
VCCBox: Practical Confinement of Untrusted

Software in Virtual Cloud Computing�

Jun Jiang, Meining Nie, Purui Su, and Dengguo Feng

Trusted Computing and Information Assurance Laboratory,
Institute of Software, Chinese Academy of Sciences,

Beijing 100190, China
{jiangjun,niemeining,supurui,feng}@tca.iscas.ac.cn

Abstract. Recent maturity of virtualization has enabled its wide adop-
tion in cloud environment. However, legacy security issues still exist in
the cloud and are further enlarged. For instance, the execution of un-
trusted software may cause more harm to system security. Though con-
ventional sandboxes can be used to constrain the destructive program
behaviors, they suffer from various deficiencies. In this paper, we pro-
pose VCCBox, a practical sandbox that confines untrusted applications
in cloud environment. Leveraging the state-of-the-art hardware assisted
virtualization technology and novel design, it is able to work effectively
and efficiently. VCCBox implements its system call interception and ac-
cess control policy enforcement inside the hypervisor and create an in-
terface to dynamically load policies. The in-VMM design renders our
system hard to bypass and easy to deploy in cloud environment, and
dynamic policy loading provides high efficiency. We have implemented a
proof-of-concept system based on Xen and the evaluation exhibits that
our system achieves the design goal of effectiveness and efficiency.

Keywords: Sandbox, Hypervisor based security, Hardware assisted vir-
tualization, Cloud computing.

1 Introduction

In recent years, cloud computing has become a heated topic in both industry
and academia. Virtualization, as an underlying technology of cloud computing,
plays a key role in utility computing and private cloud. Among all virtualization
techniques, hardware assisted virtualization has been widely adopted since it is
compatible with existing OS kernels and is supported by various commodity and
open-source hypervisors.

Cloud computing is a double-edged sword from the perspective of security. It
provides better environment for solving security problems but also enlarges the

� This work is supported in part by National Natural Science Foundation of China
(NSFC) under Grant No. 61073179, National Basic Research Program of China
(973 Program) under Grant No. 2012CB315804, and Natural Science Foundation of
Beijing under Grant No. 4122086.

T. Zia et al. (Eds.): SecureComm 2013, LNICST 127, pp. 122–139, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013



Practical Confinement of Untrusted Software in Virtual Cloud Computing 123

harm of legacy security issues. For example, some programs may behave mali-
ciously while providing desired features, and this could be either intentional or
not. How to securely execute untrusted applications and confine their destruc-
tive behaviors has been an everlasting issue in system security. Generally, this
problem can be resolved by sandbox, a mechanism that controls the runtime en-
vironment of a program and mediates its interactions with the outside. Hence,
the program behavior can be limited to what the user allows. Unfortunately,
most currently available sandboxes possess various deficiencies, such as liability
to be bypassed, and requirement of modified or dedicated kernel. More impor-
tantly, as we step into the cloud computing era, it becomes difficult and even
impossible to deploy them in real production environment. We present a detailed
examination of representative sandbox mechanisms in Section 6.2.

To overcome such shortcomings, we present VCCBox, a sandbox architecture
constructed on top of the hypervisor, which embraces contemporary hardware
assisted virtualization technology for robustness and ease-of-deployment. We
observe that the system call is the only entry for an application to perform
sensitive operations and access system resources. Hence, we intercept system
calls from the hypervisor level and check whether they violate access control
policies that are compiled from policy scripts written by the user in a C-like
language and loaded into the hypervisor dynamically at runtime. The decision
made to a system call can be either permitted, disallowed or deceived.

In summary, we make the following contributions:

– We first propose a sandbox architecture based on hardware assisted virtu-
alization technology, which overcomes several defects of existing solutions.

– We have implemented a mechanism to dynamically load code into the hy-
pervisor at runtime. To the best of our knowledge, we are the first to use
this technique in hypervisor-based security mechanisms.

– We have devised a special variant of C programming language as the policy
description language, which enables fast development of effective, flexible
and powerful policies.

– We have implemented a Xen-based prototype system named VCCBox and
performed detailed evaluation showing that our system is effective and effi-
cient for adoption in production cloud environment.

The remainder of this paper is organized as follows. Section 2 presents not
only the application scenario and technical background of our system, but also
the design of the system, while Section 3 details the implementation. Then we
present the results of evaluation in Section 4 and analyze possible limitations of
our system and some future work in Section 5. Finally, we discuss several related
work in Section 6 and conclude our paper in Section 7.

2 System Overview and Design

In this work, we utilize the contemporary hardware assisted virtualization tech-
nology to design a sandbox mechanism named VCCBox. We take advantage



124 J. Jiang et al.

of the higher privilege of the hypervisor to achieve non-circumventable protec-
tion. Moreover, hardware assisted virtualization is prevalent in cloud computing
nowadays, rendering our system suitable for real production environment.

2.1 Application Scenario

To demonstrate the usefulness of our VCCBox system, we provide the following
two scenarios:

– Peter is an administrator of several virtual servers running a few services
such as HTTP and FTP in a company. However, he is not sure whether
these server programs contain malicious parts. It is possible for a web server
to possess a backdoor that sends out sensitive files when triggered by a
special URL.

– James is a manager of a few virtual private servers, and he rents his virtual
machines to individuals. Unfortunately, some tenants use the VMs to per-
form malicious activities such as sending spams or launching DDoS attacks.
It can be trivial and time-consuming to manually stop these behaviors.

In above scenarios, sandboxes can be used to confine the vicious behaviors of
untrusted or malicious programs. However, traditional in-OS sandboxes may not
fulfill this need. In the first scenario, it could be a tedious and non-trivial task to
install and configure sandboxes for respective virtual servers considering the large
amount of VMs on a physical machine. Furthermore, in-OS sandboxes are not
applicable to the second scenario at all, since the end user has full control on the
virtual machine and can easily disable the sandbox. Under such circumstances,
our VCCBox system is useful, since it runs at the hypervisor level, and thus is
easy to be deployed in cloud environment and hard to bypass.

2.2 Technical Background

Since our approach involves hardware assisted virtualization, specifically, Intel
VT, we give a brief introduction of it. The traditional x86 architecture has four
privilege levels, ring 0 (highest) for kernels to ring 3 (lowest) for applications.
In Intel VT, these four rings are categorized into VMX non-root mode, and a
new VMX root mode with even higher privilege is introduced. Since the legacy
four rings still exist, the operating system can run without modification. When
virtualization is enabled, several sensitive instructions change their semantics
and trap into the hypervisor for the whole system to run correctly. Namely,
the virtual machine and the hypervisor alternately obtain the CPU time slice.
When the operating system tries to execute a sensitive instruction or an external
interrupt occurs, an event called VMexit is triggered. Therefore, the processor
switches its privilege level to VMX root mode and a previously registered VMexit
handler is called to enable the hypervisor to deal with the event appropriately
for correct virtualization. After that, VMentry gives the control back to the
operating system and reverts to the previous status. Therefore, the hypervisor



Practical Confinement of Untrusted Software in Virtual Cloud Computing 125

naturally provides security applications with an opportunity due to its higher
privilege and its capability to intervene in the execution of the virtual machine
systems. Currently, modern processors equipped with this technology are widely
used in production environment.

Assumption. Since our method involves virtualization, we assume that the hy-
pervisor and the management domain are trusted. We believe that this assump-
tion is reasonable since it is a fundamental assumption shared by many other
hypervisor-based security mechanisms [8,14,16,24] and can be consolidated by
existing hypervisor protection techniques [1,21,23]. Though attacks to the VMM
exist, they are out of the scope of our work.

2.3 System Architecture

VCCBox is constructed on an existing hypervisor in order to be compatible
with the production environment. As is illustrated in Fig. 1, our system resides
in both the hypervisor and the management domain and is composed of four
parts: policy manager, policy library, system call interception and system call
feedback. The asterisks indicate that the corresponding parts can be multiple.

Fig. 1. Architecture of VCCBox

VCCBox works in a straightforward way. It intercepts system calls since they
are essential for an application to access system resources, and then consults the
policy library to find out applicable measures. Leveraging the higher privilege of
the hypervisor and proper design, our system call interception mechanism cannot
be bypassed. Moreover, the policies in the library can be added, removed and up-
dated dynamically at runtime, eliminating domain-hypervisor context switches
and making our system highly efficient. The policies are compiled from flexible
policy scripts written by the user of our system (usually an administrator) using
a C-like policy description language. Fig. 2 depicts the entire system workflow.

System Call Interception and Feedback. System call interception is the
first step towards sandboxing. Currently, two approaches can be used by an ap-
plication to request system services, i.e., software interrupt and fast system call



126 J. Jiang et al.

mechanism. However, the hypervisor cannot intercept them directly since nei-
ther of them triggers VMexit events. Fortunately, there are multiple approaches
which allow the system calls to be intercepted indirectly. Once a system call is
intercepted, we look for the corresponding policy and enforce it. The policy uses
virtual machine introspection [8] to obtain necessary information and makes a
decision out of the following three: permitted, disallowed and deceived. To feed
back the result, we take the following approach: nothing additional is required
for permitted ; for disallowed and deceived, we “skip” the system call and provide
appropriate return value to the application by modifying relevant registers; one
extra thing is needed for deceived, i.e., filling the “output” parameters of the
system call with specific value.

Fig. 2. Workflow of VCCBox

Policy Library Management. Our policies are per program. Thus, we check
if the upcoming process needs to be sandboxed when a context switch occurs.
If not, system call interception will not be enabled in order to retain the per-
formance. Otherwise, each interesting system call of the sandboxed process is
associated with a policy routine. The policies can be added, removed and up-
dated dynamically at runtime. Thus, we need to modify the hypervisor to provide
an interface for management of policies. This interface is not complicated since
we only need to load executable code into the hypervisor space. Our policy is
written by the administrator using a C-like policy language. We do not adopt
existing policy languages [9,12,17,18] since they are not sufficiently flexible and
powerful. We use a customized compiling tool chain to compile the policy into
executable code. Finally, the code is transferred to the hypervisor.

2.4 Policy Description Language

Our policy description language is designed to be a real “programming language”
that is powerful and flexible and can be easily compiled to native code. Previous
sandboxing policy languages do not fulfill this need so we do not adopt them



Practical Confinement of Untrusted Software in Virtual Cloud Computing 127

in our system. To better illustrate our policy language, we first show a policy
example written in this language in Lst. 1.

/* notepad.exe NtOpenFile */

sandbox_t policy(unsigned int params)

{

sandbox_t result = permit;

wchar_t filename1[] = L"password.txt";

wchar_t filename2[] = L"secret.txt"

wchar_t *filename;

unsigned int pos, len;

guest_read_int_at(params + 12, &pos);

guest_read_int_at(pos + 8, &pos);

guest_read_int_at(pos, &len);

filename = (wchar_t *)malloc(len); /* assume malloc succeeds */

guest_read_string_at(pos + 4, len, filename);

if (!wstrcmp(filename, filename1))

{

result = disallow;

}

else if (!wstrcmp(filename, filename2))

{

guest_write_int_at(params + 4, -1);

result = deceive;

}

free(filename);

return result;

}

Listing 1. Policy Example

We can see from the above sample that our policy language is C-like. It can
be considered as a subset of C programming language since not all features are
necessary and a few limitations are imposed:

– The first line is a directive, i.e. a comment indicating the target program and
system call name, which is similar to the #!/bin/bash in a shell script.

– The code cannot #include files since it will run in hypervisor kernel.

– Float types and computations are not supported, which are also unnecessary.

– Global variables are not allowed, and literal strings must be initialized with a
char/wchar t array, since the final binary does not have a constant section.

– The code must have the policy function and be self-contained. User-defined
functions are allowed (though not shown here), and built-in functions can
be used such as memory management (e.g., malloc), string operation (e.g.,
strcpy), and guest memory reading/writing functions.



128 J. Jiang et al.

3 Implementation Details

In this section, we detail our implementation with a focus on how to modify
the existing VMM (hypervisor and management domain) in order to satisfy
our needs. Our prototype system uses Xen hypervisor (version 4.1.2), while the
dom0 (management domain) and the domU (guest domain) are CentOS 5.5
(64bit) with a patched kernel (version 2.6.34.4) and Windows XP SP3 (32bit),
respectively. The development machine has an Intel Core i5 processor with the
latest hardware assisted virtualization support. In the following, we present some
implementation details for the key techniques in our approach.

3.1 Data Structures and Definitions

We first briefly introduce some key data structures used in our system. As is
shown in Fig. 3, our policy library is implemented as a single list and its each
node is a policy entry corresponding to a process. Another important data
structure is policy item, which is used for loading the executable policy code
to the hypervisor. It pertains to one process and one system call. The meanings
of most fields are evident, so we do not explain them here. The following sections
will explain how these data structures are made use of.

+proc_name : char []

+policy_count : int

+handlers : int (*)(void) []

+next : policy_entry *

policy_entry

policy_library

+proc_name : char []

+syscall_num : int

+handler_size : int

+handler : void *

policy_item

Fig. 3. Data Structures

3.2 Additional VMexit Handler

In order to capture necessary events, we need to modify some existing VMexit
handlers. Moreover, several events must be intentionally processed to trigger
VMexit events. We detail how these events are intercepted and handled.

Process Switch Interception. Since our policy is per process, we need to
intercept process switches in order to correctly sandbox target applications. The
task state segment (TSS) mechanism provided by the x86 architecture is not used
by modern operating systems for task switching. In contrast, paging mechanism
is widely adopted by operating systems to isolate process spaces. Hence, process



Practical Confinement of Untrusted Software in Virtual Cloud Computing 129

switch involves the alteration of page table base address register (cr3 under
x86). Moreover, though Windows uses a thread-based scheduling method, the
context switch routine will not overwrite the cr3 register if the upcoming thread
and current thread belong to the same process. Therefore, we consider VMexit
events caused by cr3 write to be process switches.

When such an event occurs, we read the process name from the kernel data
structure, and then look it up in the policy library. We traverse the single list
and compare the current process name with the proc name field. If a match is
found, the handlers field is copied to a per-domain variable active handlers,
and system call interception is enabled. Otherwise, system call interception is
disabled in order to retain performance.

System Call Interception. Intercepting the system call is a pivotal step in our
system. Unfortunately, neither software interrupt nor fast system call (sysenter)
can be directly intercepted. Hence, we must deliberately trigger some events that
can trap into the hypervisor. Multiple ways can be used to achieve this. After
comparing their pros and cons, we take the method similar to that in Ether [4],
i.e., deliberately modifying the SYSNENTER EIP model specific register (MSR) to
generate a page fault. We observe that no program actually uses the conventional
software interrupt mechanism to perform system calls, and thus do not intercept
such interrupts. Existing approaches are available if necessary[4].

To implement this, we first need to intercept access to the SYSENTER EIPMSR.
For write operations, we store the value at a safe place for future use, while for
read operations, we always return the real value for transparency. When system
call interception is enabled, a carefully chosen magic value is written to that
MSR. Thus, we consider a page fault to be a system call if 1) the page fault
linear address (cr2 under x86) is equal to the magic value and 2) the page fault
error code indicates an instruction fetch.

When a system call is intercepted, we look up the corresponding handler in
the per-domain variable active handlers using system call number (eax under
x86). The handler is executed if it exists. Otherwise, the system call is permitted
by default. The handler returns a value that is either permitted, disallowed or de-
ceived. For permitted system calls, we simply assign the saved real SYSENTER EIP

value to the eip register. For disallowed and deceived, we skip the system call,
and return error and success, respectively. Note that when sysenter is executed,
the current privilege level (CPL) will be ring 0. Thus, to skip the system call,
we must get back to ring 3. This is implemented by preparing several sysexit
related registers (e.g., ecx, edx) and pointing eip to a sysexit instruction.

3.3 Management of Policies

We load policies into the hypervisor dynamically at runtime to avoid perfor-
mance penalty caused by context switches between the hypervisor and the man-
agement domain. We use a technique called runtime hypervisor manipulation,
i.e., we create a hypervisor interface and employ the hypercall mechanism for
implementation.



130 J. Jiang et al.

Hypercall is a domain-hypervisor communication mechanism that is similar
to system calls in the operating system. To make use of it, we first register a new
hypercall in Xen named do vccbox op, which has only one argument, a pointer
to the structure struct policy item, and then implement its handler routine.
If the policy with the same process name and system call number exists, we
consider it to be a policy update, otherwise it is treated as a policy add. Specially,
if the value of the handler size field is 0, we consider it as a policy removal.
Upon policy removal, if the policy count decreases to 0, the whole policy entry
is removed from the library. A policy manager in the management domain fills
the structure struct policy item with necessary information and then issues
a hypercall to tell the hypervisor what to do.

We observe that policy code execution and policy management are concur-
rent, so a race condition that the currently executing policy is being updated
or removed may occur and must be eliminated. To this end, we use a spinlock
to synchronize these two actions. We also point it out here that, though our
mechanism is similar to loadable kernel modules under Linux, we do not con-
sider this to be an insecure factor because, 1) the whole VMM is considered as
our trusted computing based by assumption, 2) this mechanism is not designed
to accommodate all loadable modules but only our policies, i.e., it is a dedicated
channel for policy management, not a generic interface.

3.4 Policy Code Generation

Generating the policy code is an essential part in our system. Since our policy
code ultimately runs in the hypervisor, we must keep the application binary
interface compatible. Thus, we use the same arguments as Xen is compiled.
Moreover, we need a preprocessing step to add necessary dependencies (e.g.,
declarations of guest memory reading/writing functions) to the policy file in
order to make the policy compilable by gcc. Thus, we devise the following code
generation procedure shown in Fig. 4.

The first step is to validate whether the policy text conforms to our limitations.
It is performed by canonical tokenizing and parsing tools (i.e., flex and bison)1.
Once the policy is validated, we use a preprocessing part to add some necessary
declarations and definitions to the policy text. Then, the completed compilable
policy is fed to gcc to generate an object file in ELF format using arguments
obtained from Xen’s makefile. Next, we obtain the addresses of the functions
in the hypervisor that is called by our policy. For example, our guest memory
reading functions are implemented via hvm copy from guest virt nofault. We
look up relevant information in the object file (e.g., symbol table) and then fill
the corresponding locations with real addresses. This process can be considered
as a simplified “linking”. After that, the policy function binary can be loaded
into the hypervisor using the hypercall mechanism mentioned above.

1 This part is not yet fully implemented in our current prototype system.



Practical Confinement of Untrusted Software in Virtual Cloud Computing 131

Fig. 4. Procedures of Policy Code Generation

4 Evaluation

In this section, we present the analytical and experimental evaluation of our
VCCBox prototype. The two goals of our evaluation are to demonstrate that
VCCBox can sandbox real applications, and to measure the performance degra-
dation introduced by our system. The following experiments were all conducted
on a machine with Intel Core i5-760 processor and 8GB memory. The version of
Xen used in our experiment is the latest 4.1.2 and the dom0 is 64 bit CentOS 5.5
with kernel version 2.6.34.4. The guest OS is Windows XP SP3 allocated with
one processor core and 2 GB memory.

4.1 Effectiveness Evaluation

In order to evaluate the effectiveness of our system, we write three different
policies targeting the same system call. We choose NtOpenFile here since it
is representative. (Note that not all system calls can be deceived). In fact, the
policy example in Lst. 1 is for this system call. We give a brief explanation of the
policy here. NtOpenFile has 6 parameters. The first one is an output parameter
used to return the handle of the opened file, and is our deception target. The
third parameter is a structure, which designate the path of the file to be opened.
Thus, the sample policy means: if the program tries to open “password.txt”,
it will get an error; if it tries to open “secret.txt”, it will be provided with an
invalid handle; otherwise, the open operation is successful.2

2 Note that the sample policy is only for demonstration and still needs to be improved
for practical use.



132 J. Jiang et al.

Fig. 5. Effectiveness Evaluation Result

We devise a test program to open the file designated in its argument. The
program is sandboxed by our system, and we provide different arguments to this
program and observe its output. We call NtOpenFile directly from ntdll.dll

for accuracy, and print the return value and the first parameter containing the
opened file handle. To verify the correctness of the handle, we use it as the
parameter of ReadFileEx, a user space function that reads file content from a
handle. Moreover, we use type command (similar to cat under Linux) to show
the real file content for comparison. The result is shown in Fig. 5, from which we
can see that our policy is successfully enforced. For password.txt, the system
call is disallowed, so the return value is set to 0xC00000001, indicating a failure.
Our program checks this failure and reports it. For secret.txt, the system
call is deceived. We set the return value to 0, meaning a successful system call,
but set the output parameter of NtOpenFile to 0xFFFFFFFF, which indicates
INVALID HANDLE. Our program reports an error code 6, which exactly means
ERROR INVALID HANDLE, proving that our method has successfully deceived the
system call3. Our test program is not designed to be malicious. However, due to
the higher privilege and ability to intercept events of the virtual machine, our
method can not be circumvented.

4.2 Performance Evaluation

The runtime overhead of our system comes from the additional VMexit handler
routines and hypercalls. However, policy management is not a periodical event,

3 A real NtOpenFile does not necessarily returns 0 when it provides an invalid handle.
Here we only use this sample to indicate that our deceived policy works correctly.



Practical Confinement of Untrusted Software in Virtual Cloud Computing 133

and it does not often happen in practice since system administrators do not fre-
quently change the policies once they are successfully loaded. Moreover, context
switches occur much less frequently than system calls, and thus contribute lit-
tle to the performance degradation according to our experiences. Therefore, we
focus on the performance penalty caused by intercepting and handling system
calls.

We look into the difference between normal system call execution and sand-
boxed execution. We denote the time for normal system call as τx. If an applica-
tion is not sandboxed, we do not enable system call interception, hence incurring
no performance overhead. If an application is sandboxed, all of its system calls
will be trapped into the hypervisor. Thus, unhandled system calls will go through
the process of interception without policy execution. This time is denoted as τe.
While handled system calls are intercepted with policy execution, so we denote
the time of policy execution as τp. Note that since only one policy for a program
can lead to system call interception, and the per system call policies will not
run together for one system call, the number of policies does not influence the
overall performance. Tab. 1 shows the time of execution for different situations.

Table 1. Time Comparison for Different Situations

Situation Time

Normal τx
Intercept + No handler τe+τx

Intercept + Handler + permitted τe+τp+τx
Intercept + Handler + disallowed/deceived τe+τp

However, the magnitude of τe, τp and τx is indeterminate, since τp and τx are
respectively per policy and per system call, and the time of execution
depends on which path is taken. Thus, we cannot theoretically calculate the
performance impact, and micro-benchmark is rendered difficult. So we perform
macro-benchmark to measure the performance impact caused by our system.
Thus, we enable system call interception for all processes and permit all system
calls.

Results from Benchmark Tools. We use Super PI, DAMN Hash Calcula-
tor, Everest, Crystal DiskMark to benchmark the performance overhead of the
processor, memory access and I/O introduced by our system. The results are
summarized in Fig. 6, which exhibit that our system is highly efficient.

Results with Real Workload Experiment. To evaluation the efficiency of
VCCBox under real workloads, we employ kernel building, a comprehensive task
that represents a typical workload and is used widely for profiling. Specifically, we
record the time of building the Windows Research Kernel (WRK) under different
circumstances. Through scrutinizing possible policies, we observe that the most
time-consuming part of a policy is read memory access operations, since the



134 J. Jiang et al.

Fig. 6. Benchmark results (Lower is better)

kernel data structures are complicated and frequently point to other structures,
leading to multiple memory accesses in retrieving a single piece of information.
For example, to obtain the filename from the handle, a parameter of NtReadFile,
around 7 memory reads are performed. Such read access to memory content
is implemented by hvm copy from guest virt nofault function (HVMCOPY for
short). Thus, we add different numbers of synthetic HVMCOPY function calls in
the system call handler and record the kernel building time. The result of the
experiment is shown in Tab. 2.

Table 2. Time for Kernel Building

Situation Time (ms) Overhead

Normal 99734 N/A
Intercept + No HVMCOPY 102750 3.0%
Intercept + 10 HVMCOPYs 106617 6.9%
Intercept + 20 HVMCOPYs 110595 10.9%
Intercept + 30 HVMCOPYs 114094 14.4%
Intercept + 40 HVMCOPYs 119922 20.2%

We can see the system call interception itself causes only 3.0% runtime over-
head. Moreover, the performance degradation is gradually aggravated as the
number of HVMCOPYs (representing the policy complexity) increases. Ordinary



Practical Confinement of Untrusted Software in Virtual Cloud Computing 135

policies such as preventing a file with specific name from being read will never
use more than 40 HVMCOPYs, and two decisions (disallowed and deceived) will
cause the system calls to be skipped. Thus, we may safely consider the overhead
of 20.2% as the worst case, which is acceptable.

5 Discussion and Future Work

The above evaluation exhibits that our current prototype can work effectively
and efficiently. In this section, we discuss several limitations of our VCCBox
prototype and some future work.

5.1 Extensibility Related Issues

VMM and OS Support. Our current implementation targets Xen and Win-
dows only. However, other hypervisors and operating systems can also be sup-
ported. KVM [13] is a rising star among VMMs and wins high favor from both
academia and industry, while Linux is the dominating operating system in pro-
duction environment. We would like to integrate support for them into future
versions of VCCBox.

Heterogeneous VM Situation. We currently assume that all virtual ma-
chines run the same operating system and/or software. The server environment
for load balancing usually satisfies this requirement. However, virtual machines
in multi-tenant cloud environment can be heterogeneous. Fortunately, our ar-
chitecture can support such situation. Preliminarily, we can add VMID and
OS-Type entry to the policy to distinguish virtual machines and guest operating
systems, Further, we can automatically identify the running operating system
using oracles [14] or fingerprinting methods [10].

5.2 Insufficiencies and Improvement of Policy

Policy Complexity. Our policy description language is flexible and powerful,
which sacrifices its simplicity. It is more complex than other current policy lan-
guages and requires the writer (usually a system administrator) to be familiar
with operating system data structures. We intend to reduce the policy complex-
ity by integrating recent advances in automatically narrowing the semantic gap
such as Virtuoso [5] and VMST [6].

Policy Robustness. Since we need to retrieve the data inside the virtual ma-
chine, our policies depend heavily on virtual machine introspection [8]. How-
ever, this mechanism can be subverted by direct kernel structure manipulation
(DKSM), a technique that directly modified the kernel data structures to mislead
security applications [2]. This issue is considered as an open problem by state-
of-the-art tools on bridging the semantic gap [5,6] and is not solved to date.
Fortunately, DKSM can be prevented by our sandbox mechanism by disallow-
ing untrusted drivers to be loaded, since DKSM requires the kernel privilege to
work. In the future, we plan to investigate reliable virtual machine introspection
method so as to thoroughly address this issue.



136 J. Jiang et al.

Policy Debugging. Since our policies are ultimately running as code inside the
hypervisor, a bug such as access violation can cause more severe results such as
crashing the whole physical machine. Hence, we need a mechanism to debug the
policy binary. To this end, we can add a debug option in our preprocessing mod-
ule. When this option is enabled, we insert several validations into the generated
compilable C code and use dedicated secure versions of necessary functions. The
debug version of C code is not designed for daily use since the additional secu-
rity examination will degrade the performance. The primary purpose of policy
debugging is to prevent the policy writer from making careless mistakes.

6 Related Work

6.1 Hypervisor Based Security

With the advent of the cloud computing era, virtualization technology has been
widely adopted in research of system security. Hardware assisted virtualization
provides powerful processor-level support for privilege separation, memory isola-
tion and access control, which are all desirable features for security applications.
Currently, security research efforts based on hardware assisted virtualization can
be categorized in malware analysis [4,15,25], kernel protection [19,22,24] and ex-
ecution monitoring [11,16,20].

Malware analysis platforms use hardware assisted virtualization chiefly for
the purpose of transparency. In essence, malware analysis tools have different
goals with sandboxes. They passively observe the behavior of potentially harm-
ful programs, while sandboxes actively interfere with the execution process of
untrusted applications. Some techniques of malware analysis can be naturally
used for sandboxing. For example, the system call interception method adopted
by our system is first proposed in Ether [4].

Kernel protection mechanisms do not address the issue of application behav-
ior confinement. Instead, they are concerned about how to secure the operating
system kernel. Thus, most of them fall into the category of anti-rootkit mecha-
nism. In contrast, VCCBox confines the user-level behaviors of an application,
and does not care about kernel execution. Interestingly, VCCBox can defeat
kernel-level rootkit in a trivial way, i.e.,enforcing a policy to prevent untrusted
applications from loading malicious kernel extensions via system calls.

Execution monitoring is a fundamental underlying technique for malware
analysis and other security tasks. A significant challenge to correctly monitoring
the process inside the virtual machine is semantic gap [3], which can be chiefly
addressed by virtual machine introspection. However, some execution monitoring
tools employs a hybrid approach, i.e., using an in-guest component to actually
monitor the execution process, while the hypervisor protects this component
from being detected or tampered. Though this hybrid approach better solves
semantic gap and improves efficiency, VCCBox insists the conventional out-of-
the-box approach in order not to lose the ease-of-deployment.



Practical Confinement of Untrusted Software in Virtual Cloud Computing 137

6.2 Application Sandbox

Application sandboxing is not new in security area. Many approaches have been
used to construct sandboxes. Here we introduce a few representative relevant
research efforts in sandbox and compare them with our VCCBox.

Janus [9] is an early and simple sandbox system. It runs entirely in user space
and takes advantage of the /proc interface under Linux for system call inter-
position. Hence, it is subject to race condition attacks such as “Time of Check
to Time of Use” (TOCTTOU), and is liable to be bypassed [7]. Moreover, this
interface is not available under such operating systems as Microsoft Windows.

Systrace [17] takes a hybrid approach that involve both user-space and
kernel-space to address the TOCTTOU race condition. Systrace however uses an
interactive policy generator, which makes it not suitable for production environ-
ment where nobody can always stay before the screen. Systrace also assumes
the sandboxed application is intrinsically benign and only behaves viciously
under external attacks, which limits it usage to defend intrinsically malicious
applications.

Authenticated system calls [18] is a cryptographic approach towards securing
the system calls. To initialize, the to-be-sandboxed application is processed by
a trusted installer, which statically analyzes the program to locate system calls
and mine their legal usages to generate policies. Then, it replaces each conven-
tional system call with an authenticated one containing the policy and a message
authentication code (MAC). The kernel verifies the MAC and enforces the pol-
icy when executing the system call. A main shortcoming of the sandbox is that
when the program is obfuscated, the static analysis can hardly get useful system
call information.

TxBox [12] introduces the concept of transaction from database for sand-
boxing. It allows a program to run as a transaction, hence is able to roll back
any devastating impact caused by the program. The transaction mechanism has
several inherent advantages when used to construct a sandbox. For example, it
allows the concurrent execution of sandboxed application and damage detection
process, and is able to recover from a multi-staged attack. However, TxBox relies
on a dedicated Linux kernel with transaction features, limiting its practicality.

7 Conclusion

In this paper, we have presented the motivation, design, implementation and
evaluation of VCCBox, a hypervisor-based sandbox which eliminates various
deficiencies of previous work and is a practical sandbox solution for cloud en-
vironment. In particular, by leveraging the state-of-the-art hardware assisted
virtualization and implementing the sandbox routine totally inside the VMM,
VCCBox can not be bypassed and is easy to deploy in virtual cloud infrastruc-
ture. Moreover, runtime hypervisor manipulation is adopted to dynamically load
policies into the hypervisor, which ensures the high performance of VCCBox.



138 J. Jiang et al.

References

1. Azab, A.M., Ning, P., Wang, Z., Jiang, X., Zhang, X., Skalsky, N.C.: HyperSentry:
enabling stealthy in-context measurement of hypervisor integrity. In: Proceedings
of the 17th ACM Conference on Computer and Communications Security, CCS
2010, pp. 38–49. ACM, New York (2010)

2. Bahram, S., Jiang, X., Wang, Z., Grace, M., Li, J., Srinivasan, D., Rhee, J., Xu, D.:
DKSM: subverting virtual machine introspection for fun and profit. In: Proceed-
ings of the 29th IEEE Symposium on Reliable Distributed Systems, SRDS 2010,
pp. 82–91. IEEE Computer Society, Washington, DC (2010)

3. Chen, P.M., Noble, B.D.: When virtual is better than real. In: Proceedings of
the 8th USENIX Workshop on Hot Topics in Operating Systems, HotOS 2001,
pp. 133–138. IEEE Computer Society, Washington, DC (2001)

4. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: malware analysis via hard-
ware virtualization extensions. In: Proceedings of the 15th ACM Conference on
Computer and Communications Security, CCS 2008, pp. 51–62. ACM, New York
(2008)

5. Dolan-Gavitt, B., Leek, T., Zhivich, M., Giffin, J., Lee, W.: Virtuoso: narrowing the
semantic gap in virtual machine introspection. In: Proceedings of the 32nd IEEE
Symposium on Security and Privacy, S&P 2011, pp. 297–312. IEEE Computer
Society, Washington, DC (2011)

6. Fu, Y., Lin, Z.: Space traveling across VM: automatically bridging the semantic-gap
in virtual machine introspection via online kernel data redirection. In: Proceedings
of the 33rd IEEE Symposium on Security and Privacy, S&P 2012, San Francisco,
CA (May 2012)

7. Garfinkel, T.: Traps and pitfalls: practical problems in system call interposition
based security tools. In: Proceedings of the 10th Annual Network and Distributed
Systems Security Symposium, NDSS 2003 (2003)

8. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architec-
ture for intrusion detection. In: Proceedings of the 10th Annual Network and Dis-
tributed Systems Security Symposium, NDSS 2003 (2003)

9. Goldberg, I., Wagner, D., Thomas, R., Brewer, E.A.: A secure environment for
untrusted helper applications. In: Proceedings of the 6th USENIX Security Sym-
posium, Security 1996. USENIX Association, Berkeley (1996)

10. Gu, Y., Fu, Y., Prakash, A., Lin, Z., Yin, H.: OS-Sommelier: memory-only oper-
ating system fingerprinting in the cloud. In: Proceedings of the Third ACM Sym-
posium on Cloud Computing, SoCC 2012, pp. 5:1–5:13. ACM, New York (2012)

11. Gu, Z., Deng, Z., Xu, D., Jiang, X.: Process implanting: a new active introspection
framework for virtualization. In: Proceedings of the 30th IEEE International Sym-
posium on Reliable Distributed Systems, SRDS 2011, pp. 147–156. IEEE Computer
Society, Washington, DC (2011)

12. Jana, S., Porter, D.E., Shmatikov, V.: TxBox: building secure, efficient sandboxes
with system transactions. In: Proceedings of the 32nd IEEE Symposium on Security
and Privacy, S&P 2011, pp. 329–344. IEEE Computer Society, Washington, DC
(2011)

13. Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: KVM: the Linux virtual
machine monitor. In: Proceedings of the 9th Ottawa Linux Symposium, vol. 1,
pp. 225–230 (2007)

14. Litty, L., Lagar-Cavilla, H.A., Lie, D.: Hypervisor support for identifying covertly
executing binaries. In: Proceedings of the 17th USENIX Security Symposium, Se-
curity 2008, pp. 243–258. USENIX Association, Berkeley (2008)



Practical Confinement of Untrusted Software in Virtual Cloud Computing 139

15. Nguyen, A.M., Schear, N., Jung, H., Godiyal, A., King, S.T., Nguyen, H.D.:
MAVMM: lightweight and purpose built VMM for malware analysis. In: Proceed-
ings of the 25th Annual Computer Security Applications Conference, ACSAC 2009,
pp. 441–450. IEEE Computer Society, Washington, DC (2009)

16. Payne, B.D., Carbone, M., Sharif, M., Lee, W.: Lares: an architecture for secure
active monitoring using virtualization. In: Proceedings of the 29th IEEE Sympo-
sium on Security and Privacy, S&P 2008, pp. 233–247. IEEE Computer Society,
Washington, DC (2008)

17. Provos, N.: Improving host security with system call policies. In: Proceedings of the
12th USENIX Security Symposium, Security 2003. USENIX Association, Berkeley
(2003)

18. Rajagopalan, M., Hiltunen, M., Jim, T., Schlichting, R.: System call monitoring
using authenticated system calls. IEEE Transactions on Dependable and Secure
Computing 3(3), 216–229 (2006)

19. Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: a tiny hypervisor to provide
lifetime kernel code integrity for commodity OSes. In: Proceedings of 21st ACM
SIGOPS Symposium on Operating Systems Principles, SOSP 2007, pp. 335–350.
ACM, New York (2007)

20. Sharif, M.I., Lee, W., Cui, W., Lanzi, A.: Secure in-VM monitoring using hardware
virtualization. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security, CCS 2009, pp. 477–487. ACM, New York (2009)

21. Wang, Z., Jiang, X.: HyperSafe: a lightweight approach to provide lifetime hyper-
visor control-flow integrity. In: Proceedings of 31st IEEE Symposium on Security
and Privacy, S&P 2010, pp. 380–395. IEEE Computer Society, Washington, DC
(2010)

22. Wang, Z., Jiang, X., Cui, W., Ning, P.: Countering kernel rootkits with lightweight
hook protection. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security, CCS 2009, pp. 545–554. ACM, New York (2009)

23. Wang, Z., Wu, C., Grace, M., Jiang, X.: Isolating commodity hosted hypervisors
with HyperLock. In: Proceedings of the 7th ACM European Conference on Com-
puter Systems, EuroSys 2012, pp. 127–140. ACM, New York (2012)

24. Xiong, X., Tian, D., Liu, P.: Practical protection of kernel integrity for commodity
OS from untrusted extensions. In: Proceedings of the 18th Annual Network and
Distributed System Security Symposium, NDSS 2011 (2011)

25. Yan, L.-K., Jayachandra, M., Zhang, M., Yin, H.: V2E: combining hardware virtu-
alization and software emulation for transparent and extensible malware analysis.
In: Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual Exe-
cution Environments, VEE 2012, pp. 227–238. ACM, New York (2012)


	VCCBox: Practical Confinement of Untrusted 
Software in Virtual Cloud Computing
	1 Introduction
	2 System Overview and Design
	2.1 Application Scenario
	2.2 Technical Background
	2.3 System Architecture
	2.4 Policy Description Language

	3 Implementation Details
	3.1 Data Structures and Definitions
	3.2 Additional VMexit Handler
	3.3 Management of Policies
	3.4 Policy Code Generation

	4 Evaluation
	4.1 Effectiveness Evaluation
	4.2 Performance Evaluation

	5 Discussion and Future Work
	5.1 Extensibility Related Issues
	5.2 Insufficiencies and Improvement of Policy

	6 Related Work
	6.1 Hypervisor Based Security
	6.2 Application Sandbox

	7 Conclusion
	References




