

T. Zia et al. (Eds.): SecureComm 2013, LNICST 127, pp. 234–251, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

A Novel Web Tunnel Detection Method
Based on Protocol Behaviors

Fei Wang*, Liusheng Huang, Zhili Chen, Haibo Miao, and Wei Yang

National High Performance Computing Center at Hefei,
Department of Computer Science and Technology,

University of Science and Technology of China,
Hefei, Anhui, 230027, P.R. China
wf616528291@gmail.com

Abstract. The web tunnel is a common attack technique in the Internet and it is
very easy to be implemented but extremely difficult to be detected. In this
paper, we propose a novel web tunnel detection method which focuses on
protocol behaviors. By analyzing the interaction processes in web
communications, we give a scientific definition to web sessions that are our
detection objects. Under the help of the definition, we extract four first-order
statistical features which are widely used in previous research of web sessions.
Utilizing the packet lengths and inter-arrival times in the transport layer, we
divide TCP packets into different classes and discover some statistical
correlations of them in order to extract another three second-order statistical
features of web sessions. Further, the seven features are regarded as a 7-
dimentional feature vector. Exploiting the vector, we adopt a support vector
machine classifier to distinguish tunnel sessions from legitimate web sessions.
In the experiment, our method performs very well and the detection accuracies
of HTTP tunnels and HTTPS tunnels are 82.5% and 91.8% respectively when
the communication traffic is above 500 TCP packets.

Keywords: web tunnel detection, protocol behaviors, packet analysis, feature
vector, support vector machine.

1 Introduction

In contemporary, people rely more and more on computers and the Internet. Network
applications such as webpage browsing, business e-mail exchanging, microblog
posting and online shopping become indispensable elements in people’s jobs and
daily lives. The accelerating rise in the demand for those techniques motivates diverse
attacks from malicious users. The attackers utilize the legitimate-looking traffic
generated by application-layer protocols (ALP) widely used in the Internet to launch
imperceptible intrusions like implanting computer viruses, exposing sensitive
information and filching confidential files.

At present, firewalls and application level gateways (ALG) configured to secure
network boundaries can frustrate most bare attacks, for example downloading Trojans

* Corresponding author.

 A Novel Web Tunnel Detection Method Based on Protocol Behaviors 235

from offensive websites and access violations from the extranet to the intranet. In
their existing incarnations, they usually protect local networks from damages by
concentrating on controlling which websites local hosts are allowed to visit and which
ALPs are permitted for communications. In order to achieve this goal, security
policies of firewalls and ALGs are commonly implemented as filter criteria
intercepting packets containing prohibited IP addresses or typical features of
unapproved ALPs. In general, the two categories of devices operate cooperatively to
enforce the criteria: the firewall checks IP addresses and port numbers while the ALG
judges whether the traffic of a certain protocol conforms to the corresponding rules.
For instance, in the case of a network only approving the non-encrypted Internet
browsing, the firewall is the first defensive line which merely hands outgoing
(ingoing) TCP packets, to (from) port 80 or 8080 at IP addresses not in the forbidden
set, over to the ALG. The ALG then scrutinizes the format of the HTTP content in
order to ensure that the peers are really “speaking” HTTP. Additionally, the ALG can
also rule out potential malicious behaviors by denying particular strings in some
vulnerable fields such as URLs, Hosts, User-Agents and values of different keys.

Upon most occasions, firewalls and ALGs can deal with bare intrusions with ease.
However, some artful covered attacks have been devised in the past decade. Those
techniques can successfully bypass the filter criteria utilized in firewalls and ALGs as
legitimate applications and the application-layer tunnel (ALT) is a celebrated one
among them. Nowadays, the ALT has become a threat which can’t be overlooked to
the Internet. The ALT is easy to be implemented but extremely difficult to be
detected. The main idea of the ALT is disguising an ALP as another. The technique
carries out the tunneling process by encapsulating the traffic of prohibited ALPs
inside the payload of allowed ALPs. What’s more, the formats of the embedded
traffic can be various so that the ALT can perform obfuscation of original data to
thwart pattern-matching classifiers based on the formats of ALPs employed by ALGs.
The ALT can be implemented in two ways: one is in clear-text ALPs (CALT) and the
other is in encrypted ALPs (EALT). As Fig. 1 shows, the CALT has a transport-layer
shell and an unsuspicious header of a permitted clear-text ALP and the forbidden
traffic is camouflaged in the body of entity data. Illustrated in Fig. 1, the EALT only
has a transport-layer shell of an allowed encrypted ALP while the encrypted payload

Fig. 1. The message structure of the two kinds of ALTs

236 F. Wang et al.

is actually the encrypted prohibited traffic. In practice, because of the ubiquity of the
web usage, the HTTP tunnel and the HTTPS tunnel are prevalent implementations for
the CALT and the EALT respectively. As a result, the detection method we propose
in this paper is aimed at the two ALT implementations.

1.1 Outline of Our Contributions

We propose a novel detection method to thwart web tunnels. Our technique is
designed based on the protocol behaviors of HTTP and HTTPS. By analyzing the
interaction processes in web communications, we give a scientific definition to web
sessions which are our detection objects. Under the help of the definition, we firstly
extract four first-order statistical features which are widely used in previous research
of web sessions. Further, we concentrate on the TCP packets in the transport layer.
Utilizing the packet lengths and inter-arrival times, we divide TCP packets into
different classes and dig out the statistical correlations of them. With these
correlations, we extract another three second-order statistical features of web sessions.
Then, the seven features we have obtained can compose a 7-dimentional feature
vector and we believe that the vector can fully reflect the statistical characteristics of
web traffic. Exploiting the vector, we adopt a support vector machine classifier to
distinguish tunnel sessions from legitimate web sessions. In our method, the detection
rates of HTTP tunnels and HTTPS tunnels can reach above 80% and 90%
respectively when the communication traffic is above 500 TCP packets.

1.2 Paper Organization

The rest of this paper is organized as follows. Section 2 summarizes the related work.
Section 3 introduces some important notions and techniques used in this paper.
Section 4 describes the work flow of our detection method. Section 5 discusses the
process of the protocol feature extraction. Section 6 shows the detection results of our
method. Section 7 is the conclusion.

2 Related Work

Early web tunnel detection is executed only at the application layer. Borders and
Prakash proposed one of the first mechanisms to detect HTTP tunnels, named “Web
Tap” [1]. The filter is designed to reveal covert communications tunneled in the
HTTP traffic. The Web Tap depends on the simple analysis of features at the
application layer, like HTTP transaction rates, transaction times, access frequency,
etc. Strictly speaking, the analysis is coarse so that it may cause many false positives
and false negatives, resulting in an unreliable system. Bissias et al. invented a
statistical technique which can infer the source in HTTPS streams [2]. The technique
shapes a website usually visited by a tuple with two elements: the size profile and the
time profile. Given a website, the authors collect the HTTP packet sequences
composing each HTTP request for the website. Then the mean value sequence of the

 A Novel Web Tunnel Detection Method Based on Protocol Behaviors 237

lengths of these packets is the size profile and the mean value sequence of the inter-
arrival times between the same packets is the time profile. HTTPS traces to be tested
will be compared to the shapes of websites with the similarity computed from the
cross-correlation between the sequences, making it possible to discover the
destination. Subsequently, Liberatore et al. improved the technique and they extended
the work to each URL to assign a given trace to a gathered profile, the Jaccard and the
naïve Bayes similarity metrics [3]. Campos et al. exploited a clustering scheme to
recognize different traffic patterns by a sequence of application-layer triples
containing interactive features between peers: the length of data from the client, the
length of data from the server and the time interval between data pairs [4].

Recently, researchers turned to the transport layer in order to devise advanced
detection techniques and many methods based on both application-layer features and
transport-layer features were worked out. McGregor et al. used many features of TCP
packets to cluster the traffic so as to identify different ALPs [5]. The features include
packet length, length percentile, etc. Moore and Zuev proposed a naive Bayes classifier
to recognize ALPs and the results of classification were excellent [6]. The method firstly
deploys some deep inspection in the TCP packets to dig out almost all the available
features in TCP flows. Then it utilizes statistical approaches to kick out irrelevant
factors in the feature vector, which can significantly improve the performance. Wright et
al. adopted a similar technique to propose a k-nearest-neighbors classifier according to
the K-L distance between feature vectors form different ALPs and the technique
performed well in the identification of HTTP and HTTPS [7].

Most of the techniques listed above are utilized for traffic classification. They operate
on the features collected from massive packets generated by ALPs and the experimental
results are considerable. Nevertheless, the effects on the ALT of these classifiers have
not been demonstrated. The ALT has the same transport-layer shell as that of normal
ALPs, which may disable the classifiers. The detection method which is really effective
on the HTTP tunnels was proposed by Crotti et al [8]. The technique runs on the
fingerprint of ALPs and has a high detection rate against the HTTP tunnel. The
fingerprint is trained from single TCP flows and it consists of two elements: TCP packet
length sequence and TCP packet inter-arrival time sequence. Although the method can
find out most HTTP tunnels, it still has some flaws in the fingerprint measurement
which is its core concept. The packet classification in the fingerprint evaluation is coarse
and the technique ignores many remarkable protocol behaviors in HTTP, so the
fingerprint detection is inefficient and it is vulnerable in theory.

3 Preliminaries

In this section, we will introduce some important notions and useful techniques which
can help us expose protocol behaviors in HTTP utilized in our detection method.

3.1 HTTP Flow and HTTP Session

In the fingerprint detection technique, the authors define an HTTP flow by a pair of
reversed TCP flows: the client to the server and the server to the client. In computer

238 F. Wang et al.

networks, a TCP flow can be defined as a tetrad: source IP address, destination IP
address, source port number and destination port number, while absolutely an HTTP
flow can’t be defined in the same way. When browsing a website, the requests for
associated objects of an HTML file can be sent on other ports different from the
original one which sends the request for the text webpage. Especially, in the keep-
alive visiting method, requests for different HTML files may be sent on the same port.
In addition, the HTTP server can also be a set of hosts. As we know, the associated
objects of HTML files can be stored in different servers (it is extremely popular for
large websites). As a result, the requests for an HTML file can refer to more than one
server and we can’t define the HTTP server as a single host. From the above, the
definition of HTTP flows in the fingerprint detection technique is obviously
unreasonable and it will doubtlessly lose many crucial characteristics of HTTP flows.

The scenario in Fig. 2 shows the amounts of HTTP requests at different times
when a client is browsing a website. In this figure, we can see that the request
distribution has crests and troughs. Each crest is a busy time interval with the outburst
in requests and every trough is a silent period containing no requests. In terms of the
behaviors of HTTP, a crest represents the requests for an integrated HTML file
including the text webpage and its associated objects, while a trough between two
consecutive crests is the time for visitors to handle the documents, such as reading
news, thinking over a problem and saving elements. According to this, an HTTP flow
can be defined as a pair of crests: a request crest in the client and the corresponding
response crest in the server. The definition is not limited to a tetrad and it can
scientifically describe the features in HTTP. The trough is called “Think Time” [4]
and it is a significant factor in the analysis of HTTP flows. In practice, the length of
the silent period is flexible and it differs from user to user. Therefore, the “Think
Time” is not a main object in the study of HTTP, but it is only used to separate
different HTTP flows. HTTP flows will be cut into pieces if the “Think Time” is too
short. Considering the response time of the human body and the network delay, we
hold the view that a reasonable “Think Time” should be longer than 5 seconds, which
means that any two consecutive crests, with a trough less than or equal to 5 seconds
between them, should belong to the same HTTP flow.

With the concepts discussed above, we can obtain the complete definition of HTTP
flows. An HTTP flow consists of a series of requests from a client to a server and the
corresponding responses from the server to the client. The interval between adjacent
requests should not be more than 5 seconds. The client is a single host defined as an
IP address. The server is a set of hosts with similar IP addresses. In general, the
different servers in a large website are deployed in the same subnet. Hence, we can
define the similar IP addresses as follows. If we have two IP addresses denoted by
two 32-bit (IPV4) unsigned integers ipa and ipb, we will say they are similar when:

255 if and both belong to Class C

65535 if and both belong to Class B

16777215 if and both belong to Class A

ipa ipb ipa ipb

ipa ipb ipa ipb

ipa ipb ipa ipb

⊕ ≤
 ⊕ ≤
 ⊕ ≤

 (1)

 A Novel Web Tunnel Detection Method Based on Protocol Behaviors 239

Where ⊕ is the operator of the binary “XOR”. Owning the definition of HTTP
flows, an HTTP session can be easily defined as a set of HTTP flows with the same
client and server in a certain period (the interval between any adjacent flows in a
session should be less than or equal to this period). In this paper, we set this period to
half an hour. Since HTTPS is the encrypted version of HTTP and there is no essential
discrepancy in them, HTTPS flows and sessions can be defined in the same way.

100 200 300 400 500
0

2

4

6

8

10

12

14

16

18

20

22

A
m

ou
nt

 o
f

R
eq

ue
st

s

Time (s)

Fig. 2. The distribution of requests in the browsing

3.2 Kernel Density Estimation

The Kernel Density Estimation (KDE) is a practical method to approximate the
distribution of a random variable [9]. Here, we can utilize the technique to estimate
the probability density functions (PDF) of some crucial parameters in our detection
method. For a random variable X, if we have n samples {x1,x2,…,xn}, then we can
approximate the distribution of X by the KDE:

 
1

1
() ()

n
i

i

x x
f x K

nh h=

−
=  (2)

Where ()f x is the estimated PDF of X, h is called the kernel bandwidth, and ()K 

is the kernel which can be any non-negative function satisfying:

 () 1K g dg
+∞

−∞

= (3)

In general, the kernel is assumed as a Gaussian distribution whose standard
deviation is 1, because Gaussian distribution has desirable smoothness properties:

240 F. Wang et al.

2

2
1

()
2

g

K g e
π

−

= (4)

Figure 3 [9] illustrates how an estimate of the PDF is constructed. For each data point,
a Gaussian distribution centered on the very point is fitted. The summation of those
functions gives an estimate of the real PDF.

Fig. 3. The construction of an estimated PDF

The kernel bandwidth h plays an important role in the accuracy of the
approximation. In practical estimation of the bandwidth, if the kernel is a Gaussian
distribution, h can be optimized as [9]:

 
1 15
5 5

4
() 1.06

3
h n

n

σ σ
−

= ≈ (5)

Where σ is the standard deviation of the samples.

4 Our Tunnel Detection Method

As mentioned before, our detection concentrates on the web tunnels (HTTP and
HTTPS tunnels). If the length of a flow is short, the limited quantity of information in
it will not sufficiently support us to judge whether it is a tunnel correctly. For this
reason, our detection objects are HTTP and HTTPS sessions but not flows. Different
from previous techniques, in our detection method, we discover some novel statistical
features from protocol behaviors based on TCP packets in HTTP and HTTPS
sessions. With these features, we can successfully identify the tunneled traffic in
suspicious sessions. In the analysis of the TCP packets in sessions, we only focus on
their lengths and inter-arrival times.

The work flow of our detection method is illustrated in Fig. 4. First, we collect
plentiful legitimate sessions to obtain some significant statistical characteristics of

 A Novel Web Tunnel Detection Method Based on Protocol Behaviors 241

TCP packets in normal HTTP and HTTPS. Then, with the help of those
characteristics, we extract seven features of suspicious sessions to be tested and those
features are denoted by a 7-dimentional vector FV. Last, the vector FV is submitted
to a classifier and the classifier identifies the types of the sessions. The classifier
exploited here is a two-class Support Vector Machine (SVM) and we utilize the
LIBSVM [10] as our tool. The SVM only identifies the suspicious sessions as two
categories: normal HTTP (HTTPS) sessions and tunnel sessions, and the SVM is
trained by feature vectors from the two categories of sessions in advance. We select
the SVM as the classifier for our detection method due to its outstanding
performance. Actually, if we collect tunnel sessions to compute the characteristics,
the method can also operate well. But, after all, tunnel sessions are a tiny minority and
to get massive normal HTTP and HTTPS sessions is much easier for us.

Suspicious
Sessions

Statistical
Characteristics of

Legitimate
Sessions

Feature
Extraction

Feature
Vector

SVM
Classifier

Normal
Sessions

Tunnel
Sessions

Fig. 4. The diagram of the work flow

5 Feature Extraction

In this section, we will discuss the seven features we collect from suspicious sessions.
Four of the features are first-order statistics and the other three are second-order
which can reveal the correlations between packets in sessions. The seven features are
all extracted according to protocol behaviors. Hereafter, we use “HTTP” to represent
both “HTTP” and “HTTPS”.

5.1 First-Order Features

As Section 3 explains, HTTP requests can be sent in different ports and each port can
send more than one request. In the observation of HTTP flows, we can find out that in
a single TCP connection the next request will not be sent until the response from the
server to the former one arrives. Specifically, if we denote a request by req and a
response by res, in a TCP connection, we can only get the sequence (req, res, req, res,
req, res), but can’t get the sequence (req, req, req, res, res, res). Hence, we can easily
calculate the sizes (Bytes) of requests and the sizes of their corresponding responses.
Further, we can discover the following four first-order features in sessions.

242 F. Wang et al.

Feature 1: Average Request Size (Reqavg). Reqavg is the arithmetic average of the
sizes of HTTP requests in a session.

Feature 2: Request Size Variance (Reqvar). Reqvar is the variance of the sizes of
HTTP requests in a session.

Feature 3: Average Response Size (Resavg). Resavg is the arithmetic average of the
sizes of HTTP responses in a session.

Feature 4: Response Size Variance (Resvar). Resvar is the variance of the sizes of
HTTP responses in a session.

The four simple features are widely used in previous work by other forms [1, 2, 3,
4, 5, 6]. The features are useful but obviously not enough because they don’t have
absolute exclusiveness in the detection.

5.2 Packet Classification

As what previous work did, in order to analyze TCP packets, we should divide them
into different classes. We denote a TCP packet by a tuple with three elements: the
packet length (exclude TCP header), the inter-arrival time and the direction. The
direction here has two optional values: 0 (the packet is from the client to the server) and
1 (the packet is from the server to the client). The inter-arrival time represents the
interval between the packet and the former one which has the same direction. We
assume that there are no direct correlations between packets from different flows in a
session, so the inter-arrival times are only computed in each flow respectively and the
inter-arrival time of the first packet with either direction in each flow is regarded as 0.
Flows are independent packet sequences in a session and flows are separated by the
“Think Time”. The TCP packets mentioned here do not contain the TCP control packets
whose lengths are zero, such as SYN, FIN, RST and pure ACK, because they are
irrelevant to HTTP behaviors. The coming problem is how to divide packet lengths and
inter-arrival times into different bins. We utilize the KDE technique mentioned in
Section 3. In the Ethernet, the maximum segment size (MSS) of TCP packet is 1460
bytes, so the packet lengths are between 1 and 1460. Owing to the “Think Time”, the
inter-arrival times are between 0 and 5000 (the unit is millisecond). The situation may
happen that because of the network delay, the inter-arrival times of some packets from
the server to the client in a flow may be a little longer than 5000ms, and we regard these
times just as 5000ms. We select all the packets in the collected legitimate sessions as
samples to estimate the PDF. We denote the counts of occurrences of the 1460 lengths
and 5001 times by {CL1,CL2,…,CL1460} and {CT0,CT2,…,CT5000}. Then, the PDF of the

length ()f l and the inter-arrival time ()f t can be estimated by the KDE technique

with the Gaussian kernel as the following formulas.

 




2

2

()
1460

2
1460

1

1

1
()

2

l

l i

h
i

i
l j

j

f l CL e
h CLπ

− −

=

=

= ×


 (6)

 A Novel Web Tunnel Detection Method Based on Protocol Behaviors 243

 




2

2

()
5000

2
5000

0

0

1
()

2

t

t i

h
i

i
t j

j

f t CT e
h CTπ

− −

=

=

= ×


 (7)

The outline of the packet length division is as follows and the inter-arrival time
division can be done by the same method.
Step 1. Calculate cumulative probability CP between 1 and 1460:

 
1460

1

() CP f l dl=  (8)

Step 2. If we want to divide the lengths into b bins, we can split the interval [1, 1460]
into b segments by b-1 cut points in ascending order {L1,L2,…,Lb-1}. We can denote 1
and 1460 by L0 and Lb, and then we can compute the cut points by:

 
1

() (0 1)
i

i

L

L

CP
f l dl i b

b

+

= ≤ ≤ − (9)

This division scheme is closely related to the real distribution of the two elements,
which will help improve the detection performance remarkably. If we have BL bins of
the packet lengths and BT bins of the inter-arrival times, we can obtain
2 BL BT× × classes of TCP packets. In the KDE of packet length, we rule out the
packets from the servers because the overwhelming majority of them are in the size of

1460, which can cause the classification useless. It should be noted that ()f l and

()f t are non-integrable functions, so we adopt the infinitesimal method to compute

the integral and the infinitesimal is 0.05. Then, in the collected legitimate sessions, we
can count the packets and compute the occurrence probability of each class by the
maximum likelihood estimation. In the estimation, we adopt the Good-Turing
smoothing technique to handle the packet classes which are not observed [11].

5.3 Second-Order Features

The packet distribution is a typical feature in sessions. By the packet classification,
we can get the occurrence probabilities of the 2 BL BT× × packets in legitimate
sessions. Then we can utilize the K-L divergence to measure the difference between
the packet distribution in suspicious sessions and that of legitimate sessions.

Feature 5: Packet Distribution Difference (DKL). DKL is the K-L divergence of
legitimate packet distribution from suspicious packet distribution:

2

1

()
() ln

()

BL BT

KL
i

P i
D P i

Q i

× ×

=

=  (10)

Where P(i) is the discrete probability density function of the packets in suspicious
sessions and Q(i) is the function for the normal ones. In the computation, we needn’t
take special handling on the situation 0 ln 0 because we have the equation:

244 F. Wang et al.

0

lim ln 0
x

x x
+→

= (11)

So, we can just interpret
()

() ln
()

P i
P i

Q i
 as zero when P(i) is zero (1 2i BL BT≤ ≤ × ×).

Because we implement the Good-Turing smoothing technique in the maximum
likelihood estimation, we can ensure that () 0Q i > .

Flows in sessions can be expressed as different TCP packet sequences. HTTP has
some particular interactive behaviors which can hardly be found in other ALPs. For
example, when a packet from the server arrives at the client, the client will scan the
data in the packet immediately. If some object links are in this packet or can be
computed from the data in this packet, the client will send the requests on other ports
dynamically regardless of whether the current response has been received integrally.
In practice, these behaviors can be fully reflected by the packet sequences. So, we
consider that the ordered packets in a flow are closely related and a packet is related
to the ones nearby. In terms of protocol behaviors, correlations in packets are not
merely restricted in the adjacent packets, but they are usually regarded as the
collocations in some consecutive packets. In our detection method, we investigate
pairs of packets within a certain range N (N is an integer greater than 1) in order to
find out packet collocations in HTTP. For the analysis of collocations, we can adopt
some techniques widely used in the statistical natural language processing [12].We
define that any two packets in the same flow with a distance less than N is a packet
pair and we denote a packet pair “xy” by an ordered pair <x,y>. These packet pairs are
called N-Range Packet Pairs (N-RPP) [12]. Figure 5 illustrates an example for 3-
RPPs, and in the dashed box we can observe three 3-RPPs: <2,5>, <2,4> and <5,4>.
The numbers in packet pairs here are labels of packet classes.

Fig. 5. An example for 3-RPPs

Because we have 2 BL BT× × packets, we can obtain 2(2)BL BT× × N-RPP

theoretically. The occurrences of N-RPPs are prominent features in HTTP sessions.
The entropy is usually utilized to evaluate the uncertainty and the potential regularity
in random variables. For different protocols, the regularities of behaviors have
significant difference, so we can also use the entropy to extract a feature of N-RPPs in
sessions.

 A Novel Web Tunnel Detection Method Based on Protocol Behaviors 245

Feature 6: N-RPP Entropy (EN-RPP). We regard the N-RPP as a random variable and
EN-RPP is its entropy:

2(2)

- 2
1

() log ()
BL BT

N RPP
i

E F i F i
× ×

=

= −  (12)

Where F(i) is the occurrence probability of the ith N-RPP (21 (2)i BL BT≤ ≤ × ×).

Similar to Equation (11), when F(i) is zero, we can treat 2() log ()F i F i as zero.

In the information theory, another measurement for discovering interesting
collocations is the mutual information (MI). For two discrete random variables X and
Y, the MI can be defined as:

 2

(,)
(;) (,) log

() ()y Y x X

p x y
MI X Y p x y

p x p y∈ ∈

= (13)

Where x and y represent all the possible values of X and Y. Here, p(x,y), p(x) and p(y)
are the occurrence probabilities of “xy”, “x” and “y”. However, the packets in a
sequence are usually treated as different points. So, we utilize the pointwise mutual
information (PMI) which is more suitable than the MI to evaluate the correlations of
packets. The PMI between two particular points x and y can be defined as:

 2

(,)
(;) log

() ()

p x y
PMI x y

p x p y
= (14)

Here, in our case, we regard p(x,y), p(x) and p(y) as the occurrence probabilities of the
packet pairs “xy”, “x?” and “?y”, where the symbol “?” represents any packet.

Now we can obtain the definition of the N-Range Mutual Information (N-RMI).
The N-RMI can be defined as the PMI of an N-RPP [12]. The N-RMI can measure
the collocation degree of an N-RPP and the larger the N-RMI is, the more reasonable
the occurrence of the corresponding N-RPP is. With the definition of the N-RMI, we
can use Equation (14) to evaluate the N-RMI of a certain N-RPP <x,y>. Given an
HTTP flow, we denote the counts of occurrences of any N-RPP, the N-RPPs <x,y>,
<x,?> and <?,y> by Ctot, Cxy, Cx? and C?y severally. Then, the N-RMI of the N-RPP
<x,y> can be calculated by [12]:

 , 2 2 2
? ? ? ?

/(,)
- log log log

() () (/)(/)
xy tot xy tot

x y
x tot y tot x y

C C C Cp x y
N RMI

p x p y C C C C C C< > = = = (15)

Here, we give an example to explain the computation of the N-RMI further. Given
a packet sequence “2,5,1,3,4,15,103,19,2,3,3”, we can evaluate the 4-RMI of the 4-
RPP <2,3>. All the 4-RPPs in this flow are: <2,5>, <2,1>, <2,3>, <5,1>, <5,3>,
<5,4>, <1,3>, <1,4>, <1,15>, <3,4>, <3,15>, <3,103>, <4,15>, <4,103>, <4,19>,
<15,103>, <15,19>, <15,2>, <103,19>, <103,2>, <103,3>, <19,2>, <19,3>, <19,3>,
<2,3>, <2,3>, <3,3>. Then, C23=3, C2?=5, C?3=8 and Ctot=27, so we have:

 23
2,3 2 2

2? ?3

3 27
4- log log 1.0179

5 8
totC C

RMI
C C< >

×= = =
×

 (16)

246 F. Wang et al.

If an N-RPP doesn’t emerge in the legitimate sessions observed, we can infer that
the appearance of the N-RPP is impossible and its occurrence is extremely
anomalous. Therefore, instead of executing the smoothing technique in the
computation of the packet distribution, we give a custom infinitesimal value INFS to
the N-RPPs not observed as their N-RMIs. We can utilize the N-RMI to extract
another feature of HTTP sessions.

Feature 7: N-RMI Distance (DN-RMI). In a session, we may have many different N-
RPPs. We select M N-RPPs which have the first M greatest N-RMIs in a suspicious
session because we believe these N-RPPs can well present statistical correlations of
this session. If a session only has S N-RPPs, where S M< , we’ll regard the N-RPP
with the smallest N-RMI in this session as the surplus M S− N-RPPs. Then, DN-RMI
can be defined as [12]:

2 2

- , ,
1 1

| - - | (,)
BL BT BL BT

N RMI i j i j
i j

D N RMI N RMI i jσ
× × × ×

< > < >
= =

= − ×  (17)

Where ,- i jN RMI< > is the N-RMI of the N-RPP <i,j> in the suspicious session and

,- i jN RMI< > is the N-RMI in legitimate sessions. The expression (,)i jσ is evaluated

as:

1 if , is one of the selected N-RPPs

(,)
0 else

i j M
i jσ

< >
= 


 (18)

6 Experiment

6.1 Data Collection

The data collection is a crucial factor for our detection results, so it will be discussed
with detail in this section. We deploy our packet sniffer on the gateway of our
department which owns about 350 personal computers to collect legitimate HTTP and
HTTPS sessions. Within a month, we collect 14462 HTTP and 9154 HTTPS
legitimate sessions. Additionally, we generate some tunnel sessions: 200 HTTP
(HTTPS) sessions with FTP encapsulated, 200 HTTP (HTTPS) sessions with SMTP
encapsulated and 200 HTTP (HTTPS) sessions with POP3 encapsulated. The usage of
those sessions is listed in Table 1, where “PD&N-RMI” is the amount of sessions
used to compute the packet distribution and N-RMIs in legitimate sessions, “Train” is
the amount of session samples used to train our classifier and “Test” is the amount of
session samples to be tested.

In an SVM classifier, if the data sets used for training the classification model are
not balanced, the classification accuracy may not be a good criterion for evaluating
the effect of classifying, which will invalidate the detection results in our
experiments. Therefore, in order to balance the scales of data sets for higher detection
reliability, we set the amount of legitimate HTTP (HTTPS) sessions for training to
300, which is just the sum of all the tunnel sessions for training.

 A Novel Web Tunnel Detection Method Based on Protocol Behaviors 247

Table 1. The usage of collceted sessions

 PD&N-RMI Train Test
HTTP 14062 300 100

HTTPS 8754 300 100
FTP over HTTP (HTTPS) 100 100

SMTP over HTTP (HTTPS) 100 100
POP3 over HTTP (HTTPS) 100 100

In the data collection, we should bring out some processing details. The inter-

arrival times may be distorted by network jitters. So, in order to reduce the impact of
network noises as far as possible, all the data are collected in a certain time period on
weekdays (14:00-17:30) and all the tunnel sessions are also generated in the same
period. To simulate normal communication scenarios, when generating tunnel
sessions, we deploy one host in our department LAN and the other in the WAN
outside. We utilize the HTTPTunnel [13] to generate HTTP tunnel sessions and the
Barracuda HTTPS Tunnel [14] to generate HTTPS tunnel sessions. There are two
modes of the tunnel traffic generation, with a proxy (intermediary forwarding) and
without proxies (direct connection). Since the proxy can visibly slow down the
protocol interaction, which can be easily caught, we utilize the mode for direct
connection. As explained in Section 4, we can’t judge a session with few packets, so
the sessions used for training and testing in our detection method all have more than
500 packets. In Section 6.2, we will use some or all of those packets for experiments.

6.2 Results

To implement our detection method, we should set the parameters firstly. In the
packet classification, BL and BT can’t be too large, which may ruin the similarities of
packets. So, in our detection method, BL is 20 and BT is 15. We set N and M to 3 and
25 respectively, so we focus on the 3-RPP and the 3-RMI. The custom infinitesimal
INFS we utilize to evaluate the 3-RMIs of unobserved 3-RPPs is set to -50. Figure 6
shows the results of the KDE and we can see that the estimated PDF can approximate
the real density well. In the experiments, we use both our detection method and the
fingerprint detection technique to detect the tunnel sessions to make a comparison. In
our detection, in both training and testing, each session is denoted by its feature vector
FV consisting of Reqavg, Reqvar, Resavg, Resvar, DKL, E3-RPP, D3-RMI. In the fingerprint
detection, the fingerprint is trained from all the legitimate sessions collected by us.
The results for HTTP and HTTPS tunnel detection are shown in Table 2 and Table 3,
where “Packet” is the amount of packets in training and testing session samples,
“Legitimate” is the amount of sessions identified as the legitimate sessions, “Tunnel”
is the amount of sessions identified as the tunnel sessions, “HTTP (HTTPS)”
represents the legitimate HTTP (HTTPS) sessions, “FTP” represents HTTP (HTTPS)
sessions tunneled with FTP, “SMTP” represents sessions tunneled with SMTP and
“POP3” represents sessions tunneled with POP3.

248 F. Wang et al.

Table 2. Detection results of HTTP tunnels

Packet Type
Our Detection Method Fingerprint Detection Technique

Legitimate Tunnel Accuracy Legitimate Tunnel Accuracy

100

HTTP 62 38 62% 44 56 44%

FTP 31 69 69% 42 58 58%
SMTP 37 63 63% 33 67 67%
POP3 46 54 54% 48 52 52%

 62.0% 55.3%

300

HTTP 75 25 75% 65 35 65%
FTP 22 78 78% 38 62 62%

SMTP 29 71 71% 39 61 61%
POP3 39 61 61% 43 57 57%

 71.3% 61.3%

500
or more

HTTP 81 19 81% 63 37 63%
FTP 8 92 92% 29 71 71%

SMTP 17 83 83% 45 55 55%

POP3 26 74 74% 39 61 61%
 82.5% 62.5%

Table 3. Detection results of HTTPS tunnels

Packet Type
Our Detection Method Fingerprint Detection Technique

Legitimate Tunnel Accuracy Legitimate Tunnel Accuracy

100

HTTPS 69 31 69% 52 48 52%
FTP 28 72 72% 40 60 60%

SMTP 26 74 74% 32 68 68%

POP3 45 55 55% 47 53 53%
 67.5% 58.3%

300

HTTPS 73 27 73% 70 30 70%
FTP 15 85 85% 35 65 65%

SMTP 25 75 75% 36 64 64%
POP3 20 80 80% 49 51 51%

 78.3% 62.5%

500
or more

HTTPS 87 13 87% 57 43 57%
FTP 2 98 98% 32 68 68%

SMTP 7 93 93% 21 79 79%
POP3 11 89 89% 42 58 58%

 91.8% 65.5%

 A Novel Web Tunnel Detection Method Based on Protocol Behaviors 249

200 400 600 800 1000 1200 1400

0.000

0.001

0.002

0.003

0.004

0.005

0 1000 2000 3000 4000 5000

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0 200 400 600 800 1000 1200 1400

0.000

0.001

0.002

0.003

0.004

0.005

0 1000 2000 3000 4000 5000
-0.0002

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

0.0020

P
ro

ba
b

ili
ty

 D
en

si
ty

Packet Length

 Real
 EstimatedKDE of Packet Lengths in HTTP KDE of Inter-arrival Times in HTTP

 Real
 Estimated

P
ro

ba
b

ili
ty

 D
en

si
ty

Inter-arrival Time

KDE of Packet Lengths in HTTPS
 Real
 Estimated

P
ro

ba
b

ili
ty

 D
en

si
ty

Packet Length

KDE of Inter-arrival Times in HTTPS Real
 Estimated

P
ro

ba
b

ili
ty

 D
en

si
ty

Inter-arrival Time

Fig. 6. Results of the KDE: up-left is the KDE of packet lengths in HTTP sessions, up-right is
the KDE of inter-arrival times in HTTP sessions, down-left is the KDE of packet lengths in
HTTPS sessions and down-right is the KDE of inter-arrival times in HTTPS sessions

As the results show, with the data collected, our detection method performs
obviously better than the fingerprint detection technique does. Because we
concentrate on protocol behaviors to extract useful features, our detection method is
more effective. To improve the detection accuracy, the fingerprint detection technique
needs many more sessions to train the fingerprint. With the amount of packets in
sessions increasing, the detection rate rises significantly. Additionally, we can see that
in our detection method the detection rate against HTTPS tunnels is higher. So, we
can infer that protocol behaviors in HTTPS are more distinctive and pronounced than
that in HTTP. Further, Table 4 and Table 5 show the detection results when we kick
out partial features from the feature vector (the amount of packets in sessions is above
500). We can see that detection accuracies decrease significantly when we abandon
the first-order features or the second-order features. Hence, we can conclude that the
two categories of features both play important roles in our detection method.

Table 4. Results without some features in HTTP tunnel detection

Type
Without First-Order Features Without Second-Order Features

Legitimate Tunnel Accuracy Legitimate Tunnel Accuracy
HTTP 60 40 60% 53 47 53%
FTP 31 69 69% 30 70 70%

SMTP 53 47 47% 42 58 58%
POP3 46 54 54% 59 41 41%

 57.5% 55.5%

250 F. Wang et al.

Table 5. Results without some features in HTTPS tunnel detection

Type
Without First-Order Features Without Second-Order Features

Legitimate Tunnel Accuracy Legitimate Tunnel Accuracy
HTTPS 72 28 72% 49 51 49%

FTP 21 79 79% 22 78 78%
SMTP 45 55 55% 48 52 52%
POP3 39 61 61% 33 67 67%

 66.8% 61.5%

7 Conclusion

In this paper, we devise a novel web tunnel detection method based on protocol
behaviors. We extract seven useful statistical features according to the communication
characteristics in HTTP and HTTPS. With those features, we utilize a SVM classifier
to distinguish legitimate sessions and tunnel sessions. In the experiment, the detection
accuracy of our method is much higher than that of the technique proposed in
previous work.

In the future, we can research protocol behaviors in other applications. Obtaining
the behavior characteristics, we can extend our feature extraction method to do further
classification of network traffic.

Acknowledgement. This paper was supported by the National Natural Science
Foundation of China (Nos.60903217 & 61202407), the Fundamental Research Funds
for the Central Universities (Nos.WK0110000027 & WK0110000033), the Natural
Science Foundation of Jiangsu Province of China (No.BK2011357), the Guangdong
Province Strategic Cooperation Project with the Chinese Academy of Sciences
(No.2012B090400013), and the Scientific and Technical Plan of Suzhou (No.
SYG201010).

References

1. Borders, K., Prakash, A.: Web Tap: Detecting Covert Web Traffic. In: Proceedings of the
11th ACM Conference on Computer and Communication Security, pp. 110–120 (October
2004)

2. Bissias, G.D., Liberatore, M., Jensen, D., Levine, B.N.: Privacy Vulnerabilities in
Encrypted HTTP Streams. In: Danezis, G., Martin, D. (eds.) PET 2005. LNCS, vol. 3856,
pp. 1–11. Springer, Heidelberg (2006)

3. Liberatore, M., Levine, B.N.: Inferring the source of encrypted http connections. In:
Proceedings of the 13th ACM Conference on Computer and Communications Security,
Alexandria, Virginia, USA, pp. 255–263 (2006)

4. Hernández-Campos, F., Smith, F.D., Jeffay, K., Nobel, A.B.: Statistical Clustering of
Internet Communications Patterns. Computing Science and Statistics 35 (2003)

 A Novel Web Tunnel Detection Method Based on Protocol Behaviors 251

5. McGregor, A., Hall, M., Lorier, P., Brunskill, J.: Flow Clustering Using Machine Learning
Techniques. In: Barakat, C., Pratt, I. (eds.) PAM 2004. LNCS, vol. 3015, pp. 205–214.
Springer, Heidelberg (2004)

6. Moore, A.W., Zuev, D.: Internet traffic classification using bayesian analysis techniques.
In: SIGMETRICS 2005: Proceedings of the 2005 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, Banff, Alberta, Canada,
pp. 50–60 (2005)

7. Wright, C.V., Monrose, F., Masson, G.M.: On Inferring Application Protocol Behaviors in
Encrypted Network Traffic. Journal of Machine Learning Research 7, 2745–2769 (2006)

8. Dusi, M., Crotti, M., Gringoli, F., Salgarelli, L.: Detecting Application-Layer Tunnels with
Statistical Fingerprinting. Journal of Computer Networks 53(1), 81–97 (2009)

9. Wiki: Kernel Density Estimation (2013), http://en.wikipedia.org/wiki/
Kernel_density_estimation

10. Chang, C., Lin, C.: LIBSVM: a library for support vector machines (2013),
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

11. Chen, S., Goodman, J.: An empirical study of smoothing techniques for language
modeling. In: Proceedings of the 34th Annual Meeting on Association for Computational
Linguistics (ACL 1996), NJ, USA, pp. 310–318 (June 1996)

12. Chen, Z., Huang, L., Yu, Z., Yang, W., Li, L., Zheng, X., Zhao, X.: Linguistic
Steganography Detection Using Statistical Characteristics of Correlations between Words.
In: Solanki, K., Sullivan, K., Madhow, U. (eds.) IH 2008. LNCS, vol. 5284, pp. 224–235.
Springer, Heidelberg (2008)

13. HTTPTunnel v1.2.1 (2013), http://sourceforge.net/projects/http-
tunnel/files/http-tunnel/HTTPTunnel%20v1.2.1

14. Barracuda HTTPS Tunnel (2013), http://barracudadrive.com/HttpsTunnel
.lsp

	A Novel Web Tunnel Detection Method Based on Protocol Behaviors
	1 Introduction
	1.1 Outline of Our Contributions
	1.2 Paper Organization

	2 Related Work
	3 Preliminaries
	3.1 HTTP Flow and HTTP Session
	3.2 Kernel Density Estimation

	4 Our Tunnel Detection Method
	5 Feature Extraction
	5.1 First-Order Features
	5.2 Packet Classification
	5.3 Second-Order Features

	6 Experiment
	6.1 Data Collection
	6.2 Results

	7 Conclusion
	References

