
Detection of Android API Call Using

Logging Mechanism within Android Framework

Yuuki Nishimoto1,�, Naoya Kajiwara2,3, Shinichi Matsumoto2,3,
Yoshiaki Hori3,4, and Kouichi Sakurai2,3

1 Department of EECS, Kyushu University, Fukuoka, Japan
2 Department of Informatics, Kyushu University, Fukuoka, Japan

kajiwara@itslab.inf.kyushu-u.ac.jp,

sakurai@csce.kyushu-u.ac.jp
3 Institute of Systems, Information Technologies and Nanotechnologies

smatsumoto@isit.or.jp
4 Organization for General Education, Saga University, Saga, Japan

horiyo@cc.saga-u.ac.jp

Abstract. Android based smartphones have become popular. Accord-
ingly, many malwares are developed. The malwares target information
leaked from Android. However, it is difficult for users to judge the avail-
ability of application by understanding the potential threats in the ap-
plication. In this paper, we focus on acquisition of information by using
a remote procedure call when we invoke the API to acquire phone ID.
We design a methodology to record invocation that are concerned the
API by inserting Log.v methods. We examined our method, and confirm
empirically the record of the call behavior of the API to acquire phone
ID.

Keywords: Android, Malware, Privacy Protection, Dynamic Analysis.

1 Introduction

In recent years, Android phone is becoming popular. Simultaneously, many ma-
licious applications called malware are developed for Android platform. Many
malwares that target Android cause information leakages, and leakage of per-
sonal information is a big problem. However, it is difficult for a user to grasp
threats of an application and judge the risk of it. Therefore, we focus on a mea-
sure method to prevent malwares from being distributed in the marketplace. In
this method, an application developer and a marketplace operator can previously
check the application on behalf of the user.

There are dynamic analysis and static analysis in approach of malware detec-
tion. However, in static analysis, there is a possibility that overlooking increases
when the variants of the malware outbreak. In dynamic analysis, there are some
problems too. With dynamic analysis, overhead of operation increases. Moreover,

� The first author currently works with Kyushu District Police Bureau. He contributed
to this research when he was a undergraduate student of Kyushu University.

T. Zia et al. (Eds.): SecureComm 2013, LNICST 127, pp. 393–404, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

394 Y. Nishimoto et al.

there is a possibility that a malicious developer can make his application to cir-
cumvent the detection. In order to solve these problems, we focus on detection
method using log output which is dynamic analysis. With marketplace oper-
ator using this method, detection which cannot be circumvented by malicious
developer can be realized.

Linux debug utility named strace monitors system calls used by an applica-
tion in Android. There is a method performing malware detection by analyzing
system calls that are obtained using the strace. Behavior using services of the
kernel can be detected by this method. However, there is a problem that system
call is not issued in the behavior which doesn’t use services of kernel, and it is
impossible to detect such a behavior.

In this paper, we focus on the fact that when API that retrieve the phoneID is
invoked, it is processed with remote procedure call. We propose a method record-
ing the invocations in accordance with the API by inserting Log.vmethod. That
is an output log API in remote procedure call by the Android Binder. The exe-
cution logging by this technique cannot be avoided even if modification of API
is performed on the call side. Therefore, it is impossible to circumvent the detec-
tion even if a developer has malicious intention. Furthermore, we implemented
proposal method tentatively and ran the application which acquires phoneID
on the Android emulator. As a consequence, we confirm empirically record of
invocation behavior of the phoneID acquisition API.

2 Android

Android is a platform that was developed targeting mobile information devices
such as smart phones and tablet PCs. Android application is running on the
Dalvik virtual machine(VM). When an Android application is launched, one
Dalvik VM is dedicated to execute that application. When a user installs an ap-
plication, by approving permissions, it becomes possible to take the cooperation
with other applications or access files made by other applications deviating from
the sandbox mechanism[1].

2.1 Android Application

Android consists of a Linux based OS kernel, a middleware and fundamental ap-
plications. The applications used by the user are on the top layer in AndroidOS.
Developers can publish applications in the Android market.

In the application framework of Android, API is provided and Android ap-
plication developer can use it freely. Application developers can use the result
the API outputs by this mechanism, without knowing about the complicated
procedures under the framework layer.

In AndroidOS, the independence of applications is maintained by the following
mechanisms so that applications don’t cause interference.

Detection of Android API Call 395

– Application execution and process
Android application is executed in an individual Linux process allocated to
this sole application. Hence, a Linux process is started when an application
is executed. However, this process is terminated when system resources are
required from other applications, after this application is finished.

– Dalvik virtual machine allocation to every process
In Android, a Dalvik virtual machine is allocated to every process exclu-
sively. In this way, one application is executed independently from other
applications.

– Unique Linux user ID allocated to every application
During the installation, to every application is allocated unique ID. The
assigned ID serves as an owner of the application, and manages the process.
Files that the application creates are set up so that these files cannot be
fundamentally read from applications which have other ID. For this reason, a
file created by a certain application cannot be freely read from an application
with another ID.

2.2 Binder

Binder is a driver which offers the functionality to communicate between pro-
cesses. Even if some processes are in the same application, they run on separate
area. Moreover, there is a possibility that activities and services respectively
run on different processes in the application. Binder driver is used when ex-
changing information between these different processes. In this case, communi-
cations are controlled by the framework layer located above the kernel. Although
a user doesn’t use Binder directly, it plays an important role in interprocess
communication.

2.3 AIDL

In Android, one process cannot usually access memory of other processes. There-
fore, if a process wants to obtain data from other processes, interprocess com-
munication is necessary. AIDL(Android Interface Definition Language) is an
interface definition language used to generate some codes[2]. These codes un-
dertake the communication between two processes possible using interprocess
communication realized with Binder.

2.4 Android API

API, which means “Application Programming Interface”, is an interface to access
function from the library intended for the OS and for the programming language
of the applications. Functions used in many applications are offered within the
application framework of Android through API. Because it is unnecessary to
develop functions offered by API, development of application becomes easy with
API. Some of Android APIs also offer functions which serve as a base of the OS.

396 Y. Nishimoto et al.

3 Existing Android Malware and Detection Method

There are static analysis and dynamic analysis among analysis methods of appli-
cations. Static analysis is a method that an application is decompiled and source
code is examined, and dynamic analysis is a method that analyzes the behavior
of an application by running it. There are both advantages and disadvantages
for static analysis and dynamic analysis, and it is difficult to say which method
is better than the other. In this section, we outline static analysis and dynamic
analysis, as well as detection technique of malwares that both techniques use.

3.1 Android Malware

Malware is an application which performs a malicious action, such as causing a
leakage of privacy information or making data destroyed. Malware is developed
according to an environment with many targets. Therefore, malwares for Win-
dows with many users have accounted for a large percentage of entire malwares
until now. However, developers of malware also came to target AndroidOS. Ac-
cording to G Data Malware Report -Half yearly report January - June 2011 -[3],
during the first half of 2011 from the second half of 2010, malwares that target
smartphones with a focus on Android had increased from 55 to 803. Although
this number is lower than the number of malwares which target Windows, con-
sidering the kind of information stored in Android devices is important personal
information such as phone number or subscriber ID, it is thought that the risk
from a security point of view becomes high compared with other OS. From these
facts, despite enhancements of security including anti-malware in AndroidOS is
in urgent, the present security is insufficient. Most threats caused by Android
malwares are infection by installing the malwares that are obtained from a third
party market that is not legitimate Android market of Google.

3.2 Static Analysis

Static analysis is a program analysis method which analyzes a program by de-
compiling the application without performing an executable file. Static analysis
is mainly used when analyzing a source code.

Because analysis is performed without actually executing the application, the
potential threat is detected before the damage of malware occurs. On the other
hand, when the source code of the application is obfuscated or when the code
for attack is placed outside the application code using a cooperation function
with an external server, the possibility of being undetectable becomes high.

As static analysis method, there are many certification techniques and such
techniques are served as service. Bouncer[4] is a service offered by Google. It
prevents malware from spreading the market. However, malwares which have
passed bouncer’s certification had been reported[6].

Detection of Android API Call 397

3.3 Dynamic Analysis

Dynamic analysis is a program analysis method which checks what kind of ac-
tion the application is carrying out by actually executing the application to be
inspected. Because application is actually run unlike static analysis and it is in-
spected based on the action, malwares can be detected even when the source code
is obfuscated, or when the code for an attack is placed outside the application
code.

TaintDroid[5] and AppFence[7] are dynamic analysis methods using infor-
mation flow tracking. TaintDroid monitors interprocess communications, and if
information is sent out TaintDroid alerts that event. Appfense implements two
information protections, replacing private data with shadow data and filtering
to prevent information leakage by intercepting the network system call. Both
researches modify Android kernel to conduct dynamic analysis for applications.

A logging system is used as a way of dynamic analysis. Isohara et al. proposed
a logging system in Android[8]. System calls are collected as log data in the
kernel level. These log data are analyzed with signature of threats to inspect the
application’s behavior. However, a problem is that action without system call is
difficult to detect.

4 Design of Record Method of Process Operation Using
Logcat

4.1 Record Method of Process Operation

strace is a debugging utility that supervises the system calls issued by a pro-
gram. In the process action recording method using this strace, the system call
about the API cannot be recorded if the API is belonged to TelephonyManager

class, This is because the information is called without using a service of the
kernel, when using API of a TelephonyManager class.

We insert a code that invokes Log.v method into the application framework
of AndroidOS, and modify it so that event logs may be output. And when an
application acquires the phoneID through API, the event log is recorded, and
we use a method of performing detection of information retrieval based on that
log. This method is also used in other OS. For example, in UNIX OS, a log is
recorded using syslog, and in Windows, a log is recorded using the function
named event log.

APIs which record logs are prepared within the application framework of
AndroidOS. These logs can be viewed using the function called logcat. In this
experiment, logs are collected and analyzed, which are output from a Log.v()

method of the Log class. This method is implemented in the layer which uses
Java language in application framework.

We examined interprocess communications which occur when using APIs of
TelephonyManager class. As a result, it turned out that processes and methods
communicate in the procedure as shown in a Figure 1.

398 Y. Nishimoto et al.

Fig. 1. Example of interprocess communication about getDeviceId()

The approach of checking which method is invoked by making log output is a
general technique performed in other OS. When performing one application in
Android, it is always run on independent Dalvik VM. Therefore, an application
cannot communicate with other processes directly, and the application must use
a driver called Binder. Then, we set a code that outputs a log in programs which
perform this interprocess communication, and when an application invokes API,
we detected and specified it based on the log information. This is the new point
in this proposal method. With this method, retrieved information can be checked
by seeing .aidl file without searching for the part which reads each information
directly. In this experiment, after an application is executed, invoked API can
be specified using the information acquired from the event log.

In this paper, the experiment was carried out for API contained in the
IPhoneSubInfo.aidlfile treating important information such as telephone num-
ber or subscriber ID. Concretely, at first the Log class of an android.util pack-
age is imported to IPhoneSubInfo.java file. Then, the code which outputs a
log to an onTransact method is inserted. OS is recompiled after that. Appli-
cation which invokes some APIs is installed to the emulator, and it is actually
executed. From obtained event logs, we focus on the variable named code used
in onTransact.

Table 1 shows the conversion table of the information about API contained
in an IPhoneSubInfo.aidl file and each API. In this paper, experiments are
not carried out for getLine1AlphaTag() and getCompleteVoiceMailNumber().
The reasons are the following two.

– In spite of being implemented in TelephonyManager.java, these two meth-
ods are undocumented as methods of the TelephonyManager class in the
site of Android Developer.

Detection of Android API Call 399

Table 1. API defined in IPhoneSubInfo.aidl

API Acquired Information

getDeviceId() IMEI
getDeviceSvn()

(Method within getDeviceSoftwareVersion())
Software version

of device

getSubscriberId() Subscriber ID
getIccSerialNumber()

(Method within getSimSerialNumber())
Serial number
of SIM card

getLine1Number() Phone number

getLine1AlphaTag() Alpha identifier

getVoiceMailNumber() Voice mail number

getCompleteVoiceMailNumber() Complete voice mail number

getVoiceMailAlphaTag()
Voice mail

alpha identifier

– If we try to use these methods as methods of a TelephonyManager class in a
application, the error message that it is undefined within TelephonyManager

will come out.

From these reasons, experiments are carried out for seven APIs except the
previously mentioned two.

4.2 Abstract of Experiment

The goal of these experiments is not the static analysis that decompiles appli-
cation and analyzes a source code but the dynamic analysis that detects infor-
mation leakages by actually running the application and taking event logs. In
order to prevent from being detected by anti malware software, recent malwares
obfuscate itself to make such an analysis difficult, or cause information leakages
in cooperation with external server using webkit. The reason for using dynamic
analysis in this paper is because it can deal with situations that static analysis
cannot.

From the result of the record method using strace, it is predicted that per-
sonal information acquired by APIs of TelephonyManager is not retrieved by
the kernel, but passed from other information managing processes. So, we focus
on Binder driver which has an important role in interprocess communication.
In this paper, we carried out the experiment which detects that event when
APIs described in IPhoneSubInfor.aidl are invoked. We inserted a code that
invokes Log.vmethods which outputs a log message into onTransactmethod in
IPhoneSubInfo class invoked only when these APIs are invoked. Then, we tried
to specify the invoked API from the event logs. An argument called code ex-
ists in onTransactmethod of IPhoneSubInfo class. OnTransactmethod judges
which API invoked information from this code value. Therefore, we think that
we can specify which API is invoked from the event log of onTransact method
and code variable.

400 Y. Nishimoto et al.

Fig. 2. Log outputting code inserted into IPhoneSubInfo.java

4.3 Proposal Method

Figure 2 shows a inserted code outputting a event log into IPhoneSubInfo.java.
The place where a logging code is inserted was decided in consideration of the
following conditions.

– It is not a method performed in the same process as an application.
The getDeviceId() method of TelephonyManager class is run in the same
process as the application. Such a method can be incorporated as a library
in application by developer when application is developed. In the case of
inserting the code which outputs the event log into getDeviceId()method,
if a malware developer defines a method working similarly as getDeviceId()
in that application and executes the method, information is retrieved without
outputting the log. Therefore, it is very important to insert the code which
outputs the log into a method running on a process which is not same as the
application’s process.

– API which invoked the method can be specified
Even if a log is output from the code inserted into the program, this method
is not realized if which API was invoked by the application cannot be checked
from the log.

– Proposal method can be used to detect as many APIs as possible
If the code which outputs a log is inserted into each API method (e.g.
getDeviceId()), only that information can be monitored.

As a result of considering these three conditions, we concluded that a suitable
inserted place should be onTransact method of IPhoneSubInfo class. There
are some reasons for this decision. onTransact method doesn’t run on the
same process as application. Then, because the order of methods defined in

Detection of Android API Call 401

IPhoneSubInfo.aidl file and value of code variable are corresponded, it is pos-
sible to judge which API was invoked. This is because code variable is used
within a switch statement in IPhoneSubInfo class. Furthermore, nine APIs de-
fined in IPhoneSubInfo.aidl can be inspected with this method.

There is also an advantage that APIs which don’t issue system call can be
detected. In existing research, the detection of malware is performed by logging
system call when using dynamic analysis[8]. However, in such a method, it is
difficult to detect APIs which don’t publish system call when running. On the
other hand, because we focus on interprocess communication which occurs when
the API is invoked, and insert a code which outputs the log when method is
invoked, it becomes possible to realize detection of information retrieval without
system call.

4.4 Experimental Procedure

1. Building of the source code
The make command is used to build the source code. IPhoneSubInfo.java
file is automatically generated from IPhoneSubInfo.aidl file at this time.

2. Insertion of a code which outputs a log
Figure 2 shows modified IPhoneSubInfo.java to output the event log. This
program outputs a log message which can be seen with Logcat view. Log.v is
a method which outputs a log of a detailed message. There are other methods
about log. Log.e outputs a log about error, Log.w outputs a log of warning,
Log.i outputs a log about information, and Log.d outputs a log of the debug
message. Fundamentally, usage of these methods is the same. String indicat-
ing tag is set as first argument and String which should be output as a log
message is set as second argument. The differences among these five methods
are found in use, and they are properly used so that acknowledgement of logs
becomes convenient. In this experiment, a log message includes two contents.
First content is a character string called IPhoneSubInfo.onTransact. And,
second content is a value of code variable, which indicates a kind of privacy
information acquired by an application.

3. Rebuild
After rewriting and saving IPhoneSubInfo.java file, build is performed
again.

4. Running application on the emulator
This experiment is entirely conducted on the emulator.

5. Reference of logs
Collected Logs are referred using Dalvik Debug Monitor Service tool. We
describe and considerer the results from these collected logs.

4.5 Result

A kind of information acquired by API could be detected from output logs.
Table 2 shows the correspondence of APIs used in experiment to code variables.
This corresponds with the order of method defined in IPhoneSubInfo.aidl file.

402 Y. Nishimoto et al.

Table 2. The correspondence table of API used in the experiment and code variable

code API

1 getDeviceId()

2

getDeviceSvn()

(Method within getDeviceSoftwareVersion())

3 getSubscriberId()

4

getIccSerialNumber()

(Method within getSimSerialNumber())

5 getLine1Number()

6 getLine1AlphaTag()

7 getVoiceMailNumber()

8 getCompleteVoiceMailNumber()

9 getVoiceMailAlphaTag()

This shows that we can know code variables corresponding to each method from
AndroidOS source code.

Figure 3 shows that logs output when getDeviceId() method is executed.
The emphasized line in Figure 3 is a log message which outputs the necessary
information in our proposal method.

4.6 Consideration

This experiment showed that detection and specification of API invoked from
application can be possible. In this experiment, we inserted the code which
outputs a log into onTransactmethod of IPhoneSubInfo class because we focus

Fig. 3. Log output when executing getDeviceId() method

Detection of Android API Call 403

on APIs defined in IPhoneSubInfo.aidl. It is thought that APIs which are not
mentioned in this paper are also defined in aidl file if they execute interprocess
communication. Therefore, action of API is detectable by discovering the aidl
file and conducting the same experiment as this one.

5 Conclusion

In this paper, a detection method of phoneID acquisition using logcat is pro-
posed. With this method, it is possible to detect obfuscated applications which
cannot be detected with static analysis, or phoneID acquisition of an application
which sets attack code in an external server. The phoneID acquisition of API
which cannot be detected with dynamic analysis using strace could be detected.
Because we focus on the behavior of applications in our method, it is unnecessary
to acquire signatures of malwares in advance. Therefore, unknown malwares can
be detected with proposal method. Moreover, the system which outputs the log
in the proposal method is completely independent of the structure of application
thanks to the mechanism which retrieves phoneID as shown in Figure 1. For this
reason, a malicious developer is unable to avoid the analysis by this technique.

In a practical use, the proposal method should be used by marketplace opera-
tor. One of the reasons is that the proposal method has no real-time properties.
The proposal detection method needs to be performed before a user runs an
application on his device because the method grasps the behavior of an appli-
cation from the log output. Another reason is that the proposal method needs
to rebuild AndroidOS and to prepare linux system for the analysis. From these
reasons, the proposal method should be used in the marketplace operator’s side.

As for future work, the distinction between malwares and legitimate applica-
tions is considered. This method detects all applications that acquire phoneID
through API on the characteristics. When actually used, it is necessary to extract
only malware from these applications and specify it. In this paper, we carried
out experiments only about API defined in IPhoneSubInfo.aidl. However, we
didn’t carry out experiments about other APIs. As a future subject, we must
confirm if proposal method can be applied to detection of other APIs.

Acknowledgments. We would like to thank Ayumu Kubota and Takamasa
Isohara, KDDI R&D Labs for giving beneficial advices. This work was supported
by Grants-in-Aid for Scientific Research (B)(23300027), Japan Society for the
Promotion of Science (JSPS).

References

1. Permissions — Android Developers, http://developer.android.com/guide/

topics/security/permissions.html

2. Android Interface Definition Language (AIDL) — Android Developers,
http://developer.android.com/guide/components/aidl.html

http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/components/aidl.html

404 Y. Nishimoto et al.

3. Ralf Benzmüller, Sabrina Berkenkopf: G Data Malware Report Half-yearly report
January [June 2011, http://www.gdatasoftware.co.uk/uploads/media/G Data

MalwareReport H1 2011 EN.pdf

4. Android and Security, http://googlemobile.blogspot.jp/2012/02/android-and
-security.html

5. William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. , “TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on Smartphones,” In Proceed-
ings of the 9th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI), October, 2010. Vancouver, BC.

6. Dissecting Android’s Bouncer,
https://blog.duosecurity.com/2012/06/dissecting-androids-bouncer/

7. Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, David Wetherall,
“These Aren’t the Droids You’re Looking For: Retrofitting Android to Protect
Data from Imperious Applications,” In Proceedings of the 18th ACM Conference
on Computer and Communications Security, October, 2011.

8. Takamasa Isohara, Keisuke Takemori, Ayumu Kubota, “Kernel-based Behavior
Analysis for Android Malware Detection,” In Proceedings of the 7th International
Conference on Computational Intelligence and Security, December, 2011.

http://www.gdatasoftware.co.uk/uploads/media/G_Data_MalwareReport_H1_2011_EN.pdf
http://www.gdatasoftware.co.uk/uploads/media/G_Data_MalwareReport_H1_2011_EN.pdf
http://googlemobile.blogspot.jp/2012/02/android-and-security.html
http://googlemobile.blogspot.jp/2012/02/android-and-security.html
https://blog.duosecurity.com/2012/06/dissecting-androids-bouncer/

	Detection of Android API Call Using Logging Mechanism within Android Framework
	1 Introduction
	2 Android
	2.1 Android Application
	2.2 Binder
	2.3 AIDL
	2.4 Android API

	3 Existing Android Malware and Detection Method
	3.1 Android Malware
	3.2 Static Analysis
	3.3 Dynamic Analysis

	4 Design of Record Method of Process Operation Using Logcat
	4.1 Record Method of Process Operation
	4.2 Abstract of Experiment
	4.3 Proposal Method
	4.4 Experimental Procedure
	4.5 Result
	4.6 Consideration

	5 Conclusion
	References

