.0 73.9 f

When observing overall system performance, using recognized behavior for
prediction does not appear to have drastic consequences for the systems. This
can be seen when comparing Fig. 6(a), containing the results using recognized
behavior, with Fig. 4(a) which was achieved using labeled behavior. The max-
imum f-score of the one is 0.56 compare to 0.58, both at window lengths for
pattern modeling of 9 minutes. This would seem to indicate that although the
data is to some extent flawed, the predictor trained on a timeline containing
these flaws is able to nonetheless predict connectivity correctly.

However, when observing the prediction of the ‘no connection’ state, we can
see that this is not entirely the case. Fig. 6(b) contains the results for prediction
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Fig. 6. Results over tp using inferred behavior data
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of these state transitions alone. When comparing the same results using labeled
data in Fig. 4(b), we see a drop in maximum f-score from 0.78 to 0.71, and a far
more drastic a drop in precision from 0.93 to 0.79. This indicates that using error-
prone behavior data for prediction causes a higher false-positive rate, causing
the system to cache unnecessarily. Again though, across the board and also at
a window length of 9 minutes, the system achieved a success rate of 100% even
using error-bound behavioral data.

Finally, we looked at time-to-event occurrence for inferred behavioral data, the
results of which are shown in Fig. 5(b). Here for window lengths of 9 minutes,
8.28 minutes with a standard deviation of 49 seconds was achieved between
predictions and the occurrence of the offline event. This is a few seconds more
than the same value using labeled data, and is also sufficient for the scenario.

6 Discussion

Prediction of the ‘no connection’ state performed better than overall system
prediction. This indicates that for other connectivity classes the system did not
perform as well. For no connectivity there is only a single behavioral ‘cause’ in
this scenario, namely jogging through the woods, where for others there were
multiple causal patterns, e.g. leaving the house and emerging from the woods
cause switching to UMTS. Here, we selected simple models for their ability to
perform on the mobile device [4], and all behavioral patterns leading to the
same connectivity change were modeled together. In reality, this generalization
worsens prediction, and different types of behavioral patterns should be modeled
separately.

In this work we have shown that observing behavior can allow a system to
predict connectivity when temporal and location models fail. In general how-
ever, spacio-temporal models perform quite well, and can be effective in situ-
ations where behavior-based prediction would fail, e.g. predicting connectivity
for jogging in the woods versus jogging through the city. Activity and behavior
modeling is not a substitute for spatio-temporal modeling, and would probably
perform worse in a generalized study. The work done here solely demonstrates
that in situations where location and temporal models fail, behavior modeling
can improve prediction. Integrating these different types of modeling and pre-
diction is however not part of this work and is the subject of further research.

The system presented here uses explicit activity definitions and labels along
with supervised machine learning to quantify human behavior (prediction train-
ing is unsupervised). In this work, supervised learning with explicit labels was
used in order to quantify the performance of the reference implementation
(f-score of 1 for labeled ground truth, v.s. 0.85 for recognized activities). The
semantic and ontological meaning behind the activity labels is not required for,
or used in, this process. This seems to indicate that the system could perform
as well or better using unsupervised learning techniques, making it far more
attractive for real world use as users must not provide any explicit input train
the system. The system observes behavior and connectivity using unsupervised
clustering techniques, and learns interdependencies.
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7 Conclusion

Cloud computing has greatly enhanced the functionality and utility of pervasive
mobile devices in recent years. Although initially the focus was on offloading data
and processing to the cloud to support processes on the device, this process is now
irreversible such that losing connectivity means many processes and applications
cease to function. We have presented a concept which allows these processes
to continue to perform offline, maintaining at least reduced functionality and
utility. Our approach is to use prediction technology to inform processes and
apps on the mobile device in advance of the disconnection events. We reason
that behavior information is necessary in certain situations where location and
temporal information do not suffice for predicting disconnection events. Our use
case is based on a jogging scenario through a wooded area where the user has
no connectivity for a period of time.

We first looked at how well our system performs if correct behavior informa-
tion annotated explicitly by the subject is presented to the system. The results
presented show that the hypothesis was correct, as offline periods were predicted
100% of the time with an average of about 8.5 minutes ahead of time, giving the
system more than enough time to cache process state information from the cloud
and continue operation locally. Furthermore, with a recall of 0.97, the amount
of unnecessary caching was also reduced to a minimum.

We then evaluated how the system performs using behavioral information
which it extracts from sensor signals using activity recognition techniques. Here
we used an activity recognition toolchain which was able to correctly recognize
behavior with an f-score of 0.85, containing non-negligible error. The results in-
dicated that the system was still able to predict periods without connectivity
100% of the time, 8 minutes ahead of time on average, but with a drop in pre-
cision to 0.79, indicating an increase in unnecessary caching. We demonstrated
that predicting disconnectivity in advance and caching necessary resources from
the cloud can allow processes to be continued locally in an offline state. This
preserves partial utility across the offline event horizon, reconciling the mobility
of pervasive devices with the distributed nature of cloud computing.
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