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Abstract. The security of an embedded system is often compromised
when a “trusted” program is subverted to behave differently. Such as
executing maliciously crafted code and/or skipping legitimate parts of
a “trusted” program. Several countermeasures have been proposed in
the literature to counteract these behavioural changes of a program. A
common underlying theme in most of them is to define security policies
at the lower level of the system in an independent manner and then check
for security violations either statically or dynamically at runtime. In this
paper we propose a novel method that verifies a program’s behaviour,
such as the control flow, by using the device’s side channel leakage.
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1 Introduction

In recent years, embedded systems have been proliferated into wide range of
modern life applications. One of the main application vector of embedded sys-
tems is communication [1,2,3]. A typical embedded system application contains
hardware and software components. The hardware component includes storage
area, execution engine and other peripherals required to successfully execute in-
structions. The software component is a written procedures or rules stored in a
memory pertaining to the operation of a computer system or part of the system
itself.

The execution of a software program always involves incrementing the pro-
gram counter (a special register which stores the address of the next instruction).
Normally the program counter is incremented by “1”; however, certain instruc-
tions change its value by more than one in both directions. This kind of change
is known as Control Flow Change and can be caused by both conditional and
unconditional branching instructions. According to [4], program control flow is
the most attacked target in software and such attacks are called Control Flow
Attacks. A Control Flow Attack is one of the main threats for embedded sys-
tems [5,6,7]. Control Flow Attacks can be performed on embedded systems for
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two reasons. Firstly, the attacker installs his code segment on the target device.
Later on when the device executes a genuine program, the attacker targets saved
function return addresses to divert the control flow into his previously installed
code. Secondly, the attacker does not install any code but instead when the pro-
gram is executed the attacker changes the saved return addresses just in order
to skip the execution of certain parts of the program.

In the literature, several countermeasures have been proposed to counteract
these kinds of intrusions. To explain some of them; in [8], the authors discuss
a technique that employs a dedicated hardware module to detect and prevent
unintended program behaviors. In this method the program’s properties are ex-
tracted through a static code analysis and the hardware module uses them to
enforce a permissible program behavior at runtime. Another countermeasure,
described in [9] introduces Control-Flow Integrity (CFI) enforcement. The CFI
dictates that software execution must follow the path of a Control-Flow Graph
(CFG) determined ahead of time. The work of Michael Frantzen and Michael
Shuey [10], presents a buffer overflow prevention method. This is acheived via
a kernel modification that performs transparent, automatic and atomic oper-
ations on the function return addresses before they are written into the stack
and before the program transfers execution back to the saved return addresses.
In [11], Aurélien et al. discussed a control flow enforcement technique based on
Instruction Based Memory Access Control (IBMAC). This is done by using a
simple hardware modification to divide the stack into a data and a control flow
stack (or return stack). Moreover, access to the control flow stack is restricted
only to return and call instructions, which prevents control flow manipulation.
More countermeasures can be found in [12,13,14]. Most of the proposed coun-
termeasures are demanding in terms of computational capability, memory usage
and often rely on a hardware module that is not present on simple devices.

In this paper we present a novel approach to verify a program’s control flow
by using the device’s side channel leakage. In our proposal we modelled the
device as a Markov Process with hidden states, each state belonging to a part
of the program. Then a verifying device extracts the control flow transition
that the device had followed when executing the program from its side channel
leakage (power consumption). This extracted control flow (state sequence) is
then verified against a list of valid state transitions of the application which was
calculated ahead of time.

The rest of the paper is structured as follows. Section 2 briefly provides back-
ground information on side channel leakage. Section 3 discusses the proposed
control flow verification methodology. Section 4 discusses our experimental re-
sults. Finally, section 5 concludes the paper.

2 Side Channel Leakage

Side channel leakage is information revealed by a device about its internal state
while processing a certain procedure. Smart cards and other embedded devices
use electric current to turn transistors on and off. The instantaneous electric
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current that the device consumes depends on how many transistors that the
executed instructions and data turn on and off. This difference in the electric
current is then reflected in the power consumption and electromagnetic emission
of the device. The power consumption and/or electromagnetic emission can then
be recorded and analysed to extract secret information from the target device.

In the context of cryptology, side channel leakage can be employed in re-
trieving cryptographic secret keys from target devices, such as smart cards. Side
channel information such as timing [15,16,17], power consumption [18,19,20] and
electromagnetic emission [21,22,23] have been used in attacking implementations
of cryptographic algorithms including AES [24], DES [25] and RSA [26].

Besides extracting cryptographic keys, side channel information has also been
used to reverse engineer embedded device applications [27,28,29]. This is done by
constructing a power consumption template of the target device using an iden-
tical reference device. Then use the templates to recognise executed instructions
from the target device’s power consumption waveform. In addition, side channel
information can also be used by device manufacturers and application develop-
ers to detect cloned devices and design advanced applications. Instruction-level
power consumption model of an embedded device has been used to design a
low-power consuming applications for mobile embedded devices where batteries
are the main power source [30,31]. In [32], the authors discuss, theoretically, how
side channel leakage can be used to fingerprint a smart card platform and then
use it later to detect cloned cards.

3 Control Flow Verification

An application is a combination of basic blocks. A basic block is a linear sequence
of executable instructions with only one entry point (the first instruction exe-
cuted) and one exit point (the last instruction executed) [33]. After executing one
basic block the processor jumps into another basic block based on the branch-
ing instruction executed at the end of the current basic block. This branching
instruction can be conditional or unconditional. A basic block may have many
predecessors and many successors. It might also be its own successor. Program
entry basic blocks might not have predecessors that are within the program and
program ending basic blocks never have successors within the program itself.

An embedded device, with one or two programs installed in its non-volatile
memory, can be modelled as a state machine with each state corresponding to
a basic block of the program(s). When the program is being executed we can
not directly observe the states that the processor is going through but we can
observe the side channel information emitted by the device. Such information
can be the power consumption [18,34] or the electro-magnetic emission [22,21,23]
of the device. The side channel information emitted by the device is directly
dependent on the states executed by the processor.

The questions here are, by only using this observable physical emission can we
reconstruct the state sequence that the processor went through when executing
the program? Furthermore, once the sequence is reconstructed can we verify it?
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3.1 Control Flow Reconstruction

To reconstruct the state sequence that a device followed during the execution
of a program from its side channel leakage we modelled the device as a Hidden
Markov Model (HMM) [35,36]. A Markov Model is a memoryless system with
a finite number of hidden states. It is called memoryless because the next state
depends only on the current state.

In such a model the states are not directly observable. However, there has to
be (at least) one observable output of the process that reveals partial information
about the state sequence that the device has followed. Fig. 1, illustrates aMarkov
Process with five hidden states (i.e A to E).
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Fig. 1. A Markov model representing a device executing a program with five states (A,
B, C, D and E). The power consumption is the observable output that reveals partial
information about the state sequence of the device.

In case of the Markov Process illustrated in Fig. 1, the hidden states are the
program’s basic blocks and the observable output is the power consumption of
the device. This observable output is measured via a resistor (Rs) connecting
the ground pin of the device and ground pin of the voltage source.

Building the Hidden Markov Model. Building a Hidden Markov Model
(HMM) requires a set of finite states qi’s, a transition probability distribution
matrix T = {τij}, emission probability distribution matrix E = {ei} and initial
state distribution π. Given these probability distribution matrices, the HMM is
defined as λ = (T,E,π).
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The transition probability distribution τij , is the probability that the next
state is qj if the current state is qi, for 1 ≤ i, j ≤ S where S is the number of
states. If we denote st the current state of the system at a time t, τij = P(st+1 =
qj | st = qi) is the probability of transitioning from state qi to state qj . Given
an observation (power consumption) Ot at a time t, the emission probability
distribution ei(Ot) = P(Ot | st = qi) is the probability that Ot was emitted
by the state qi. To compute ei(Ot) first we need to build a power consumption
template for each state. The template of each state is generated by computing
the mean, μqi , and the covariance, σqi of the state’s power consumption traces.

Let us consider N L-dimensional power consumption traces {xn} generated
by the device while executing the state qi were recorded. The mean, μqi , and
covariance, σqi , are calculated using the computation in equations (1) and (2)
respectively.

μqi =
1

N

N∑

n=1

xn (1)

σqi =
1

N

N∑

n=1

(xn − μqi)(xn − μqi)
T (2)

where N is the number of power traces recorded for state qi and (xn − μqi)
T

is the transpose of (xn − μqi). These templates can be built beforehand using
an identical reference device and a target program. Assuming the power traces
are derived from a Multivariate Gaussian Normal Distribution Model [37], the
emission probability distribution ei(Ot) is computed using the equation in (3).

ei(Ot) =
1

(2π)L/2√σqi

exp(−1

2
(Ot − μqi)σ

−1
qi (Ot − μqi)

T ) (3)

Now, if we take a number of observations O = {Ot,Ot+1,Ot+2, · · · ,Ot+n},
the emission probability distribution matrix E becomes:

E =

⎡

⎢⎢⎢⎣

e1(Ot) e1(Ot+1) e1(Ot+2) · · · e1(Ot+n)
e2(Ot) e2(Ot+1) e2(Ot+2) · · · e2(Ot+n)

...
...

...
. . .

...
eS(Ot) eS(Ot+1) eS(Ot+2) · · · eS(Ot+n)

⎤

⎥⎥⎥⎦ (4)

Normally when an application is invoked, the execution always starts at the
program entry point (main()). Therefore, the initial state distribution for the
first basic block is always 1 and 0 for the other basic blocks. For example, for
the system depicted in Fig. 1 the execution of the application always starts at
A. So, the initial state distribution becomes πA = 1 and {πB, πC , πD, πE} = 0.

To successfully compute E using equation (3), all observations {Ot, · · · ,Ot+n}
must have equal dimensionality. In other words, the power consumption traces
generated by all states must have the same number of sample points. However, in
reality this may not always be true. In addition, the dimension of the emissions
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(power traces) may be too large for a robust and fast classification. A common
way to attempt to resolve this problem is to use a dimensionality reduction tech-
nique. In doing this we have to maintain as much information about the original
emission (power consumption) as possible. Two of the most popular techniques
for this purpose are: Principal Components Analysis (PCA) and Fisher’s Linear
Discriminant Analysis (F-LDA).

Principal Components Analysis (PCA) is a technique used to reduce the
dimension of an observation while keeping as much of its variance as possible
[38]. This is achieved by orthogonally projecting the observation onto a lower
dimensional subspace vector.

Let us consider an N L-dimensional observations of emissions {xn}, where
n = 1, ..., N and their covariance matrix σ. A lower dimensional subspace in
this Euclidean space can be defined by a D-dimensional unit vector −→u1, where
D < L. The projection of each observation, xn, onto that subspace is given by−→u1

Txn. Now if we stack up all the emissions into a matrix of N×Lmatrix, where
L is the number of samples of each observation, the projection of each row of
the matrix is represented as UTX , where U is a matrix of eigenvectors of the
covariance matrix σ. The projection of the observations onto a D-dimensional
subspace that maximizes the projected variance is given by D eigenvectors [39]−→u1, . . . ,

−→ud with the D largest eigenvalues λ1, . . . , λd.

Fisher’s Linear Discriminant Analysis (F-LDA) is a method used in
statistics, pattern recognition and machine learning to find a linear combination
of features which characterises two or more class observations [40,41,42]. The
resulting combination may be used as a linear classifier for dimensionality re-
duction before classification. However, instead of maximising the variance of the
original data like PCA, information regarding the covariance of different classes
is taken into consideration. These are the “between-class” and “within-class”
covariance matrices.

Now, let us consider again the N L-dimensional observations for each class.
Then the “within-class” covariance σW is computed as,

σW =

S∑

i=1

∑

w∈xi

(w − μqi)(w − μqi)
T =

S∑

i=1

Nqiσqi (5)

In the above equation, Nqi , σqi and w are the number of observations, the
covariance and the power traces of class qi. The “between-class” covariance σB

is computed as

σB =

S∑

i=1

(μqi − μ)(μqi − μ)T (6)

where μqi is the individual class’s mean as defined in equation (1) and μ is
the mean of the entire observation which is computed as shown in equation (7).
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μ =
1

N

∑

∀x
x =

1

N

S∑

i=1

Nqiμqi (7)

Now, let us consider a D-dimensional unit vector −→u1 onto which the data is
projected. This time the objective is to maximise both the projected “between-
class” and the projected “within-class” covariance:

J (−→u1) =
−→u1

TσB
−→u1−→u1

TσW
−→u1

(8)

The projected J is maximised if −→u1 is the eigenvector of σ−1
W σB . The D-

dimensional subspace is created by the first D orthogonal directions that max-
imise the projected J . These are given by the D eigenvectors −→u1, · · · ,−→uD of
σ−1
W σB with the largest eigenvalues λ1, · · · , λD.

Calculating the Most Probable State Sequence. The probability distri-
bution matrices E, T and π can be constructed ahead of time using an identical
reference device and the target application. Now let us consider we observe emis-
sions (power consumption traces) O = {Ot,Ot+1,Ot+2, · · · ,Ot+n}, where n is
the length of the state sequence. These emissions were recorded while the device
was executing the target application. The most likely sequence of states that
produces the observations O is calculated using the Viterbi Algorithm [43] as
shown in equations (9) and (10). This state sequence is regarded as the control
flow that the device has followed when executing the program.

V1,j = P(O1 | s1 = qj) · πj (9)

Vt,j = P(Ot | st = qj) ·maxi∈S(τij · Vt−1,j) (10)

In equation (10), S is the state space of the Markov Process, πj the probability
of state qj being the initial state and τij probability of transitioning from state
qi to state qj . The Vt,j is the probability of the most probable state sequence
responsible for the first t emissions that has qj as its final state. The state
sequence that resulted in highest probability, according to equation (10), from
all possible state sequences of the same length as the emission is regarded as the
most probable state sequence that generated the emissions.

3.2 Verifying the Reconstructed State Sequence

As described in section 3, a program is a combination of basic blocks. Before
loading the program into the target device, a list of valid transitions between the
states (basic blocks) are extracted using a code analysis tool. This list of valid
transitions is known as the Control Flow Graph (CFG). A CFG, G = (I, P ), is
represented by the program’s states identity, I, and control flow path, P . For
instance, for the program illustrated in Fig. 1, the CFG is given as G = (I, P ),
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where I = {A,B,C,D,E} and P = {(A,B), (A,C), (B,B), (B,C), (C,D),
(C,E), (D,C), (D,E)}. The CFG is then installed into the verifying device (i.e
the terminal in the case of a smart card application).

Now the task is verifying if the reconstructed state sequence is among the
valid transitions in the CFG. However, since the reconstruction of the state
sequence (explained in section 3.1) from the power consumption is a probabilistic
process, we have to first confirm that the reconstructed state sequence is the
actual state sequence that the device followed when executing the program.
This can be acheived by comparing a hash value generated over the identity of
actually executed states (H∗) with a hash value generated over the identity of
reconstructed states from the power trace (H

′
). In equation (11),H∗ is generated

by the device that executes the program and sent to the verifying device that
generates H

′
.

f(H∗, H
′
) =

{
1, if H∗ = H

′

0, otherwise
(11)

If it is a match, the reconstructed sequence is what the processor went through
when executing the program. Otherwise, the reconstructed sequence is not the
path that was followed by the device. Equation (11) can only verify that the
execute state sequence and the extracted state sequence are the same. Unfortu-
nately, this does not verify if the executed state sequence (control flow) is valid.
Therefore, the validity of the control flow is verified by comparing it against
the pre-calculated paths, P , in CFG. If the reconstructed state sequence is not
among the valid paths in CFG, the device/program is regarded as compromised.

4 Experimental Results

To implement the techniques discussed above we chose ATMega163 + 24C256
based smart card. ATMega163 is an 8-bit microcontroller based on AVR ar-
chitecture. Note that this smart card does not have any countermeasure against
power analysis attacks. To construct a more reliable template for the states of the
test program (see Fig (3)), we removed all other factors that influence the power
consumption of the device. Such factors can be the intrinsic and ambient noise
introduced by the measurement setup. To minimise the influence of the ambient
noise, we have properly warmed up the measurement equipment beforehand so
that it is all running at a uniform temperature during the power trace collec-
tion phase. This requires running few test measurements to be discarded before
the actual power trace collection starts. The intrinsic noise introduced into the
measurement can be minimised by collecting several traces for each state and
calculating the mean. This reduces the standard deviation of the noise by a fac-
tor of

√
n, given that n is the number of power traces involved in calculating the

mean.
The power consumption is measured as a voltage drop across a resistor con-

necting the ground pin of the smart card and the ground pin of the voltage
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source. The smart card is running at a 4 MHz clock cycle and is powered up
by a +5V supply from the reader. The measurements are performed using a
LeCroy WaveRunner 6100A [44] oscilloscope capable of measuring traces at a
rate of 5 billion samples per second (5GS/s). The shunt resistor is connected
with the oscilloscope using a Pomona 6069A [45] probe, a 1.2m co-axial cable
with a 250MHz bandwidth, 10MΩ input resistance and 10pf input capacitance.
All measurements are sampled at a rate of 500 MS/s and the same setup is used
throughout the experiment.

4.1 Control Flow Reconstruction

For our experiment we implemented a test application with five basic blocks
(states). Each state accomplishes certain task within the program. The processor
follows different control flow paths to execute the application depending on a
value “Vreader” sent from a terminal. The state machine diagram of the test
application is presented in the Fig. 2.

Fig. 2. Test program’s control flow
diagram

State1start

State2 State3

State4

State5

τ12

τ13

τ14

τ25
τ35

τ33

τ43

τ45

Fig. 3. High-level description of the test
program

State1 : Par = r e c e i v e ( )
Vreader = r e c e i v e ( )
Vnvm = read (nvm)
i f ( Vreader == Vnvm)

State2 : par = ( par )ˆ2
goto State5

end
e l s e i f ( Vreader > Vnvm)

State4 : par = par + 216
par = par/5
Vreader = Vreader − 2
i f ( Vreader < Vnvm)

goto State3
end
e l s e

goto State5
end

end
e l s e i f ( Vreader < Vnvm)

State3 : par = par ∗ 2
par = par − 129
Vreader = Vreader + 1
i f ( Vreader < Vnvm)

goto State3
end
e l s e

goto State5
end

end
State5 : c l e a r r e g i s t e r s

clear memory

Invoking the test program requires passing two arguments: “Vreader” (0 ≤
Vreader ≤ 9) and “Par” (0 ≤ Par ≤ 255). The “Vreader” is compared with a
reference value “Vnvm” (0 ≤ Vnvm ≤ 9) (stored in the non-volatile memory of the
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smart card) before changing a state. For our experiment the Vnvm is initialised
to “4” and the arguments Par and Vreader are randomly generated and passed
to the program through the smart card reader.

Building the Hidden Markov Model. As discussed in Section 3.1, building
a Hidden Markov Model requires the initial probability distribution π, transi-
tion probability distribution T and the emission probability distribution E. As
illustrated in Fig. 2, the execution of the test program always starts at State1.
Therefore, the probability of State1 being the initial state is “1”, and “0” for
all other states. If πi is the probability of Statei being the initial state in the
execution of the program, the initial probability distribution vector of our test
program is given as:

π = {π1 = 1, π2 = 0, π3 = 0, π4 = 0, π5 = 0} (12)

To compute the transition probability distribution matrix, T, we invoked the
program with a randomly generated “Par” and all possible values (i.e. 0 to 9)
of “Vreader” and record the control-flow transition of the program. Note that for
each different value of “Vnvm” the matrix T is different.

Table 1. Transition probability distribution of the program illustrated in Fig. 2 and
3. The columns represent next states and the rows represent current states.

Transition from Transition to [%]
State1 State2 State3 State4 State5

State1 τ11=0 τ12=0.1 τ13=0.4 τ14=0.5 τ15=0
State2 τ21=0 τ22=0 τ23=0 τ24=0 τ25=1
State3 τ31=0 τ32=0 τ33=0.55 τ34=0 τ35=0.45
State4 τ41=0 τ42=0 τ43=0.2 τ44=0 τ45=0.8
State5 τ51=0 τ52=0 τ53=0 τ54=0 τ55=0

To compute the emission probability distribution matrix E, we collected 1000
traces for each state. Using these traces we computed the mean μqi , and covari-
ance, σqi , for each state as a template.

As shown in figure 4, the states of the test application generate power con-
sumption traces of different dimension. In our experimentE is computed over the
first 250 sample points of the traces. However, a covariance matrix of 250×250 is
still too large to compute its inverse. For this purpose we applied the techniques
discussed in Section 3.1 (PCA and F-LDA) on the first 250 sample points of the
state emission (power consumption) before computing E.

Principal Components Analysis (PCA) is used to find a subspace whose
basis vectors corresponding to the maximum variance directions in the original
data. In other words PCA searches for those vectors in the underlying data
that best describes the data. When applying PCA the dimensionality of the
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Fig. 4. Mean of the power traces of the states illustrated in Fig. 2

projected data has to be selected carefully. On the one hand, if it is too small,
too much of variance of the original data may get lost and with it important
information about the state emissions. On the other hand, if it is too large, the
state classification becomes less reliable again. This might be because of the bad
conditioning of large covariance matrix. Another reason can be, as the dimension
increase the class emission cross-correlation increases. Therefore, when choosing
the dimensionality for the projected data we have to decide how much of variance
of the original data that we can afford to lose.
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Fig. 5. Original data after PCA
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For example, in our experiment the first 100 principal components were ac-
counted for 54.76% of the variance of the original emission. the first 250 principal
components are accounted for 80.74% of the variance of the original emission.
In Fig.5 we show plots of the first two principal components after PCA.

Fisher’s Linear Discriminant Analysis (F-LDA) is a technique used to
classify between classes by finding discriminant features of the class data and
projecting them onto these discriminant vectors. In other words, F-LDA searches
for those vectors in the underlying data that best separates among the classes.
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Fig. 6. Original data after F-LDA

In Fig. 6 we present the first two components of the state emissions after
F-LDA. As discussed earlier PCA searches for vectors that best describes the
original data. However, it does not take the other classes into consideration. For
this reason PCA may not produce a satisfactory result when classifying different
classes. We can see that in Fig. 5 the principal components of classes emissions
overlap. However, as shown in Fig. 6 the classes are better separated after F-
LDA.

Calculating the Most Probable State Sequence. To calculate the most
probable state sequence, first we have to implement the Viterbi Algorithm dis-
cussed in Section 3.1. To do this we have two options: use the MATLAB [46]
Statistics Toolbox implementation hmmviterbi [47] or create our own implemen-
tation of the equations (9) and (10). Although, the MATLAB Statistics Toolbox
implementation of Viterbi Algorithm might be useful for some statistical calcu-
lations we could not use it in our experiment. This was because firstly it does
not utilise the initial probability distribution (π) and secondly the output is not
in the format that we want it to be. Therefore, we created our own MATLAB
implementation and the source code is available at the end of the paper in Ap-
pendix A. As you can see it from the source code, our implementation takes all
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three matrices (π, E and T) that we discussed in Section 3 and gives us the
most likely state sequence as a vector.

Our test program has six valid control-flow paths from the initial state, state1,
to the final state, state5. Our implementation of the Viterbi algorithm calcu-
lates a sequence of states with the highest probability of generating the emission
O. We ran the test program for all possible valid paths by varying the argu-
ment “Vreader” and calculated the most probable state sequence from the smart
cards power consumption trace. We ran the test program 1000 times by varying
“VReader”, recorded the power trace and calculated the most likely sequence of
states for each run.

4.2 Verifying the Reconstructed State Sequence

For all the state sequences that we calculated, we verified them using the 2-step
verification system discussed in Section 3.2. Before comparing the reconstructed
state sequence against the CFG, we have to make sure that the reconstructed
sequence is the actual path that the smart card went through. For that pur-
pose we verified the hash values calculated by the smart card against the hash
values calculated over the reconstructed state sequence. Then we compared the
reconstructed state sequence against the valid paths in CFG. In our experiment
we successfully verified the control flow for all (1000) runs of the test program
that we made. In our experiment we calculated the CFG manually; however, for
large programs calculating it manually might be difficult and complicated. In
such a case the CFG may be extracted using a source code analysis tools, such
as MALPAS [48].

5 Conclusion

In the literature several methods have been proposed to counteract a program’s
control flow violation. In most of them the proposed solutions require either a
dedicated hardware module or the main processor to perform extra computations
to check the control flow security of the program(s) at runtime. Usually this
computation utilises the program’s properties which are extracted ahead of time,
such as CFG. These properties are then used to check the program’s behaviour
dynamically. However, these kind of solutions may not be suitable for low-end
devices deployed as coprocessors in bigger systems, such as hardware security
modules in communication devices.

In this paper we proposed a novel approach into checking a program’s control
flow integrity by using the side channel leakage of the target device. In our
method the device is not required to perform extra computation. However, it
requires another device to check for its program’s control flow integrity as it
executes the program. This method can be used in smart card (or any other
embedded device that need to connect to an external device to execute the
application) where the terminal (external device) acts as the verifying device.
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Appendix

A Viterbi MATLAB Implementation

Listing 1.1. MATLAB implementation of the Viterbi algorithm described in sec-
tion 3.1

% [state_sequence ] = viterbi_sequence (initial_probability ,

% transition_probability ,

% emission_probability )

% initial_probability = initial probability (\pi_{i})

% transition_probability = transition probatility (T)

% emission_probability = emission probability (E)

% state_sequence = most probable state sequence that would

have resulted to the emission of (O)

% Author: Mehari G. Msgna

% Date: 16 April , 2013

function [state_sequence ] = viterbi_sequence (

initial_probability , transition_probability ,

emission_probability )

number_of_states = length(initial_probability (1,:));

number_of_observations = length(emission_probability (1,:)

);

state_sequence = zeros(1,number_of_observations);

sequence_probability = zeros(number_of_observations ,

number_of_states );

for c = 1: number_of_states

sequence_probability (1,c) = emission_probability (c,1)

* initial_probability (1,c);

end

for r = 2: number_of_observations

temp = zeros(1, number_of_states );

for c = 1: number_of_states

for c1 = 1: number_of_states

temp (1,c1) = transition_probability(c1,c) *

sequence_probability (r-1,c1);

end

mx = max(temp (1,:));

sequence_probability (r,c) = emission_probability (

c,r) * mx;

end

end

for j = 1: number_of_observations

[value , index] = max(sequence_probability (j,:));

state_sequence (1,j) = index;

end

end


	The B-Side of Side Channel Leakage: Control 
Flow Security in Embedded Systems
	1 Introduction
	2 Side Channel Leakage
	3 Control Flow Verification
	3.1 Control Flow Reconstruction
	3.2 Verifying the Reconstructed State Sequence

	4 Experimental Results
	4.1 Control Flow Reconstruction
	4.2 Verifying the Reconstructed State Sequence

	5 Conclusion
	References




