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Abstract. Oblivious Transfer(OT) protocol allows a client retrieving
one or multiple records from a server without letting the server know
about the choice of the client. OT has been one of the emerging research
areas for last several years. There exist many practical applications of
OT, especially in digital media subscription. In this paper, we propose a
fully homomorphic encryption based secure k out of n oblivious transfer
protocol. This novel protocol, first ever to use fully homomorphic en-
cryption mechanism for integers numbers, allows the client choosing its
desired records by sending encrypted indexes to the server, server works
on encrypted indexes and sends back encrypted result without knowing
which records the client was interested in. From the encrypted response
of the server, the client only can decrypt its desired records. The security
analysis demonstrates that, the desired security and privacy requirement
of OT is ensured by the proposed protocol. Some optimizations are also
introduced in the proposed solution to reduce transmission overhead.

Keywords: Oblivious Transfer, Homomorphic Encryption, Private In-
formation Retrieval, Data Outsourcing.

1 Introduction

In the current world, the use of information technology has increased tremen-
dously. Consequently, secure storage, transmission and retrieval of information
become one of the top concerns in the IT era. The diversity of devices, appli-
cations and infrastructures have increased this concern by another fold. The
privacy of information in any transaction is no more a small issue. Private In-
formation Retrieval (PIR) and Oblivious Transfer (OT) are some of the crypto-
graphic protocols that ensures the privacy of the user in retrieving information
from a storage or a server. Unlike PIR, OT ensures the server security too by
not allowing the user retrieving unauthorised record(s). OT has been used in
many applications including certifying email and coin flipping [1], simultaneous
contract signing [2], digital right management [3], e-subscription to sell digital
goods [4], privacy preserving data mining in distributed environment [5] etc.

To understand the basic principle of OT protocol, let us consider an example:
let us say, a server stores n number of digital contents or records of information
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x1, x2, ..., and xn. Clients or users need to subscribe with the server to access an
item. In such e-subscription, there will be two requirements to be fulfilled from
the server’s and the client’s point of view respectively: (i) the client should not
be able to retrieve any item(s) which it did not subscribe for and (ii) the server
is not allowed to know which item(s) the client retrieved. That is, if the client
wants to retrieve or access item xi, OT protocol ensures that server cannot learn
the value of i and the client cannot learn any xj for all j �= i.

In this paper our proposed solution uses a secure cryptographic protocol, par-
ticularly the fully homomorphic encryption over integer numbers proposed by
Dijk and Gentry [6] in 2010, to ensure data privacy of the client. The server’s
security is ensured by encrypting all of its records using a symmetric key en-
cryption system such as, AES [7] or DES [8]. k out-of n OT can be achieved by
repeating 1 out-of n OT protocol k times. This approach incurs extremely high
overhead. In this paper, we have proposed some optimizations in the k − n OT
protocol. It transmits the encrypted database only once at the beginning of the
protocol. The server uses separate keys to encrypt each record using a symmet-
ric key encryption technique. The protocol only allows the desired keys to be
decrypted by the client. On the other hand, the client encrypts its choices using
the homomorphic encryption technique and transmits to the server. The server
encrypts and manipulates keys and indexes using the same technique without
being able to decrypt any of the choices of the client. The fully homomorphic
encryption of Dijk and Gentry is as strong as the approximate Greatest Common
Divisor (GCD) problem (more detail of approximate GCD can be found in [9]).
The security analysis shows that the proposed protocol ensures both the server’s
and the client’s requirements.

The rest of the paper is organized as follows: Section 2 describes some back-
ground knowledge on the topic of the paper including the fully homomorphic
encryption system which is used in the proposed protocol, Section 3 and 4 dis-
cuss our proposed model and the protocol, Section 5 discusses the security and
performance analysis and finally, Section 6 concludes the paper with some hints
towards the future research directions.

2 Background and Related Work

This section discusses about various OT protocols and existing solutions and
the definition of homomorphic and fully homomorphic encryption system. This
section also discusses how the fully homomorphic encryption for binary digits is
extended to work for integer numbers.

2.1 Types of Oblivious Transfer Protocol

OT can be of three basic types:

– 1-out-of-2 (1− 2 OT ):
1 out-of 2 oblivious transfer protocol allows the client retrieving one item
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out of 2 from the server. The server does not know which item was accessed
by the client and the client does not know about any item it did not chose to
retrieve. Rabin [10] first proposed 1−2 OT protocol in 1981. In this RSA [11]
based protocol, the server sends the message (an item) to the client with
the probability of 1/2 and hence, the server remain oblivious whether the
message was received or not. Later on, 1 − 2 OT was developed by Evan
et al. [12] while applying it in randomized protocol for signing contracts,
certifying mail and flipping coin.

– 1-out-of-n (1-n OT):
1 out-of- n oblivious transfer protocol allows the client retrieving one item
out of n from the server. Often times 1-n OT is used as a generalization
of 1-2 OT. 1-n OT is also similar to Private Information Retrieval (PIR),
first proposed by Kushilevitz and Ostrovsky [13] in 1997, with an additional
condition. In PIR the client can retrieve 1 item from n items without letting
the server know its choice. The client may retrieve or access other items.
Whereas, 1-n OT ensures the client won’t be able to access anything other
than what it retrieved. Some more about 1 − n OT protocol can be found
in [14,15].

– k-out-of-n (k-n OT):
k out-of- n oblivious transfer protocol allows the client retrieving k number of
items out of n from the server. The client would send k number of indexes to
the server. The server would return all those desired items without knowing
client’s choices. k− n OT was first proposed by Ishai et al. in [16]. Additive
homomorphic encryption based k−n OT protocol is proposed in [17]. k−n
OT can also be achieved by repeated use of 1−nOT. However, this approach
would be very inefficient due to huge amount of overhead transmitted from
server to the client.

2.2 Fully Homomorphic Encryption System (FHES)

Homomorphic encryption is a special form of encryption where one can perform
a specific algebraic operation on the plain-text by applying the same or different
operation on the cipher-text. If X and Y are two numbers and E and D denote
encryption and decryption function respectively, then homomorphic encryption
holds following condition for an algebraic operation, such as ′+′:

D[E(X) + E(Y )] = D[E(X + Y )] (1)

Most homomorphic encryption system such as RSA [11], ElGamal [18], Be-
naloh [19], Paillier [20] etc. are capable to perform only one operation. But fully
homomorphic encryption system can be used for many operations (such as, addi-
tion, multiplication, division etc.) at the same time. In the area of cryptography,
fully homomorphic encryption system proposed by Dijk et al. in [6] is consid-
ered as a breakthrough work which can be used to solve many cryptographic
problems [21]. We have used this fully homomorphic encryption technique with
necessary improvements and variations in data mining [22,23] and in private
information retrieval [24].
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Fully Homomorphic Encryption for Binary Bits

Fully homomorphic encryption of [6] works both over binary and integer num-
bers. This scheme has the ability to perform both addition and multiplication
over the cipher-text and these operations are represented in plain-text. Hence,
a untrusted party is able to operate on private or confidential data, without the
ability to know what data the untrusted party is manipulating.

The fully homomorphic scheme [6] is a simplification of an earlier work in-
volving ideal lattices [25]. It encrypts a single bit (in the plain-text space) to an
integer (in the cipher-text space). When these integers are added and multiplied,
the hidden bits are added and multiplied (modulo 2). A simple encryption and
decryption process of symmetric version of the scheme is as follows:

Encryption : Lets say, p is the private key, q and r are chosen random numbers,
and m is a binary message i.e. m ∈ {0, 1}. Then the encryption of m would
be c = pq + 2r +m.

Decryption : The message m is recovered simply by performing following oper-
ation: m = (c mod p)mod 2.

Thus, this encryption scheme works in the bit level and underlying bits are
calculated accordingly if we add or multiply on cipher-text.

Using the symmetric version of the cryptosystem, it is possible to construct
an asymmetric version. The asymmetric version is more useful especially when
multiple parties are involved in the computation such as in data mining, data
gathering, data outsourcing, OT, PIR etc. The asymmetric version of [6] would
be as follows:

KeyGen(λ) : Choose a random n-bit odd integer p as the private key. Using
the private key, generate the public key as xi = pqi + 2ri where qi and ri
are chosen randomly, for i = 0, 1, ..., τ . Rearrange x− i such that, x0 is the
largest.

Encrypt(pk,m ∈ {0, 1}): Choose a random subset S ⊆ {1, 2, ..., τ} and a ran-
dom integer r. m is encrypted to the cipher-text
c = (m+ 2r+ 2

∑
i∈S xi)(mod x0). Let us denote this operation as Epk(m).

Decrypt(sk, c): The message m is recovered simply by performing
m = (c mod p)mod 2. Let us denote this operation as Dsk(c).

The asymmetric version works same way as the symmetric one with same
correctness and security strength. We have discussed about this in [24] and [22].
The addition and the multiplication on cipher-texts are reflected as addition
and multiplication being acted on the message bit respectively. This produces
the correspondence between the cipher-text space and the plain-text space, as
addition in the cipher-text space reduces to exclusive OR (⊕) in the plain-text
space and multiplication in the cipher-text space reduces to AND (∧). This
correspondence (homomorphism) between these two operations, addition and
multiplication, are shown in Equations 2 and 3, respectively.

E(m1) + E(m2) = E(m1 ⊕m2) (2)
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E(m1) · E(m2) = E(m1 ∧m2) (3)

Hence, from this correspondence, it is possible to construct very complicated
binary circuits to evaluate on the data, without exposing the actual data. More
details regarding the implementation can be found in the original paper [6].

Fully Homomorphic Encryption for Integers

Oblivious transfer deals with the privacy and security of some numeric values
being exchanged between the client and the server. Hence, we need to extend
the underlying cryptosystem to accommodate integer numbers, so that integer
numbers can be taken into consideration. This is achieved by representing the
integer as a binary vector and encrypting each bit separately and maintaining
their positions or orders. For instance, an 8-bit integer X can be encrypted and
presented as cipher-text as shown in Equation 4, assuming the binary represen-
tation of X is X8 ++X7 ++X6 ++X5 ++X4 ++X3 ++X2 ++X1.

Epk(X) =

Epk(X8) ++Epk(X7) ++Epk(X6) ++Epk(X5) ++Epk(X4) ++

Epk(X3) ++Epk(X2) ++Epk(X1)

where ++ represents concatenation operation.

(4)

This representation of integer number allows encrypting and decrypting each
bit using the fully homomorphic encryption and decryption for binary digits as
discussed in section 2.2. Not only that, some binary operations such as XOR,
OR, AND etc. can be performed on two encrypted integer numbers homomor-
phically. Let us consider two integers X and Y of �-bit long each. That is,
X = {X� ++ ...++X2 ++X1} and Y = {Y� ++ ...++ Y2 ++ Y1}. Let us say we want
to perform binary XOR operation on X and Y , i.e. R = X XOR Y , where
R = {R� ++ ...++R2 ++R1} and Ri = Xi XOR Yi. Therefore, according to fully
homomorphic encryption Ri = Dsk(Ri′), where Ri′ = Epk(Xi) XOR Epk(Yi).
For all i = 1 to �.

3 Model Definition

Let us consider a client C wants to access k number of records (k ∈ {1, 2, ..., n})
out of n records {R = R1, R2, ..., Rn} stored in a database server S. Index of
the interested records {I = I1, I2, ..., Ik} are known to C only. C does not want
S to discover which record(s) it is interested in. On the other hand, S wants to
ensure only the desired record is received by C. Figure 1 illustrates the block
diagram of the proposed model in brief.
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Fig. 1. Block diagram of the oblivious transfer protocol between the client and the
server

The client C and the server S participates in the proposed OT protocol using
the fully homomorphic encryption discussed in section 2.2. They also generate
keys, encrypt, decrypt and transmit according to the protocol description dis-
cussed in following the section.

4 Proposed Solution

This section discusses our proposed OT protocol in the sequence of parameter
setup, communication steps and algorithms.

4.1 Parameters and Initial Setup

Let us assume both the client C and the server S are capable to perform following
operations to setup and carry on the proposed protocol:

Key generation
Client: Client C generates its private key and public key sk and pk respec-
tively using the key generation technique discussed in section 2.2.
Server: Server S generates secret key sets χ = {κ1, κ2, ..., κn} using crypto-
graphically secure pseudo-random number generator (CSPRNG). Standards
of CSPRNG can be found in [26]. Each key is used to encrypt each record.
That is, key κi is used to encrypt record Ri.

Encryption
Two kind of cryptosystems will be used in the proposed protocol:
FHES

Fully homomorphic encryption system based encryption and decryption
functions for integer numbers works as follows:
Encryption: Epk(i) encrypts an �-bit integer i using the public key pk,

returning an encrypted �-block long cipher-text c.
Decryption: Dsk(c) decrypts an �-block long cipher-text c using the

private key sk, returning a plain-text �-bit integer i.
Symmetric Key Cryptosystem

A secured symmetric key cryptosystem (e.g. AES [7] or DES [8]) based
encryption and decryption notations are as follows:
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Encryption: Ri′ = E′κi(Ri) represents the encryption of record Ri

using the key κi.
Decryption: Ri = D′κi(Ri′) represents the decryption of encrypted

record Ri′ using the key κi.
Homomorphic XOR for Integers

Denoted as (X � Y ), receives two �-block long cipher-text X and Y , and
returns a third encrypted �-block long cipher-text Z. The output is calculated
bit-by-bit using the exclusive OR property of the homomorphic encryption
discussed in section 2.2, that is Zi = Xi XOR Yi, where XOR is evaluated
using Equation 2.

Shuffle by random permutation
Denoted as ζ(B′), randomly rearranges all � number of blocks of the cipher-
text B′, where B′ = Epk(B). That is, if B′ = {Epk(B�) ++ ...++Epk(B2) +
+Epk(B1)}, ζ(B′) will return {Epk(Bi) ++ ...++Epk(Bj) ++Epk(Bk)} where
values of i, j, k are non-repeating random numbers within the range of 1 to �.

4.2 The Algorithm

Algorithm 1. Oblivious Transfer between C and S

input of C : pk, sk, k, n, I
input of S : pk, R, n
output to C : RI1 , RI2 , ..., RIk

Begin
Server S
Generate set of random keys χ = {κ1, κ2, ..., κn}
Client C
for All(i ∈ I) do

Q ← Epk(Ii)
SendToS(Q)
Server S
Γ ← φ /* Initializes response string*/
for j = 1 to n do

αj ← ζ(Q�Epk(j))�Epk(κj) /* ζ rearranges the order of the bits randomly*/

βj ← E′kj (Rj)
Γj ← {αj

⋃
βj}

Γ ← Γ
⋃

Γj

end for
SendToC(Γ )
Client C

γ ← ΓIi /* Extracts desired block from Γ . Components of γ are α and β*/
αi′ ← α /* Extracts encrypted keys*/
βi′ ← β /* Extracts encrypted record*/
κIi ← Dsk(αi′) /* Decrypts the key to decrypt the desired record*/
RIi ← D′κIi

(βi′) /* This is the desired record of index Ii*/
end for
End
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4.3 Flow Diagram

The algorithmic flow diagram for one request is shown in Figure 2.

Fig. 2. Flow diagram of oblivious transfer protocol between C and S for one request

4.4 Further Optimization

In Algorithm 1, k − n OT is implemented by repeated calling of 1 − n OT k
times. The client C sends k encrypted requests separately to the server S. The
server returns the encrypted records each time the client requests. In the case
of big size of the records, this method will be very inefficient. Alternatively,
the server can transmit the whole chunk of encrypted records once at the first
time and later on can transmit only the encrypted keys (the key which is used
to encrypt a particular record), every time the client sends a request. In sum-
mary, the part of β in Figure 2 can be transmitted once at the beginning of
the protocol and α can be transmitted k times to the client. This would re-
duce the transmission overhead drastically. Moreover, the client also can send
all the k number of requests at once. The optimized solution is described in
Algorithm 2.
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Algorithm 2. Efficient Oblivious Transfer between C and S

input of C : pk, sk, k, n, I
input of S : pk, R, n
output to C : RI = {RI1 , RI2 , ..., RIk}
Begin
Server S
Generate set of random keys χ = {κ1, κ2, ..., κn}
Ω ← φ /* Initializes the encrypted records*/
for i = 1 to n do

Ω ← Ω
⋃

E′ki(Ri)
end for
Client C
Q ← φ
for All(i ∈ I) do

QIi ← Epk(Ii)
Q ← Q

⋃
QIi

end for
SendToS(Q,k) /* C sends all requests together to S*/
Server S
β ← φ
for j = 1 to n do

βj ← E′kj (Rj)
β ← β

⋃
βj

end for
SendToC(β) /* Sends all the encrypted records together*/
for i = 1 to k do

αi ← φ
for j = 1 to n do

αj ← ζ(QIi � Epk(j)) � Epk(κj) /* ζ rearranges the order of the bits
randomly*/

αi ← αi

⋃
αj

end for
SendToC(αi)

end for
Client C
for i = 1 to k do

αIi ′ ← αi /* Extracts blocks fromα that contain the key κIi*/
κIi ← Dsk(αIi)
γ ← βIi /* Extracts desired block from β that contain RIi*/.
RIi ← D′κIi

(βi′) /* This is the desired record of index Ii*/
RI ← RI

⋃
RIi

end for
return RI

5 Analysis

The fully homomorphic encryption used in this protocol is as strong as approx-
imate GCD problem, though its efficiency may not be very high. Some recent
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Fig. 3. C is adversary. S1 guesses κ for C to compute a value to be equal to α.

Fig. 4. S is adversary. S2 guesses Ii for S to compute a value to be equal to Q[Epk(Ii).

works and ongoing research on improving this protocol, such as [27,28,21], indi-
cates its performance to be enhanced in near future.

In this protocol, C generates and stores its secret and public keys sk and pk
respectively. C does not send any data to S without being encrypted by its public
key pk. Therefore, C’s data is secured by the security of the fully homomorphic
encryption scheme of [6]. On the other hand, S encrypts its data using same
public key pk and performs operations on its own ciphe-rtext and C’s cipher-
text. The cipher-text is again shuffled using the function ζ() which is XORed
with secret key. S then discloses this cipher-text to C. Therefore, the privacy of
S’s data depends on whether C can learn anything from the result sent by S
and vice-versa. Let us consider C and S being adversary in two different cases:

Case1: the client C is adversary
Let us say C wants to recover a key κj where j /∈ I. That is C wants to recover
a key of a record which it did not retrieve. For each item Ii the client request,
it receives n blocks of cipher-text, which is αj = ζ(QIi � Epk(j)) � Epk(κj)
for all j = 1, 2..., n. Any block is only meaningful, in other word C can
retrieve a key from, if Ii = j. This condition would make QIi � Epk(j) =
Epk(Ii)�Epk(j) = 0 and hence, αj = Epk(κj) from which C can decrypt κj .
For any other block where Ii �= j, QIi�Epk(j) would be non-zero and further
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shuffle by ζ() would make this part indistinguishable and unrecoverable to C.
Simulated and guessed key values in C is computationally indistinguishable.

Figure 3 shows C’s view and simulated outcome (α
c≡ α′), where, c≡ denotes

computational indistinguishability..
Case2: The server S is adversary

C encrypts all the indexes of its choices using its public key pk. Therefore,
no one can know about the indexes without the secret key sk which is only
possessed by C, given the fully homomorphic encryption is secure. Server
S cannot know the value of C’s choice by encrypting all indexes from 1
to n and and comparing with C’s encrypted choices. Because asymmetric
version of fully homomorphic encryption guarantees that two cipher-texts
of the same bits are always different. Moreover simulated or guessed index
of C’s choices are indistinguishable to S. Figure 4 illustrates S’s view and

simulated outcome (Q
c≡ Q′).

6 Conclusion and Future Work

In this paper, we have proposed a novel OT protocol using a fully homomorphic
encryption system. The security of this protocol is as strong as approximate
GCD problem. Security analysis also ensures that, the client C cannot discover
any record it did not retrieve and the server S cannot learn the choice(s) of
the client. The enhancement of the fully homomorphic encryption system used
in this solution will influence the performance of the proposed protocol in great
deal. Implementation and performance comparison with existing solution are left
for the future research.
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