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Abstract. Currently virtualisation technology is being deployed widely and 
there is an increasing interest on virtualisation based security techniques. There 
is a need for securing the life cycle of the virtual machine based systems. In this 
paper, we propose an integrated security architecture that combines access 
control, intrusion detection and trust management.  We demonstrate how this 
integrated security architecture can be used to secure the life cycle of virtual 
machines including dynamic hosting and allocation of resources as well as 
migration of virtual machines across different physical servers. We discuss the 
implementation aspects of the proposed architecture and show how the 
architecture can counteract attack scenarios involving malicious users 
exploiting vulnerabilities to achieve privilege escalation and then using the 
compromised machines to generate further attacks.  

Keywords: Virtualisation, Trusted computing, Access Control, Intrusion 
detection, Security attacks. 

1 Introduction 

Security issues play a vital role in every organisation, as greater availability and 
access to information in turn imply that there is a greater need to protect them. To 
address this issue, several access control mechanisms, languages and systems [1-6] 
have been proposed in the past. Many of these systems make certain basic 
assumptions about the state of the platform that is hosting and running the 
applications and systems software. There is an inherent trust that is placed on the 
underlying platform when a user or an upper level application is authenticated or 
authorised to perform actions. In the current networked world with heterogeneous 
platforms and numerous software applications and system software running on these 
platforms, it is important such underlying trust assumption about the system state be 
properly examined. There are several reasons for this. Firstly, computing platforms 
have become very powerful and can run many applications simultaneously. In 
particular, as the number of software applications increases, greater is the possibility 
for security vulnerabilities. These vulnerabilities in turn make the platform more 
vulnerable to attacks. Secondly, attacks themselves are becoming more and more 
sophisticated. Furthermore, attackers also have easier access to ready-made tools that 
enable exploitation of platform vulnerabilities more effective. Thirdly, platforms are 
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being shared by multiple users and applications (belonging to different users) both 
simultaneously as well as at different times. Therefore there is a great chance of the 
platform being left in a vulnerable state as different users and applications run. 
Finally, because platforms have become much more complex today, users themselves 
are unaware of their platform vulnerabilities. Hence there is need for techniques for 
integrated security techniques for enhancing the security of the systems. 

In this paper, we propose an integrated security architecture which combines policy 
based access control intrusion detection techniques and trusted computing for 
securing the lifecycle of distributed applications running on virtual machines.  The 
paper is organized as follows. Section 2 presents an application scenario which 
highlights the need for such integrated security techniques in the current environment. 
In Section 3, we propose novel integrated security architecture for securing the life 
cycle of virtual machine based distributed applications. Section 4 presents the 
implementation details. Finally, Section 5 concludes the paper. 

2 Application Scenario 

The current networked environment is characterised by different types of security 
attacks and the attacks dynamically changing to avoid detection and prevention. 
Given the heterogeneous nature of the technology spectrum with different operating 
system platforms, fixed and mobile, with different networks and numerous different 
applications, the range of attacks possible is wide ranging. Hence it is complex and 
difficult to detect and prevent these different types of attacks using single security 
technologies such as access control or intrusion detection and prevention. There is a 
need to develop integrated security architecture combining different security 
functionalities as well as deploy a range of security tools such as access control 
mechanisms and intrusion detection systems. Such an integrated architecture is 
necessary to deal with emerging attacks. Let us consider an example scenario which 
illustrates the need for integrated security architecture. 

Consider the scenario in Figure 1, where we have distributed system architecture 
with applications running on virtual machines (VMs) on top of a Virtual Machine 
Monitors (VMMs) [7]. Let us assume that a customer requests to host virtual 
machines in this distributed datacentre architecture. Consider the case where the 
VMMs have security tools such as access control and intrusion detection to protect 
their resources from security attacks. Each VMM may have its own access control 
policies for hosting virtual machines. For instance, assume that Chinese wall access 
policy [8] is being enforced by the access control system as shown in Figure 1.  
Assume that there are VMs hosting requests from banks and oil companies.  With the 
Chinese wall policy, if Bank A’s VM is hosted on VMM1, then say Bank B’s VM 
cannot be hosted on the same VMM1. However it can be deployed on VMM2.  Now 
consider a Bank C’s VM which cannot be hosted on any of the VMMs. If Bank C’s 
VM is hosted on VMM1, then there is a possibility for information leakage between 
Bank A’s VM and Bank C’s VM. Similarly if Bank C’s VM is instantiated on 
VMM2, then there could be information leakage between Bank B’s VM and Bank C’s 
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VM. Hence the security architecture should not allow Bank C’s VM to be deployed 
on any of the VMMs. However, it will allow virtual machines belonging to an oil 
company to be hosted on the VMM. Either the datacentre administrator has to deploy 
a new physical server to host the Bank C’s VM or host the Bank C’s VM only when 
one of the other Banks’ VM terminates or shuts down.  
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Fig. 1. Integrated Security Architecture for Virtual Machines 

In addition, there is also a need to ensure secure operation of the virtual machines. 
Note that the intrusion detection tools have been deployed at the VMM instead of the 
VMs to ensure that they themselves do not succumb to attacks at the VMs (which are 
the ones that are being monitored). Hence the intrusion detection security tool at the 
VMM should detect if an attacker exploits some known vulnerabilities in the VM (or 
any traditional security tools (TST) such as [6] that are present at the VM) to generate 
attacks. Furthermore, in the distributed environment, there may be a need for 
migration of virtual machines to different physical machines. That is, a VM1 running 
on top of VMM1 may migrate to a VMM2. Hence the security architecture needs to 
ensure that the virtual machine can be migrated in a secure manner. Hence we can see 
the need for a security architecture that brings together access control policies and 
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mechanisms with the intrusion detection and prevention mechanisms in a trusted 
manner to respond to dynamic changes in attacks.  

2.1 Integrated Security Approach 

Let us now consider logical security functionalities that need to be combined in the 
integrated security architecture.  

There have been numerous security models that focus on access controls. We 
mentioned the Chinese wall policy in the previous section above when describing the 
application scenario. The traditional access control models include discretionary 
access control models such as those based on access control lists, mandatory access 
control models such as those based on security labels, type enforcement models, 
information flow models as well as role based access control models. In principle, 
each of these can be applied in a virtual machine based distributed systems context. 
For instance, sHype architecture [9] addressed the enforcement of mandatory access 
control for virtual machine based systems. It provides a reference monitor interface 
inside the hypervisor (VMM) to enforce information flow constraints between virtual 
machine partitions. When a virtual machine partition makes a request to access a 
shared virtual resource, an access control module in the VMM acting as the reference 
monitor enforces the mandatory access control policy. Extending this to a distributed 
system, a distributed application can be represented as a collection of virtual machines 
that execute across different physical machines. Using such a system, we can achieve 
a range of access policies such as type enforcement, Bell-LaPadula [10], Chinese wall   
as well as information flow type security policies. 

Access control systems are concerned about preventing access to the resources by 
the unauthorised users. However if a user (attacker) is successful in obtaining high 
level privileges through any means such as exploiting a vulnerability such as buffer 
overflow or by using stolen credentials, access control systems will not be able to 
differentiate these (malicious) users and are not able to enforce any restrictions on the 
actions performed by them. Hence by gaining unlawfully the higher level privileges, 
the attackers are successful in performing malicious activities such as installing 
malicious software or altering the legitimate applications and using these 
compromised systems to generate attacks. Such attacks are often detected by the 
intrusion detection systems in the traditional environment since they have signatures 
or baseline behaviour for the normal use of the systems or entities. In this case, 
although the attacker has obtained higher privileges, the actions performed by the 
malicious users (such as installing root kits and altering ls code to hide the malicious 
process) either match with the signatures stored in the attack signature database or 
deviate from the normal behaviour of the system. Hence the intrusion detection 
system raises an alarm when suspicious activity is detected.  

Integrating the intrusion detection mechanisms in the VMM gives rise to several 
advantages. It provides isolation as the VMM itself is protected from the 
vulnerabilities in the applications and operating system in the guest virtual machines. 
Also as the VMM has control on the resources of the system such as memory and I/O 
devices, it is able to inspect the resources allocated to virtual machines. Hence the 
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intrusion detection mechanisms if they are placed in the VMM can take advantage of 
this capability in their evaluations.  Furthermore, as the intrusion detection code is 
interposed between a malicious virtual machine and the attacked resource, this 
interposition enables efficient detection of attacks. For instance, Dunlap et al [11] 
proposed ReVirt architecture for secure logging by placing the logging tool inside the 
VMM. Garfinkel [12] proposed a Livewire intrusion detection system which makes 
use of the VMM to achieve introspection and obtain the state of the virtual machines. 
However in a distributed environment, we need to be able to detect attacks not only 
from a single VMM but from distributed VMMs by sharing information about 
intrusions between them in a secure manner.  Lycosid [13] detects hidden process in 
the virtual machines by comparing the implicit guest view with the VMM image. If 
the number of processes reported by the guest VM does not match with the number of 
processes identified by the VMM then there is a hidden process. It does not address 
attacks generated by visible process.  

However there are also some additional challenges with the intrusion detection 
systems. For example, signature based systems cannot deal with the zero day attacks 
and anomaly based tools have higher false alarms. Our observations confirm that 
many attacks first exploit one or more weaknesses in access control followed by the 
malicious activity. However since the access control and intrusion are often 
implemented separately, they are not efficient in detecting and preventing 
sophisticated attacks. Furthermore, traditionally access control systems have been 
implemented in the operating system or at the applications by the respective vendors, 
and intrusion detection systems are installed and configured by the end users.  Hence 
there is a need for integrating the access control and intrusion detection tools in a 
virtualised environment for greater efficient detection of attacks. Such an integrated 
security architecture should also address additional challenges that arise in a virtual 
environment such as dynamic hosting of virtual machines on the VMM, dynamic 
varying of the allocated resources and migration of the virtual machines between 
different physical servers. Hence the architecture should support techniques that can 
ensure secure hosting, secure operation, and secure migration of the virtual machines. 

Finally let us consider the integrity and trustworthiness of the VMM platform 
itself. The third logical functionality that we would like to consider in the integrated 
security approach is that of trust management, which helps to establish the trust on the 
VMM platform.  The notion of trust is the expectation that an entity will behave in a 
particular manner for a specific purpose.  A trusted platform is a platform that 
contains hardware based subsystem and special processes (Trusted Platform Module 
(TPM) [14]), which dynamically collect and provide evidence of behaviour. These 
special processes themselves are “trusted” to collect evidence properly. There are also 
third parties endorsing platforms which underlie the confidence that the platform can 
be “trusted”. The basic idea is if the physical machine has the TPM, then using its 
mechanisms, one can measure the state of the VMM on boot and confirm that the 
VMM is brought into a trustworthy state, if it matches with some reference state. 
Once the VMM with its access control and intrusion detection functionalities are in a 
trustworthy state, then the guest virtual machines can be loaded onto the secure 
VMM.  
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This completes our integrated security architecture which brings together the 
access control, intrusion detection and trust management functionalities into the 
virtual machine based distributed system environment. 

3 Security Architecture Overview 

Consider the secure and trusted VMM based architecture diagram shown in Figure 1, 
where each physical server is equipped with a hardware trusted platform module 
(TPM) chip. Within the VMM, security functionalities of access control, intrusion 
detection and security decision evaluation have been implemented using the modules 
Access Control Module (ACM), Intrusion Detection Engine (IDE) and Decision 
Evaluation Engine (DEE) respectively. This architecture is used to manage the 
security life cycle of a virtual machine such as secure hosting of a virtual machine, its 
secure operation as well as secure migration of virtual machines. 

There are several components to the DEE module that perform entity validation, 
logging, taint analysis, information sharing, and secure migration. The entity 
validation in the DEE is responsible for determining the entity at fine granular level. 
Note that the entity can vary depending on the action associated with the virtual 
machine. For example, before hosting a VM on the VMM, the VM is considered as an 
entity. After the VM is hosted, the processes running in the VM can be considered as 
entities. After the entity is determined by the entity validation component, the DEE 
makes a decision on the entity by considering the security policies in the ACM and 
the IDE components.  The ACM module is used for enforcing different access control 
policies such as Chinese wall to prevent conflicting virtual machines being hosted on 
the same server; e.g. virtual machines from Bank A and Bank B. Furthermore, it also 
has techniques to detect privilege escalation attacks performed by the users in the 
virtual machines.  The IDE module is used for detection of both known attacks as 
well as suspicious behavior by monitoring the interactions of virtual machines.  Some 
components such as entity validation and logging are active for all events on the 
virtual machines whereas other components such as taint analysis [15] are invoked for 
specific actions on virtual machines. Taint analysis is invoked only when the ACM or 
IDE detects some suspicious activity in the virtual machine. Information sharing 
component is only used for sharing attack information between different secure VMM 
based physical servers in the distributed environment. Secure migration component is 
used to validate the capability of the remote physical server to which the virtual 
machine will be migrated. 

Now let us consider how these modules in our secure and trusted VMM based 
architecture can be used for securing the life cycle of the virtual machines.   

3.1 Secure Hosting  

Most of the current virtualisation systems support dynamic hosting of virtual 
machines.  However there is a need to ensure secure hosting of the virtual machines. 
The DEE module in our model is concerned with ensuring secure hosting of virtual 
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machines on the VMM. Before hosting a virtual machine on the VMM, the entity 
validation component in the DEE module determines whether the virtual machine 
conflicts with any of the access control policies enforced in the ACM module. If any 
of the conflicting virtual machines are already running on the VMM, then the DEE 
module prevents hosting of the virtual machine on the VMM. If hosting of the virtual 
machine does not conflict with any of the running virtual machines, then the DEE 
evaluates other factors such as the available resources. If the DEE then decides to host 
the virtual machine, then the TPM based system is used to measure the state of the 
virtual machine and ensures it is trustworthy at boot time.  

Now let us consider briefly how TPM based system can be used to ensure that VM 
boots into secure state for completeness. A Trusted Platform includes a Trusted 
Platform Module (TPM) chip, a Core Root of Trust for Measurement (CRTM), TCG 
Software Stack (TSS) and the related certification. The TPM is a hardware chip that 
performs cryptographic functions and is separate from the main CPU. The CRTM is 
the first piece of software to run as the platform is booted. The TSS is the software 
code that is needed to perform various functions of the Trusted Platform. There are 
also a number of Certification Authorities that issue a certificate vouching that 
various features of the Trusted Platform are genuine. Once the platform is booted, the 
CRTM measures itself to ensure that it has not been compromised and stores the 
measured value in the Platform Configuration Register (PCR) of the Trusted Platform 
Module. For this reason, the TPM is also called as the Root of Trust for Storage 
(RTS). Then, the CRTM passes control to the first measurement agent (MA). A 
bootstrapping process follows where all agents measure the software modules they are 
responsible for and store the measured values inside the PCRs. The process continues 
until the last measurement agent has recorded the value inside the TPM. This way, at 
every boot, the TPM stores the measurement values of all the software components of 
the Trusted Platform. This ensures that the VMM, the VM operating system and its 
applications are in secure state during boot time. 

3.2 Secure Operation  

Now let us consider how the DEE ensures secure operation of the virtual machines.  
The entity validation and the logging in the DEE are invoked for all the actions on 

the virtual machines. The entity validation component identifies the entities at fine 
granular level and determines which security policies in the ACM or IDE component 
need to be enforced on the interactions of the entity. Logging is used for capturing  
the specific features of the virtual machine and the entity interactions.  In addition to 
the security policies in the ACM and the IDE which are able to detect the attacks, the 
DEE determines whether additional policies need to be enforced on the VM entities. 
Whenever suspicious behaviour is identified by the ACM or the IDE components, the 
DEE can decide to perform taint analysis to determine if the suspicious behaviour is 
actually malicious. The DEE can also be used for sharing of information between the 
different secure VMM physical servers. For instance, this can happen when new 
attacks are discovered by one physical server and shared with others. 
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Now let us consider a common attack scenario involving privilege escalation 
during the operation of the system and see how this attack can be detected with the 
proposed integrated security architecture. For example, consider a user who has 
logged on with limited privileges exploits some vulnerability to obtain higher 
privileges and performs malicious activities such as disabling security tools that have 
been installed in a virtual machine or installs some malicious programs in the virtual 
machine. 

First let us consider the privilege escalation by exploiting vulnerabilities in the 
SQL server. In one of the attacks mentioned in [16], a user who has logged in with 
limited privileges obtains administrative privileges by changing three bytes in the 
memory by exploiting buffer overflow vulnerability. SQL server validates the user id 
before giving access to any of the objects. If the user id is set to 1, then the user is 
considered to have the administrative privileges. The user can alter the id in the 
memory in the vulnerable server after calling VirtualProtect(). The administrative 
privileges of such malicious users will be valid until the SQL server is restarted. 
Hence a malicious user can use such temporary higher privileges to perform 
malicious activity.  Hence there is a need to detect such attacks during runtime by 
detecting the user privilege escalation. 

Note initially when the user first logged in as a normal user, the ACM has details 
of the user and his/her privileges in its user_store. Let us now consider how the 
runtime privilege escalation by the user, by altering the bits in the memory, is 
detected by the ACM module in the secure VMM. Recall the VMM is used to access 
and monitor the runtime state information of guest virtual machine such as vCPU 
registers, process and applications running in the guest virtual machine. There are 
three different types of memory in the VMM which are known as machine, physical 
and virtual.  Machine memory is the real memory which is controlled by the VMM. 
Physical memory is the memory assigned to the virtual machine and the virtual 
machine is under the illusion that the physical memory is the actual memory. The 
virtual memory is similar to the usage in traditional operating systems. The 
conversion between machine address to physical addresses is performed using a 
lookup table in the VMM. The ACM module makes use of the xc_map_foreign_range 
function in the VMM to access the memory contents of the guest virtual machine. 
Now the runtime privileges of the logged users are determined by analysing the 
memory allocated to the virtual machine and the actual privileges of the users are 
available in user_store. Hence in this case, the ACM module can detect the privilege 
escalation of the logged users.  

Another example attack scenario is when a virtual machine is infected with 
malware such as conficker [17], torpig [18] or LOIC [19]. In such cases, the IDE 
module comes into play in the detection of such attacks. This happens when the 
interactions in the virtual machines are found to be suspicious. For example, the LOIC 
attack floods the victim machines with TCP, UDP and HTTP messages. Such 
flooding attacks are detected by the signature or anomaly detection component in the 
IDE module. For example, such attacks are detected when the traffic from the VM 
matches with the known attack signatures or exceeds a predefined threshold.  The 
virtual machine is then suspended and taint analysis is performed in an isolated 
environment.   
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Secure operation also should consider techniques for secure update of the virtual 
machines. One approach is to apply the updates to the snapshot image and then 
validate the image in an isolated environment before applying the updates to the 
virtual machine in the production environment. 

3.3 Secure Migration  

Let us now consider the situation when a virtual machine which is running on a one 
VMM based physical server has to be migrated to another one. It is role of the DEE to 
ensure that the virtual machine is migrated to a secure platform. If the remote physical 
server does not have the capabilities to enforce the current virtual machine specific 
policies, then the virtual machine should not be migrated to the remote location. For 
example, the DEE needs to ensure that the remote server which needs to host the 
migrated VM does not have any conflicting VMs already running on it. Similarly, in 
some cases the remote server may not have hardware support for virtualisation. In 
such cases, the capabilities of the VMM based security modules may not be capable 
of enforcing the security policies which require hardware support for virtualisation. 

When there is virtual machine migration, the DEE determines whether the set of 
security policies from the ACM and IDE that are specific to the virtual machine are 
satisfied. Then the information sharing component in the DEE contacts the remote 
server to check whether it has the required resources to host the virtual machine to be 
migrated. Then the capabilities of remote server are checked to ensure that the current 
level of VM security policies can be enforced at the remote server. Our architecture 
makes use of TPM based validation to ensure that the remote server is capable of 
achieving a similar level of security for the virtual machine. An additional challenge 
arises in the migration of virtual machines between physical servers, when different 
representations for specification of security policies have been used by the different 
servers. We have assumed that the specification of security policies have been done 
using the same language. In our case, we use XML based specification of the security 
policies for virtual machines.    

4 Implementation 

In this section we consider a malicious user, with limited privileges, exploiting 
vulnerability in a virtual machine by performing privilege escalation and then 
compromising the anti-virus software running in the virtual machine. Then the 
attacker uses compromised system to generate further attacks. Let us consider how 
our security architecture is able to deal with such an attack scenario. 

In our attack scenario, we have used the anti-virus software Avira [20]. Note that 
Avira is one of the major anti-virus software providers and is an excellent security 
product. We have just used this as an example to illustrate how a malicious user to 
exploit current security measures to conduct attacks. Our research confirms similar 
attacks are also possible with other anti-virus software.     
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4.1 Anti-Virus Software Overview  

Now let us consider a simplified description of Avira Antivirus Free Software and its 
security features that is relevant for our illustration purposes. It consists of several 
Windows services, user-level processes, and kernel-mode drivers. Among these 
modules, Realtime Protection service is crucial in Avira's protection mechanism, as it 
provides realtime protection not only to the system (e.g. on-access detection of 
malware), but also to itself (self-protection such as prevention of unauthorised 
alteration on Avira-related files). In particular, unloading the kernel-mode drivers and 
the filter driver is blocked by Realtime Protection service as shown in Figure 2. Also, 
a user cannot stop, pause, or restart the service, as the service ignores such requests. 
Also one cannot terminate or kill the processes associated with the service (blocked 
by the driver). 

 

 

Fig. 2. Driver Protection in Antivirus Tool 

Kernel-mode drivers further strengthen Avira's self-protection. One of them locks 
Avira-related registry keys so that they cannot be modified by the system users. 
Avira's program folder is protected by the filter driver so that even the user with 
administrator privilege cannot add any file and delete or modify its files. Furthermore, 
the processes of Avira are protected by the kernel-driver in a way that even the user 
cannot kill them. Last but not least, Avira uses files in FAILSAFE folder if some its 
files in its installation folder are corrupted. To sum up, the protection architecture of 
Avira has security enforcements to defend it from the malicious users. 

Avira also checks for updates regularly and downloads the latest signatures and 
engines to deal with new types of attacks. There are three ways for carrying out the 
updates. First, the update of the definitions occurs automatically on a daily basis. 
Next, a user can trigger an automatic update via a menu or a command-line. Thirdly, a 
user can download the latest definitions from the Internet, and manually update Avira 
antivirus with the downloaded definitions. Once an automatic update is started, Avira 
first checks the current definition and engine versions to determine whether an update 
is indeed required or not. If so, it downloads the latest definition and engine files from 
a few dedicated servers, and then checks and installs them. While updating, Avira 
keeps logging all relevant events so that a user or an administrator can infer possible 
reasons if the update fails.  

4.2 Attack Scenario 

In this section, we describe an attack on the file replacement to compromise the anti-
virus software and the operating system. Once this can be achieved, the attacker has 
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complete control of the virtual machine and hence can use the system to generate 
different types of attacks. We will present an attack scenario where the attacker uses a 
compromised virtual machine to flood the network with malicious traffic and describe 
how our architecture can prevent such attacks. Our experiment environment was a 
virtual machine with Windows 7 Ultimate with Avira Free Antivirus 2012 which was 
running on Xen VMM 

We have used a staged malware in this scenario: First the malicious user runs a 
malware installer (first stage); the malware installer performs only the actions that are 
permitted under any anti-virus software's realtime protection. In this particular 
example, it checks the following: OS version, privilege of current user, anti-virus 
solution installed on the system, and version of currently active signatures and 
engines.  If Avira is installed on the target system, then the installer triggers an 
update; alternatively, s/he may just wait for an update to be started by the Avira's 
scheduler service. 

When an update begins, the installer monitors the status of Avira’s Realtime 
Protection service. Once the service is deactivated during the update, the installer 
performs the required actions that are normally blocked or prevented by Avira’s 
Realtime Protection service. In this example, the installer's ultimate goal is to replace 
Avira's sqlite3.dll with a malicious one (second stage) so as to subvert both Avira and 
the system.  

 

 

Fig. 3. Real-time Protection Service Process after update 

It performed the following tasks:  

• For privilege escalation, it dropped and executed any known or zero-day 
exploit that is normally detected by Avira. Notice that this local privilege 
escalation (e.g. from admin to SYSTEM) is required only once. After this 
file replacement process, the malware obtains SYSTEM privilege on the 
target machine. 

• Unloads Avira's filter driver that is normally protected by the service. 
• Dropped the real payload (fabricated sqlite3.dll) and replaced the original 

file in Avira's installation folder with the malicious one. This file operation is 
shown in Figure 3.  

• The installer deletes itself as a clean-up process to erase its existence; 
alternatively, the payload may delete the installer. 

As the filter driver has been unloaded, it should be restored, even though Realtime 
Protection service automatically loads and attaches the filter driver when it restarts. 
The reason for the restoration is that the service's restart triggered by Avira after an 
update proceeds to some extent and fails if the driver remains unloaded; of course, the 
installer can manually restart the service after the first restart by Avira fails. But still 
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the best solution is to restore the driver, because the service restart by Avira succeeds 
if the filter driver is restored. Interestingly enough, even if the start of the service was 
triggered and failed, it is logged as successfully started in the Avira's update log file, 
which is good from the attacker's point of view.  

 

 

Fig. 4. Successful Attack 

On restarting, Realtime Protection service loads the malicious sqlite3.dll which 
provides full SQLite functionalities, and becomes active without any problem. 
However, once loaded by the service, the malicious sqlite3.dll obtains SYSTEM 
privilege on the target machine. In other words, this attack allows the malware to 
escalate its privilege from a user to SYSTEM, which means UAC (User Access 
Control) on Windows becomes ineffective. Also, almost any malicious activity 
becomes possible, as it is loaded and executed in the context of Avira's Realtime 
Protection service. Furthermore, the DLL can perform file operations on the 
installation folder, even while the filter driver is loaded; this allows the attacker to 
update the malicious DLL. The result of this file replacement and loading operations 
is shown in Figure 4. The original sqlite3.dll (sqlite3_ori.dll, 389KB) has been 
replaced with the malicious version (sqlite3.dll, 612KB), and the fabricated DLL has 
been loaded by the service (window on the left side). Here, the original DLL was not 
removed to show its replacement. After becoming a part of Avira, the malware might 
be able to modify Avira's memory area. If so, it is possible to make Avira to look 
normal (with the tray icon's umbrella open), but totally ineffective. 

In the above scenario, the TPM prevents such unauthorised services during restart 
of the service. However it is important to note that the attacker can also generate 
attacks by compromising his virtual machine during runtime and generate attacks 
without restating the service. In our architecture, such runtime attacks are prevented 
by the secure VMM when the ACM module detects the privilege escalation of the 
logged user to system level or when the IDE module detects malicious traffic 
originating from the compromised virtual machine. Although the attacker is 
successful in compromising the virtual machine, s/he does not have access to the 
security components in VMM. Hence such attacks will not be successful with our 
integrated security architecture.  



152 V. Varadharajan and U. Tupakula 

 

 

Fig. 5. Flooding with Malicious Traffic 

Now let us consider an attack scenario. Figure 5 shows the case where an attacker 
has compromised a virtual machine during runtime and generates malicious traffic 
without restarting the virtual machine. Such an attack will be successful and the 
attacking source can remain anonymous in a traditional datacenter. Since the attacker 
has obtained complete control of the virtual machine and the traditional security tools 
in the virtual machine, s/he can alter the logs in the compromised system.  Hence it is 
extremely difficult for the datacenter administrator to determine the attacking source 
for such attacks since the attack traffic does not have any valid MAC or IP address.  

With our architecture, the attacks shown in Figure 5 are not possible in the first 
place. Since the traffic does not have valid MAC or IP address it will be blocked by 
the IDE module and an alert will be raised to the administrator. Hence our 
architecture can detect and prevent such an attack even before the attack traffic is 
placed on the network.  

5 Concluding Remarks 

We have proposed integrated security architecture which combines trusted 
computing, access control and intrusion detection techniques for securing the life 
cycle of the virtual machines. We have also shown how our architecture can prevent 
attacks from malicious users exploiting vulnerabilities to achieve privilege escalation 
and then using the compromised machines to generate further attacks.  
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