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Abstract. Consumer devices are increasingly being used to perform
security and privacy critical tasks. The software used to perform these
tasks is often vulnerable to attacks, due to bugs in the application itself
or in included software libraries. Recent work proposes the isolation of
security-sensitive parts of applications into protected modules, each of
which can only be accessed through a predefined public interface. But
most parts of an application can be considered security-sensitive at some
level, and an attacker that is able to gain in-application level access may
be able to abuse services from protected modules.

We propose Salus, a Linux kernel modification that provides a novel
approach for partitioning processes into isolated compartments. By en-
abling compartments to restrict the system calls they are allowed to
perform and to authenticate their callers and callees, the impact of un-
safe interfaces and vulnerable compartments is significantly reduced. We
describe the design of Salus, report on a prototype implementation and
evaluate it in terms of security and performance. We show that Salus
provides a significant security improvement with a low performance over-
head, without relying on any non-standard hardware support.

Keywords: Privilege separation, principle of least privilege, modular-
ization.

1 Introduction

Both desktop and mobile devices are increasingly being used to perform security
and privacy critical tasks, such as online banking, online tax declarations and
e-commerce in general. The software to perform these tasks either runs inside
a web browser, or is written as a standalone application. In both cases, the
software is often vulnerable to attacks, either due to bugs in the application
itself or due to bugs in included software libraries or in the runtime environment
used to execute the application (e.g. the browser).

Because of their widespread use and potentially high-impact nature, such ap-
plications form an interesting target for cybercriminals. A lot of research has fo-
cused on defending against specific attack vectors such as buffer overflows[1,2,3,4],
format string vulnerabilities[5] and non-control-data attacks[6]. Even though
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many of these defense mechanisms are applied in practice, successful attacks
against high-value applications are still common.

To provide stronger security guarantees, research efforts have shifted to the
isolation of small, security-sensitive parts of applications such as cryptographic
libraries. By relying on hardware support for trusted computing, state-of-the-art
research prototypes are able to achieve such isolation with a very small trusted
computing base, in some cases even excluding the running kernel[7,8,9,10] or even
having a zero-software TCB[11]. Recent work[12] has proven that such platforms
can effectively isolate sensitive information in protected modules from the rest
of the system; an in-process or in-kernel attacker is only able to interact with
a module through its predefined interface. Hence, an attacker that has com-
promized a non-security-sensitive part of the application can still only perform
the actions explicitly allowed by the interface of a security-sensitive part of the
application.

In practice however, isolating security-sensitive parts of an application is diffi-
cult as most program logic can be considered security-sensitive at some level[13].
A too coarse-grained approach will result in bloated modules that may contain
vulnerabilities and that are too big to be formally verified[14]. Minimum-sized
modules on the other hand, can provide strong and easily verifiable guarantees,
but may need to expose insecure interfaces to interact with other modules. This
is a common problem of module-isolating security platforms, both in software as
in hardware. For instance, in the recent DigiNotar attack, the root CA’s private
cryptographic key was safely stored in a hardware security module (HSM), but
its insecure interface enabled attackers to sign arbitrary certificates.

In order to improve upon these shortcomings, we acknowledge that almost
every part of an application performs security-sensitive operations. To reduce
chances of a successful attack, we propose to partition the entire application into
compartments and implement a non-hierarchical access control mechanism be-
tween compartments. Compartments not only provide provable secure isolation
of stored private data (as modules in related work do), but are also able to con-
fine software vulnerabilities to the compartments they occur in by restricting the
types of system calls that they are allowed to perform. In addition, caller/callee
authentication is able to reduce the impact of insecure interfaces. By separating
likely attack vectors from attack targets and placing them into different com-
partments, an attacker has to find a vulnerability in multiple compartments to
reach her goal.

Consider, as an example, a certificate signing application consisting of a parser,
a validator, a signer and a logging component (Figure 1). When run as a single
monolithic application, a vulnerability in any one of these components can lead
to the compromise of the entire application. When placing each of these com-
ponents in a separate compartment under Salus, components can only call each
other through their well-defined interfaces and each component can authenticate
both its callers and its callees. This restricts the flow of data and control between
compartments to predefined patterns, which significantly raises the bar for an
attacker, since she would need to exploit multiple vulnerabilities in different
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Fig. 1. Salus’ compartmentalization enables strong isolation of security-sensitive data
and contains possibly vulnerable code. Multiple vulnerable compartments need to be
exploited to attack the system successfully.

components of the system in order to perform a successful attack. Furthermore,
by restricting the types of system calls that can be made from each compartment,
the impact of a successful attack is reduced.

Concretely, we make the following contributions in this paper:

– We present a novel approach for partitioning processes into compartments
with support for strong isolation of sensitive data and containment of vul-
nerabilities. To the best of our knowledge, Salus is the first solution that
simultaneously (1) reduces the impact of insecure compartment interfaces,
(2) enables compartments to restrict the types of system calls they are al-
lowed to perform and (3) executes compartments in same address space.

– We report on a prototype implementation of Salus in the Linux kernel.
– We evaluate the security of our approach and the performance of our proto-

type.

The remainder of this paper is structured as follows: in Section 2 we define
our attacker model and describe our desired security properties. In Section 3 we
provide a high-level overview of Salus, before presenting our prototype imple-
mentation in Section 4. Finally we evaluate our approach in Section 5, discuss
related work in Section 6 and conclude in Section 7.

2 Attacker Model and Security Properties

We consider an attacker with the ability to inject and execute arbitrary code in
a process, for instance by exploiting a buffer-overflow vulnerability. We assume
the application under attack takes advantage of Salus’ protection mechanism
by authenticating caller and callee on each intercompartmental call and by re-
stricting the possible system calls to those strictly required. Salus must protect
against such an attacker in the following way:

– The exploitation of a compartment must not affect the security of compart-
ments other than those that explicitly trust the compromised compartment,
in the sense that an attacker should be able to interact with those trusted
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compartments only through their public interface. A compartment trusts an-
other compartment when it is a caller or callee. Although this objective does
not protect against abuse of poorly designed interfaces, Salus provides appli-
cation developers with the primitives required to create secure compartment
interfaces.

– Attackers are explicitly allowed to create new compartments. There is thus no
guarantee that compartments requesting protection can be trusted. Hence,
Salus must isolate compartments from one stakeholder from those of another,
possibly malicious, stakeholder.

– An attacker should not be able to execute system calls that have been
revoked.

Kernel-level and physical attacks are considered out of scope. Regarding the
cryptographic primitives used, we assume the standard Dolev-Yao model[15]: An
attacker can observe, intercept and adapt any message. Moreover, an attacker
can create messages, for example by duplicating observed data. However, the
cryptographic primitives used cannot be broken.

3 Overview of the Approach

This section presents a high-level overview to Salus. Section 3.1 describes the
memory access control mechanisms on which Salus is based. Section 3.2 presents
the services Salus provides to protected applications. Section 3.3 shows how
these services are used in a typical life cycle of a compartmentalized application.
Finally, section 3.4 describes how two compartments can securely communicate
with each other.

3.1 Compartments of Least Privilege

Structure of a Compartment The basic layout of a compartment, shown in
Figure 2, is a virtual memory region divided into two sections: a public section
and a private section. The public section contains the compartment’s code and
any data that should be read accessible by other compartments of the same
application. This section can never be modified after initialization, which enables
other compartments to authenticate the compartment based on a cryptographic
hash of the public section (see Section 3.4). The start of the functions that make
up the compartment’s public interface are marked as entry points. Execution
of the compartment can only be entered through these memory locations (see
Table 1).

The private section contains the compartment’s private data, which consists
of application-specific security-sensitive data (e.g. cryptographic keys) as well as
data relevant to the correct execution of the compartment, such as the runtime
call stack. The data in the private section is read and write accessible from
within the compartment, but completely inaccessible for code executing outside
of the compartment. Note that since each compartment has its own private call
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Fig. 2. Salus’ memory access control model enables the creation of compartments that
provide strong isolation guarantees to sensitive data. Secure communication primitives
reduce the impact of an insecure interface.

Table 1. The enforced memory access control model enforces, for example, that a
compartment’s private section (4th column) can only be read-write accessed from the
public section of the same compartment (3rd row)

from\to Entry pnt. Public section Private section Unprot. mem.

Entry pnt. --- --x --- ---

Public section r-x r-x r-w rwx

Private section --- --- --- ---

Unprot. mem/
r-x r-- --- rwx

other compartment

stack, intercompartmental function call arguments and return addresses must be
passed via CPU registers (as opposed to passing them using the runtime stack).

Applications can still have a memory region that is not part of any compart-
ment. This region is termed unprotected memory and is read/write accessible
from any compartment. All compartments of the same application run in the
same address space, which facilitates the compartmentalization of legacy appli-
cations. Nonetheless, fine-grained compartmentalization of a large code base can
still require significant developer effort. Therefore, Salus enables applications to
be compartmentalized incrementally by storing code and/or data in unprotected
memory. While unprotected memory does not provide any of the security guar-
antees of compartments, it does provide an incremental upgrade path for legacy
applications.

As an example of a compartment, consider a single compartment providing a
certificate signing service (see Figure 2). The compartment provides two func-
tions as part of its public interface. The first function, set key, allows setting
the cryptographic key used to sign certificates. This key is stored as the m key

variable in the private section. The second function, sign cert, handles the
actual signing requests. Salus’ memory access control model ensures that only
these two functions are executable; any attempt to jump to another memory
location in the compartment will fail. Similarly, any attempt to directly read or
write the cryptographic key in the private section from unprotected code or from
another compartment will be prevented. Only after calling a valid entry point
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will read and write access to the private section be enabled, making the crypto-
graphic key only accessible while the compartment is being executed. When the
function is terminated, execution returns to the caller and read/write access to
the compartment’s private section will again be disabled.

Special care is required when execution returns to a compartment after a call
to another compartment. Execution must resume at the return location, which
is the instruction right after the call instruction in the caller compartment. This
location however does not typically correspond to an entry point and hence
would cause a memory access violation according to Salus’ memory access con-
trol model (see Table 1). Compartments can implement a return entry point to
avoid this access violation. Right before calling another compartment, the return
location is placed on the top of the calling compartment’s private stack. When
the intercompartmental call has finished, execution flow jumps to the return
entry point where the return location is retrieved from the stack and jumped
to. Note that a return entry point is a software implementation and follows the
same access rights as any other entry points.

Restriction of Privileges. Salus provides two important primitives to limit
the impact of a compromised compartment. The first primitive is caller and callee
authentication. By authenticating callers and callees, a compartment can limit its
interaction to trusted compartments only. Although this does not protect against
trusted compartments that have been compromised, it does significantly limit
the capabilities of an attacker after a successful exploit. Moreover, compartments
can dynamically adjust their trust relations to other compartments. For instance,
the certificate signing compartment introduced in the previous section (Figure 2)
could restrict communication to the compartment that last set its cryptographic
key. Secure communication between compartments is discussed in more detail in
Section 3.4.

The second primitive allows compartments to disable specific system calls
for any code executed from within their public section. Once a system call is
disabled, it cannot be re-enabled. By carefully partitioning an application into
compartments, each of which should disable any system call it doesn’t need, the
impact of the exploitation of a vulnerable compartment is minimized. Note that
much more fine-grained solutions exist than restricting complete system calls[16].
However, we focus on providing strong compartmentalization primitives that can
be used as a building blocks for finer-grained privilege restriction mechanisms.

3.2 Provided Services

To enable compartmentalization of applications, Salus provides runtime support
of the following services:

Create. After code is loaded into memory, this service can be used to create a
new compartment. Given a memory location and size for the compartment
to create, Salus will enable memory protection for this region and will return
a system-wide unique ID for the new compartment.
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Destroy. A compartment can only be destroyed by the compartment itself.
After destruction, the memory access protection is disabled. Hence, a com-
partment should overwrite any private data before destruction.

Request compartment ID. To support secure communication, Salus provides
a service to request the ID and layout (i.e. the size and locations of the public
and private sections and the available entry points) of a compartment cov-
ering a given memory location. If there is no compartment at the specified
location, the service returns an error code. This service is used as a primitive
in compartment authentication.

Request caller ID. To support caller authentication, Salus provides a service
to request the ID and layout of the compartment that called an entry point
of the current compartment.

Disable system call. To limit the impact of the exploitation of a compart-
ment, unused system calls can be disabled. Once a system call is disabled, it
cannot be re-enabled. To prevent an attacker from gaining system call priv-
ileges by creating a new compartment, compartments inherit system call
privileges from their parent.

3.3 Life Cycle of a Compartmentalized Application

Compartmentalized applications can be started as any other application. After
the (trusted) operating system or loader loads the application into memory and
starts its execution, the application can create the required compartments. Fi-
nally, execution can jump to the compartment containing the application’s main
function. Compartments can be created at any point during the applications’
execution, for example, at the time a new (compartmentalized) plugin is loaded.

Creation of Compartments. As the first step of setting up a new compart-
ment, the application allocates (unprotected) memory and loads the compart-
ment’s code. Next, the application enables protection of this memory region,
by calling Salus’ creation service. Note that there is no guarantee that the new
compartment’s code has been loaded correctly into memory, since the creator
might have been compromised already. However, any tampering with the code
will be detected when the compartment tries to communicate with another com-
partment, as will be explained in Section 3.4.

When a new compartment is created, Salus clears the first byte of the pri-
vate section. This serves as a flag to indicate to the compartment that it should
initialize itself when its service is first requested. As part of its initialization, a
compartment should clear the private memory locations it will use. This pre-
vents an attacker from crafting a private section by setting it up in unprotected
memory locations where a new compartment will later be created. Initialization
code typically also disables the system calls that will not be used during further
execution of the compartment.

Destruction of Compartments. A compartment can only be destructed by
the compartment itself. This ensures that compartments can clear their private
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section (which may contain sensitive data), before the memory protection is
lifted. In addition, trusted communication endpoints could be notified of the
compartments’ imminent destruction. After destruction, the unprotected mem-
ory area of the destructed compartment can be freed.

3.4 Secure Communication

Salus’ memory isolation mechanism provides strong guarantees that sensitive
data in the private section can only be accessed by code in the public section[12].
Reconsidering our certificate signing as an example (see Figure 1), we can prove
that the signing key will never leave its compartment. But an attacker with
access to the compartment’s interface is still able to sign arbitrary certificates.
Salus limits the feasibility of such attacks by enforcing both caller as callee au-
thentication. The signing compartment, for example, may enforce that it can
only be accessed by the validator compartment. Likewise, the validator authen-
ticates the signing compartment to verify that it hasn’t been tampered with
before its memory protection was enabled.

Security Report. Authenticating a compartment consists of verifying whether
that compartment adheres to a trusted security report of that compartment. A
security report of a compartment consists of:

The cryptographic hash of its public section This allows any code to ver-
ify that the public section of the compartment has not been tampered with:
the cryptographic hash should be recalculated at runtime and be compared
to the known-good value stored in the security report. This protects against
an attacker who is able to modify the public section of a compartment during
its creation, before memory protection is enabled (see Section 3.3).

The layout of the compartment When a creation request originates from
unprotected memory, the request itself may have been tampered with. An
attacker could, for instance, specify an incorrect layout for the compartment
to create. This may result in the use of unprotected memory that should
be under Salus’ protection. By storing the known-good layout of the com-
partment in the security report, any code can verify that the layout was not
tampered with during creation of the compartment.

A cryptographic signature In order to have integrity protection and authen-
tication of the security report, it is digitally signed by its issuer. Each com-
partment can decide independently whether or not to trust a certain issuer,
which opens up the opportunity to integrate compartments from different
parties into a single application. Since the cryptographic signature provides
integrity protection, security reports can be placed in unprotected memory.

Authentication of Called Compartments. When exchanging sensitive in-
formation between compartments, caller and callee must authenticate each other
before sensitive data is exchanged.
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To authenticate a compartment to be called, its ID must first be obtained
using Salus’ ‘request compartment ID’ service. Next, the callee’s security report
must be acquired. For this a central service where each compartment registers
to on initialization, can be used. Given the callee’s ID, the service should return
the (location of the) corresponding security report. Note that this service need
not be trusted, as any tampering with the information returned will be detected
during the next steps. Once the security report has been obtained, it should be
validated by checking the cryptographic signature and by checking that the issuer
is trusted. Each compartment should contain a private list of trusted security
report issuers. Next, the callee compartment’s layout should be requested from
Salus and a hash of the Public section should be calculated. The layout and the
hash must be compared to the values listed in the security report. This completes
the authentication and allows the caller to securely call one of the callee’s public
functions.

When calling a compartment that has already been authenticated in the past,
a re-validation must occur because the callee may have been destroyed since the
last interaction. A full authentication using the security report on every call
would be very time consuming, so to reduce the performance impact, Salus
allows compartments to be re-authenticated quickly based on their ID. Salus
ensures each compartment has an ID that is unique on the system until the next
reboot. Hence, a re-authentication can simply consist of requesting the ID of
the compartment to be called (using the ‘request compartment ID’ service) and
checking that it is the same as during the initial authentication. Using unique
identifiers has the added benefit that code can distinguish between different
instances of the same compartment.

Authentication of Calling Compartments. To enable compartments to
limit use of their (possibly insecure) interface to trusted caller compartments,
Salus provides primitives for caller authentication. For a compartment to authen-
ticate its caller, it can first request the caller’s ID and memory location (using
the ‘request caller ID’ service) and proceed to authenticate the caller similarly
as described above.

4 Implementation

Access rights to compartment sections depend on the value of the program
counter. For instance, only if execution is in the public section of a compart-
ment, will the private section of that compartment be read/write accessible.
This program counter-based memory access scheme is at the core of Salus’ pro-
tection mechanism. Enforcing this scheme purely in software would have a huge
performance impact as every memory access has to be checked. A pure hardware
implementation of the scheme is possible[11], but prohibits its use on commod-
ity, off-the-shelf PC platforms. The approach taken for Salus combines the best
of both alternatives, by using the key insight that memory access rights for com-
partments only need to change when execution crosses a compartment border.
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This allows Salus to use the standard memory management unit (MMU) to
enforce the memory protection scheme.

A prototype for Salus has been implemented as a Linux kernel modifica-
tion. Section 4.1 describes how the program counter-based access control mech-
anism is implemented in this prototype. Section 4.2 describes the API Salus pro-
vides to processes and finally Section 4.3 lists the Linux system calls that had
to be modified in order to provide a secure implementation of the protection
mechanism.

4.1 Program Counter-Based Access Control

By aligning compartment sections to pages, the standard MMU found on any
recent commodity computer can be applied to enforce the required memory pro-
tection scheme. After a compartment is created (e.g. from unprotected memory),
the MMU access rights for the pages of the new compartment are set up accord-
ing to Table 1: the public section is world-readable while the private section is
isolated completely.

When execution tries to enter a compartment (e.g. because of a call instruc-
tion), a page fault is generated by the MMU. Based on the memory location
addressed and the access type (read, write or execute), Salus determines whether
a valid entry point was called and, if necessary, modifies the access rights of only
the public and private sections, according to Table 1. This minimizes the num-
ber of page faults and access right modifications, thereby reducing the overall
performance impact.

Because unprotected memory is always readable, writable and executable,
no page fault is generated when execution returns from a compartment to un-
protected memory. To restore the access rights of the exited compartment, the
compartment itself must issue a system call to Salus.

The Linux page fault handler was modified to implement these access right
modifications. To keep track of a process’ compartments, the Linux process de-
scriptor data structure was extended with a list of comp struct structures. Each
comp struct describes a single compartment and contains:

– The (virtual) start address and length of the public and private sections
– The compartment’s unique ID
– The compartment’s saved stack pointer
– A list of the compartment’s remaining system call privileges

4.2 System Call API

The following new system calls were implemented in the Linux kernel. These
system calls represent the API Salus provides to processes.

void salus create(void* start, uint len pub, uint len priv)Before a
new compartment is created, the list of existing compartments is checked to
ensure that the new compartment will not overlap with any existing ones.
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New compartments must also not overlap with the kernel or have their mem-
ory pages mapped to files. When these checks succeed, a new compartment
is created and added to the current process’ compartment list. It receives
the same system call privileges as its parent.

void salus destroy(void) Since compartments can only be destroyed from
within their own public section, this system call does not require any ar-
guments. This system call restores the original memory access rights on
memory region occupied by the executing compartment and then removes
the compartment from the current process’ compartment list.

struct comp layout* salus layout(void* addr) This system call returns
the ID and memory layout of the compartment covering a given memory
location. It can be implemented by simply iterating over the current process’
compartment list until a matching compartment is found. A null pointer is
returned when there is no compartment covering the given address.

struct comp layout* salus caller(void) This system call returns the ID
and memory layout of the compartment that last called an entry point of
the current compartment. A null pointer is returned when the current com-
partment was last called from unprotected memory.

void salus syscall disable(uint syscall id) This system call disables
further use of the specified system call, by removing it from the list of sys-
tem call privileges in the comp struct of the current compartment. Once a
system call is revoked, it cannot be re-acquired.

void salus return(void* addr) Before execution returns from a called com-
partment back to its caller (i.e. unprotected memory or another compart-
ment), the access rights of the called compartment’s pages need to be re-
stored. This system call performs this access rights modification and then
continues execution at the specified address.

4.3 Conflicting System Calls

Some existing system calls in the Linux kernel conflict with Salus’ compartmen-
talization. Additional security checks had to be inserted for these conflicting
system calls.

mprotect. The mprotect system call can be used to change the access rights
of pages in memory. Additional checks were added to prevent this system
call from modifying the access rights of compartments.

mmap. Existing system calls such as mmap or mremapmodify the virtual address
space of a process. An attacker could abuse these system calls to map a
compartment’s private section to a file, for instance. Additional checks were
added to prevent this type of abuse.

personality. In Linux, each process has a personality, which defines the pro-
cess’ execution domain. The personality includes, among other settings, a
READ_IMPLIES_EXEC bit, which indicates whether read rights to a memory
region should automatically imply executable rights as well. For compart-
ments this would result in world-executable public sections, nullifying the
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use of designated compartment entry points. Therefore, Salus enforces that
this bit is disabled for compartmentalized processes.

fork. The fork, vfork and clone system calls can be used to create a new pro-
cess or thread. As these processes or threads share parts of their page tables,
the elevated access rights of the private section of a called compartment, af-
fects all processes/threads and enable its access from unprotected memory.
While these system calls could be modified to create copies of the page tables,
our prototype currently uses Linux’ existing CLONE_VM and VM_DONTCOPY

flags to prevent compartments being mapped in the new process or thread.
Checks were also added to the madvice system call, since it can be used to
modify the VM_DONTCOPY flag.

5 Evaluation

The effectiveness of Salus’ protection mechanisms is evaluated in Section 5.1 and
its performance impact is discussed in Section 5.2.

5.1 Security Evaluation

To evaluate Salus’ security, we make a distinction between memory-safe and
memory-unsafe compartments. A memory-unsafe compartment can be exploited
by an attacker using low-level attack vectors such as buffer overflows[1,2,3,4],
format string vulnerabilities[5] or non-control data attacks[6]. A memory-safe
compartment does not contain such vulnerabilities, for instance because it was
written in a memory-safe language or simply because the compartment doesn’t
contain any memory-safety bugs.

Since memory-safe compartments cannot be exploited directly, the only attack
vector against them is through exploitation of another compartment in the same
address space. However, recent research[12] has shown that memory protection
mechanisms such as those offered by Salus, are able to provide full source code
abstraction. This means that, even when other compartments have been suc-
cessfully exploited, an attackers’ capabilities are limited to interacting with the
memory-safe compartment through its public interface. A carefully constructed
interface can thus effectively limit the attack surface of a compartment. But in
many cases, creating a secure interface is still a challenging problem[17]. Recall
the example of a certificate signing compartment introduced in Section 3.1: even
if the private cryptographic key is never exposed, an attacker could potentially
still use the compartment’s interface to sign arbitrary certificates[18]. By taking
advantage of Salus’ support for caller/callee authentication however, the risk of
such an attack can be minimized by only servicing requests from compartments
that would issue them as part of the normal operation of the application (e.g. in
Figure 1, the signer compartment should only accept requests from the validator
compartment).

Memory-unsafe compartments may still contain vulnerabilities that can be
exploited by attackers. Even though Salus does not prevent such attacks, com-
partmentalization can still provide significant security benefits. Firstly, high-risk



264 N. Avonds et al.

components can be identified and be placed in separate compartments. Effective
but high-overhead countermeasures[19,20] can be used to harden such compart-
ments. By only applying these countermeasures to likely vulnerable compart-
ments, their performance impact remains limited.

Secondly, compartmentalization can automatically thwart certain types of at-
tacks. For instance, limiting entrance of compartments to valid entry points
significantly reduces the chance of an attacker finding enough gadgets to suc-
cessfully execute a return-oriented-programming (ROP) attack[21,22].

Thirdly, compartmentalization can be used as a building block for new coun-
termeasures. For instance, a custom loader could be implemented that loads
compartments at different locations in memory for every program execution.
This is similar to address space layout randomization (ASLR)[23], but can be
applied at a much finer-grained level.

Finally, even when a compartment has been successfully exploited, Salus can
still limit the impact of the attack. Because Salus provides entry point enforce-
ment, caller/callee authentication and system call privilege containment, an at-
tacker will likely have to compromise multiple vulnerable compartments before
reaching her intended target. This significantly increases the effort an attacker
must take to successfully exploit the application. The ability to confine attack-
ers to the exploited compartment even allows implementing a tightly controlled
sandbox where user-provided machine code can be executed safely.

5.2 Performance Evaluation

To evaluate the performance of Salus, we performed micro- and macrobench-
marks. All tests were run on a Dell Latitude E6510. This laptop is equipped
with an Intel Core i5 560M processor running at 2.67 GHz and contains 4 GiB
of RAM. A Ubuntu Server 12.04 distribution with (modified) Linux 3.6.0-rc5
x86 64 kernel was used as the operating system.

System-Wide Impact. To show that legacy applications not using the mod-
ularization technique are not impacted by our changes to the Linux kernel, we
ran the SPECint 2006 benchmark. All tests finished within ±0.4% compared to
the vanilla kernel.

Microbenchmarks. To measure the overhead caused by switching the access
rights, we created a microbenchmark that measures the cost of a call to a secure
compartment and compare it to the cost of calling a regular function and calling
a system call. The compartment used in the benchmark immediately returns to
the caller. The system call and function behave similarly.

Table 2 displays the results of this microbenchmark. Calling a compartment is
about 677 times slower compared to calling a regular function. This overhead is
attributed to the need to modify the access rights of pages. Compared to calling
a system call, the compartment is only 20 times slower. Due to these high costs,
there is a trade-off to be made between a low number of compartment transitions
and small compartments with additional security guarantees.
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Table 2. Compartment access overhead

Type CPU cycles Relative

Function Call 5,944 1
System Call 193,970 32.63
Compartment Call 4,024,227 677.02

Secure Web Server. As a macrobenchmark, we compartmentalized an SSL-
enabled web server. For every new connection a new compartment is created,
securing session keys even in the event that an attacker is able to inject shellcode
in the compartment providing its own SSL session.

The secure compartment was built using the PolarSSL cryptographic library
and a subset of the diet libc library. A simple static 74-byte page is returned to
the clients over an SSL-connection protected by a 1024-bit RSA encryption key.

Table 3. Requests per second of an SSL-enabled webserver where every SSL session
is protected in its own compartment, for an increasing number of clients

Concurrency Vanilla kernel Salus kernel Relative perf.

1 109.11 96.54 -11.52%
2 165.56 153.62 -7.21%
4 184.31 164.78 -10.60%
8 199.98 175.35 -12.32%
16 206.82 181.00 -12.48%
32 207.78 181.50 -12.65%
64 206.64 180.35 -12.72%
128 206.49 180.97 -12.36%

We used the Apache Benchmark to benchmark this web server for an in-
creasing number of clients that are concurrently requesting pages. The results
are shown in Table 3. The performance overhead tops at 12.72% and is mainly
attributed to the many compartment boundaries crosses during the SSL negoti-
ation phase.

Compartmentalized Parser. As input files are often under the control of
an attacker and sanitation of their content can be difficult, parsers are a likely
attack vector for many applications. As a second benchmark, we isolated the de-
compressing function of gzip (GNU zip). While disabling unused system calls for
the entire process would result in similar security guarantees, we are interested in
the impact of repeated compartment crossings in a parser setting. Applications
that place their parser and the rest of the application in different compartments,
would incur a similar overhead as only one additional compartment boundary
needs to be crossed.
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To benchmark the application, we created input files with randomized content,
ranging from 16KiB to 64MiB in size, compressed them and measured the time
taken to decompress the files with the hardened application. The application
was run 100 times on each file. File I/O used a buffer of 32KiB and the output
was redirected to the null device. Figure 3 displays the results.

Fig. 3. Salus’ performance overhead on the gzip macro benchmark drops significantly
as the input file size increases

Given the relatively high overhead of a call to a compartment and the low
computation cost of the decompressing function, it is unsurprising that for small
input files the overhead can be as high as 21.9%. When the input size is increased
however, the overhead drops steadily to -0.5% for 64MiB input files, even though
also the number of compartment-border crossings increases from 8 to 8200. We
attribute this significant drop in overhead to the increased amount of slow disk
I/O that needs to be performed as the input file size gets bigger, an effect that
we predict to see in most parser-like compartments. The small performance gain
of 0.5% can be attributed to cache effects.

The way an application is partitioned will have a significant impact on per-
formance. Applications should be compartmentalized in logical blocks where
each compartment has direct access to most of its required data. Once a logical
block has finished, control and all data should be passed to the next compart-
ment, reducing the number of inter-compartment calls. Smaller, heavily pro-
tected compartments such as an SSL compartment, provide strong security but
may impact performance more significantly when called repeatedly. This makes
the performance impact of compartmentalization difficult to predict. Therefore
we advocate for automatic partitioning tools that reduce the number of com-
partment crosses and help the programmer decide which compartments should
be hardened most thoroughly.

6 Related Work

Various security measures have been proposed to harden applications. Many of
them aim to protect against very specific vulnerabilities such as buffer overflows
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[1,2,3,4], format string vulnerabilities[5] or non-control data attacks[6]. While
these countermeasures make it significantly more difficult for an attacker to
compromise software applications, they cannot offer complete protection. Static
verification of source code[24], in contrast, is able to provide such hard secu-
rity guarantees, but typically comes at a significant economic cost in terms of
programming and verification effort.

Singaravelu et al.[13] proposed to isolate security-sensitive parts of applica-
tions in complete isolation from the rest of the system. Many research proposals
have since been filed based on this principle. Each of them provides some way of
executing modules in isolation, relying on a trusted code base ranging from only
a few thousands of lines of code[8,10] to only the protected modules themselves
and a small runtime library[7,9]. While these research prototypes offer provable
security to the sensitive data that they protect[12], they do not attempt to re-
duce the impact of a vulnerability elsewhere in the code by executing modules
with the least amount of privileges possible[25]. An attacker who successfully
gains control over the platform is still able to interact with protected modules
unrestrictedly.

Other work focuses on confining possible software vulnerabilities. Early work
focused on reducing the size of the kernel itself[26], where process privileges are
managed by capabilities. Recently Watson et al.[16] proposed applying a similar
idea to partition applications themselves, where capabilities can be granted to
each created partition. As partitions live in their own process, interaction takes
place through remote procedure calls and pointers cannot to passed directly.
Salus avoids these drawbacks by executing compartments in the same address
space and unprotected memory can be used to gradually partition legacy appli-
cations. While fine-grained privilege containment is out of scope for this paper,
Salus can easily be extended with a capability mechanism.

Native Client (NaCl)[27,28], which builds upon the concepts of software fault
isolation[29], takes another approach and attempts to completely sandbox x86
code. Accesses to the environment from within a sandbox are tightly controlled
by runtime facilities. While NaCl focuses on downloaded, untrusted binary code,
it could be used to partition entire applications. Interaction between two NaCl
partitions is provided through a service similar to Unix domain sockets, making
porting existing legacy applications a challenging undertaking. Salus on the other
hand can provide a similar tightly controlled sandbox by placing such partitions
in one compartment while the remaining legacy application is placed in another.
A specially created wrapper can ensure that all system call privileges are revoked
before execution control is given to the sandboxed code. There are however two
major differences compared to NaCl. First, Salus only impacts performance when
compartment boundaries are crossed. NaCl on the other hand places constraints
on the binary code itself, resulting in a varying performance impact. Second,
Salus employs a non-hierarchical separation of privilege, allowing compartments
to be completely isolated from other compartments (possibly provided by other
vendors) while compartments of the same vendor can co-operate easily.
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Finally, our earlier work[30,10] is the most related to Salus. It also employs a
program-counter based access control mechanism, but assumes a safe interface.
Therefore it has the same limitation as other research prototypes[9,7,8] that
provide strong isolation of sensitive data: it does not reduce the possible impact
of exploited vulnerabilities.

7 Conclusion

Recent module-isolation security architectures provide strong security guaran-
tees of sensitive data stored in small pieces of applications. In practice, however,
it is hard to isolate such security-sensitive parts, as most code in an application
is sensitive up to some level. As a result, modules of such platforms may need
to provide unsafe interfaces. We presented Salus, a new security architecture
that can not only provide strong isolation guarantees of sensitive data, but its
mutual authentication support also reduces the impact of insecure interfaces.
By placing likely attack vectors and targets into different compartments, mul-
tiple compartments need to be attacked successfully before an attack target is
reached.
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