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Abstract. Developers sometimes maintain an internal copy of another software 
or fork development of an existing project. This practice can lead to software 
vulnerabilities when the embedded code is not kept up to date with upstream 
sources. We propose an automated solution to identify clones of packages 
without any prior knowledge of these relationships. We then correlate clones 
with vulnerability information to identify outstanding security problems. This 
approach motivates software maintainers to avoid using cloned packages and 
link against system wide libraries. We propose over 30 novel features that 
enable us to use to use pattern classification to accurately identify package-level 
clones. To our knowledge, we are the first to consider clone detection as a 
classification problem. Our results show our system, Clonewise, compares well 
to manually tracked databases. Based on our work, over 30 unknown package 
clones and vulnerabilities have been identified and patched. 
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1 Introduction  

Developers of software sometimes embed code from other projects. They statically 
link against an external library, maintain an internal copy of an external library’s 
source code, or fork the development of an external library. A canonical example is 
the zlib compression library which is embedded in much software due to its 
functionality and permissive software license. In general, embedding software is 
considered as a bad development practice, but the reasons for doing so include 
reducing external dependencies for installation, or the need to modify functionality of 
an external library. The practice of embedding code is generally ill advised because it 
has implications on software maintenance and software security. It is a security 
problem because at least two versions of the same software exist when it is embedded 
in another package. Therefore, bug fixes and security patches must be integrated for 
each specific instance instead of being applied once to a system wide library. Because 
of these issues, for most Linux vendors, package policies exist that oppose the 
embedding of code, unless specific exceptions are required. 

In the example of zlib, each time a vulnerability was discovered in the original 
upstream source, all embedded copies required patching. However, in the past, 
uncertainty existed in Linux distributions of which packages were embedding zlib and 
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which packages required patching. In 2005, after a zlib [1] vulnerability was reported, 
Debian Linux [2] made a specific project to perform binary signature scans against 
packages in the repository to find vulnerable versions of the embedded library. To 
create a signature the source code of zlib was manually inspected to find a version string 
that uniquely identified it. This manual and time consuming approach still finds 
vulnerable embedded versions of software today. We constructed signatures for 
vulnerable versions of compression and image processing libraries including bzip2, 
libtiff, and libpng. We performed a scan of the Debian and Fedora Linux [3] package 
repository and found 5 packages with previously unknown vulnerabilities. Even for 
actively developed projects such as the Mozilla Firefox web browser, we saw windows 
of exploitability between upstream security fixes and the correction of embedded copies 
of the image processing libraries. Even in mainstream applications such as Firefox, 
these windows of opportunity sometimes extended for periods of over 3 months. 

The traditional approach for discovering duplicated fragments of insecure code has 
been through the use of code clone detection. Code clone detection applies pattern 
recognition on the syntactic or structural nature using the insecure code fragment as a 
template. Then a search is performed over other code to identify duplication or near 
identical duplication. 

1.1 Motivation for Package-Level Clone Detection 

Clone detection theoretically solves the problem of insecure code fragments 
propagating to other locations. However, in practice the number of code clones is 
significantly high. For developers of individual projects, clone information may be 
useful. Yet, package maintainers and operating system distributions have no realistic 
actions to take with such clone information since they are not the primary developers 
of the software they release. What package maintainers and operating system vendors 
want is the ability to repackage or build the software in such a way that improves 
security and eliminates clones. If vendors know that an entire package is cloned in 
another, then they can modify the build process to use the operating system's system 
wide library package. This is an achievable goal and improves the security and 
stability of the system. This is our motivation and the reason we see package-level 
clone detection as an important addition to software engineering that traditional clone 
detection does not address. 

1.2 Motivation for Automated Approaches 

The approach of manually searching for embedded copies of specific libraries deals 
poorly with the scale of the problem. According to the list of tracked embedded 
packages in Debian Linux, there are over 420 packages which are embedded in other 
software in the repository. This list was created manually and our results show that it 
is incomplete. Other Linux vendors were not even tracking embedded copies before 
our research supplied them with relevant data. It is evident from this that an 
automated approach is needed for identifying embedded packages without prior 
knowledge of which packages to search for. This would aid security teams in 
performing audits on new vulnerabilities in upstream sources. This identifies the 
motivation for our system named Clonewise to identify package-level clones. 
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Previous systems that automate and address part of the problem are software 
provenance systems. Our system extends such works by recognising more features in 
software that can be used to fingerprint pacakges. Our system also addresses the 
problem of software being implemented in multiple languages, even within the same 
package. Our work is language agnostic. We also address the problem of requiring 
every version of a software to match it against a query. Our system can determine if a 
package is embedded, irrespective of which version number is used. This has 
advantages, but also makes identifying security problems in specific versions harder. 
We overcome this by using side-information that tracks the necessary information and 
that is maintained by operating system vendors. 

Our work is also similar to the concept of structural or higher-level clones as 
proposed in [4]. We are much more specific in the type of structure we are searching 
for. That is, package-level clones. The structural clones in [4] use directory-level 
clones to simulate module-level clones which is not as accurate. 

1.3 Generality 

At first glance, package-level clone detection may appear to be a Linux distribution 
specific problem. However, this problem applies to any vendor who maintains a 
repository of software packages and shares common code amongst packages. This 
problem also applies to any vendor which for legal reasons needs to know the 
provenance of embedded packages such as open source libraries.  Finally, the problem 
applies to any vendor who needs to know what open source libraries have been 
embedded so as to keep up-to-date with upstream releases. It is quite conceivable that 
any large software project may incorporate some permissively licensed open source 
software as an embedded library or package. For all of these reasons, software 
engineering needs to incorporate automated means to provide assurance that the state of 
software and the existence of package-level clones is known. 

1.4 Innovation 

Our approach is to consider code reuse detection as a binary classification problem 
between two packages. The classification problem is ‘do these two packages share 
code?’ We achieve this by performing feature extraction from the two packages and then 
performing statistical classification using a vector space model. The features we use are 
based on the filenames, hashes, and fuzzy content of files within the source packages 

To identify security vulnerabilities we associate vulnerability information from public 
advisories to vulnerable packages and vulnerable source files. We then discover all 
clones of these packages in a Linux distribution. Finally, we check the manually tracked 
vulnerable packages that Debian Linux maintain for each vulnerability and report if any 
of our discovered clones are not identified as being vulnerable. 

In this paper we make the following contributions: 

• We define the problem of package clone detection, and the sub-categories of 
shared and embedded package clone detection. 

• We are the first ones to formulate code reuse detection as a pattern 
classification problem. Then, it is feasible to apply traditional pattern 
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classification algorithms to achieve accurate clone detection. We employ a 
novel asymmetric bagging based classifier combination method to address the 
specific classification problem. 

• We propose over 30 new features for the purpose of clone detection, which are 
fundamental to solve the specific pattern classification problem. In particular, 
the proposed features are basis to the accuracy of clone detection. 

• We propose applications of package clone detection. We present algorithms to 
identify outstanding security vulnerabilities based on out-of-date clones. 

• We implement a complete system, Clonewise, which demonstrates our system 
effectively identifies package clones, finds vulnerabilities and is useful to 
vendors. For example, Debian Linux is planning infrastructure integration of 
Clonewise.  

The structure of this chapter is as follows: Section 2 defines the problem of 
package clone detection and outlines our approach. Section 3 describes how 
Clonewise detects shared and embedded package clones using machine learning. 
Section 4 describes the algorithms we use to identify vulnerabilities based on clone 
information. Section 5 evaluates our system. Section 6 examines related work. 
Section 7 outlines future work. Finally we present our conclusions in Section 8. 

2 Problem Definition and Our Approach 

2.1 Problem Definition 

A package clone is the duplication of one package’s code in another package. It is the 
presence of code reuse between packages. How do we find these package clones? 

A package can be embedded in another package. How do we determine this 
knowing that a package clone exists? 

A package clone may contain vulnerabilities or other security problems because 
the clone is out of date. How do we find these? 

2.2 Our Approach 

Our approach for detecting clones is based on binary classification and shown in Fig. 
1 and described below. A key point is that if two packages share code, one is not 
necessarily embedded in the other. We therefore detect code reuse and embedding as 
related but distinct problems. 

Our approach is to consider code reuse detection as a binary classification problem 
between two packages. The classification problem is ‘do these two packages share 
code?’ We achieve this by performing feature extraction from the two packages and then 
perform statistical classification using a vector space model. The features we use are 
based on the filenames, hashes, and fuzzy content of files within the source packages. 

A package clone consisting of two packages can be analysed to determine if one 
package is embedded in the other. We use a binary classification problem to answer 
this. The features we use are based on the size of the cloned code relative to the size 
of each package, and other features such has how many packages are dependent on 
the packages we are analysing. 
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We determine vulnerable packages by correlating security tracking information 
with our package clone detection analysis. 

 

 

 

 

 

 

 

Fig. 1. Shared package clone detection (above) and embedded package clone detection (below) 

3 Package Clone Detection 

Clonewise is currently based on machine learning and we have found this approach to 
be most versatile and successful. We employ statistical classification to learn and then 
classify two packages as sharing or not sharing code. 

Classification is a well-studied problem in machine learning and software is 
available to make analyses easy. Weka [5] is a popular data mining toolkit using 
machine learning that Clonewise uses to perform machine learning.  

3.1 Shared Package Clone Detection 

Feature extraction is necessary to perform shared package clone classification. We 
need to select features that reflect if two packages share or do not share code. The 
feature vector we extract is obtained from a pair of packages that we are testing for 
sharing of code. The 26 features we use  are discussed in the following subsections. 

Number of Filenames 
Our first set of features is simply the number of filenames in the source trees of the 
two packages being compared. 

Source Filenames and Data Filenames 
In Clonewise, we distinguish between two types of filename features. Filenames that 
represent program source code and programs that represent non program source code. 
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We distinguish these two types of filenames by their file extension. The list of 
extensions used to identify source code are c, cpp, cxx, cc, php, inc, java, py, rb, js, pl, 
m, mli, and lua. Almost all of the features in Clonewise are applied for both source 
and data filenames. 

Number of Common Filenames 
To identify that a relationship exists between two packages such that they share 
common code, we use common filenames in their source packages as a feature. 
Filenames tends to remain somewhat constant between minor version revisions, and 
many filenames remain present even from the initial release of that software. For our 
purposes we can ignore directory structure and consider the package as a set of files, 
or we can include directory structure and consider the package as a tree of files. We 
noted several things while experimenting with this feature: Many files in a package do 
not contribute to the actual program code. C code is sometimes repackaged as C++ 
code when cloned. For example, lib3ds.c might become lib3ds.cxx. The filenames of 
small libraries can often be referred to as libfoo.xx or foo.xx in cloned form. Some 
files that are cloned may include the version number. For example, libfoo.c might 
become libfoo43.c. We therefore employ a normalization process on the filenames to 
make this feature counting the number of similar filenames more effective. 

Normalization works by changing the case of each filename to be all lower case. If 
the filename is prefixed with lib, it is removed from the filename. The file extensions 
.cxx, .cpp, .cc are replaced with the extension .c. Any hyphens, underscores, numbers, 
or dots excluding the file extension component are removed. 

Number of Similar Filenames 
It is useful to identify similar filenames since they may refer to nearly identical source 
code. A fuzzy string similarity function is used that matches if the two filenames are 
85% or more similar in relation to their edit distance. 

Our similarity measure is defined as: 

We chose the edit distance as our string metric after experimenting with other 
metrics including the smith-waterman local sequence alignment algorithm and the 
longest common subsequence string metric. 

Number of Files with Identical Content 
We perform hashing of file content using the ssdeep software and do a comparison of 
hashes between packages to identify identical content without respect to the filenames 
used. Like the previous class of feature, we have a feature for the number of files 
having identical content that are  all program source code, and a feature for the 
number of files having identical content that are non-program source code. 

Number of Files with Common Filenames and Similar Content 
To increase the precision of file matching from the previous feature, we employ a 
fuzzy hash of the file contents and then perform an approximate comparison of those 
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hashes for files with similar filenames. While the previous approach is based on file 
names alone, the new approach is a combination of file names and content. Fuzzy 
hashing can be used to identify near identical data based on sequences within the data 
that remain constant using context triggered piecewise hashing [6]. The result of 
fuzzy hashing file content is a string signature known as its fuzzy hash. Approximate 
matching between hashes is performed using the string edit distance known as the 
Levenshtein distance. The distance is then transformed to a similarity measure. The 
similarity measured is a number between 0 and 100. Zero indicates that the hashes are 
not at all similar, and 100 indicates that the hashes are equal. 

We have features for the number of files of similar content with a similarity greater 
than 0 of program source code and non-program source code. We also count the 
number of similar files having a similarity greater than 80. 

Scoring Filenames 
Not all filenames should be considered equal. Filenames, such as README or 
Makefile that frequently occur in different packages should have a lower importance 
than those filenames which are very specific to a package such as libpng.h. We 
account for this by assigning a weight for each filename based on its inverse 
document frequency [7]. The inverse document frequency lowers the weight of a term 
the more times it appears in a corpus and is often used in the field of information 
retrieval. 

The inverse document frequency is defined as: 

where D is the set of packages, d is a package, and t is a filename in a package. 
We use features scoring the sum of matching filename weights to the number of 

similar files, the number of similar files and similar content with similarity greater 
than 0 and 80, for both program source code and non-program source code.  

Matching Filenames between Packages 
If filename matching between two packages was performed as an exact match, then 
the number of filenames shared would be the cardinality of the intersection between 
the two sets of filenames. However, in Clonewise the filename matching is 
approximate based on the string edit distance. This means that some filenames such as 
Makefile.ca could potentially match the filenames Makefile.cba and Makefile.cb. 
Moreover, the scores for each filename as discussed in the previous section can be 
different depending on which filename is deemed to be a match. We solve this 
problem by employing an algorithm from combinatorial optimization known as the 
assignment problem. 

The assignment problem is to construct a bijective mapping between two sets, 
where each possible mapping has a cost associated with it, such that the mappings are 
chosen so that the sum of costs is optimal. Formally, the assignment problem is 
defined as: 
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Given two sets, A and T, of equal size, together with a weight function C: A × T → 
R. Find a bijection f: A →T such that the cost function: 

is optimal. 
In our work the sets are the two packages and the elements of each set are the 

filenames in that package. The cost of the mapping between sets is the score of the 
matching filename in the second set according to its inverse document frequency. Our 
use of the assignment problem seeks to maximize the sum of costs. 

The assignment problem can be solved in cubic time in relation to the cardinality 
of the sets using the Hungarian or Munkres [8] algorithm. 

The Munkres algorithm is effective, however for large N, a cubic running time is 
not practical. We employ a greedy solution that is not optimal but is more efficient 
when N is large. 

3.2 Shared Package Clone Classification 

The output of Clonewise is the set of packages where the classification determines the 
package pairs share code. Clonewise also reports the filenames between the packages 
and the weights of those filenames. 

Clonewise uses supervised learning to build a classification model. We use the 
manually created Debian embedded-code-copies database that tracks package clones 
to train and evaluate our system. We employ a number of classifiers to evaluate our 
system as described in Section 7. 

3.3 Embedded Package Clone Detection 

To detect embedded package clones we use the results of shared package clone 
detection and apply a filtering stage to exclude packages where the first package is 
not embedded in the second package. We solve this problem by considering the 
problem as a binary classification problem.  

Similar to the shared package clone detection approach, we perform feature 
extraction before using statistical classification. The 18 features we use are 
summarized in the following: 

Number of Filenames 
As in shared package clone detection, the number of filenames that are source and 
data are used. 

Percent of X Embedded in Y 
These features say how much of one package is embedded in the other package. 

Package X has Lib in Name 
These features are useful in identifying if a package is a library, which increases its 
likelihood that it is an embedding. If the package name is prefixed with ‘lib’, then the 
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feature is assigned a value of 1. If the prefix is not that, then the value is 0. The prefix 
is compared without regard to case. 

A to B Ratio 
These features inform us on how big the packages are relative to each other. It is 
typical that an embedded library is smaller than the software it is embedded in. 

Package Dependents 
These features inform us on how many other packages depend on the package in 
question. Libraries are typically used by many other packages and so the value for this 
feature will also be high. As explained earlier, that the package is library indicates 
that the package is more likely to be embedded. 

3.4 Classification Using Asymmetric Bagging 

For training our classifier, we have a finite set of labelled positive cases as obtained 
from vendor generated databases and we are able to arbitrarily generate labelled 
negative cases. We have many more negative cases than we have positive cases, 
wherein a positive case indicates an embedded package clone. This scenario 
represents the imbalanced class problem [9] where many classifiers favour the 
majority class. We decided to improve our detection rate of the positive class by 
addressing the imbalanced class problem by performing asymmetric bagging [10]. 

Asymmetric bagging uses all the labelled positive cases and use an equivalent 
number of negative cases obtained from a random sampling. This extends traditional 
bagging which uses a random and equal sampling from both classes. The asymmetric 
bagging approach described generates a single bag upon which a classification model 
is built from training. Many bags are created and classification models are built for 
each bag. When performing classification of an unlabelled instance, each bag makes a 
prediction and the results are aggregated using a majority vote. This has the effect or 
improving the accuracy when detecting positive cases. We implemented the 
asymmetric bagging algorithms by extending the bagging meta-classifier in the Weka 
machine learning toolkit. 

4 Inferring Security Problems 

In this section, we examine algorithms and approaches to detect software 
vulnerabilities. Package-level clone detection is not strictly the best method to 
discover security problems through code cloning. However, it is almost impossible in 
practice to apply code-level clone detection across tens of thousands of packages with 
potentially hundreds of thousands of clones and expect developers to integrate fixes. 
The reality is, a vendor's security team can fix high impact bugs and push for package 
maintainers to build their software using system wide package-level libraries. In 
effect, the only practically used system of bug fixing on a large scale in regards to 
clones, is by fixing package-level clones. Yet the problem still exists of how to 
motivate package maintainers or security teams to apply these fixes. The current 
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practice is to highlight that the cloned package contains known security problems and 
pointing out that there is less cost in rebuilding the software to eliminate the higher-
level clone than it is to apply individual patches. Therefore, we see value in 
Clonewise as being a tool that can bring about good practices of eliminating package 
clones by highlighting vulnerabilities. To achieve the task of vulnerability detection, 
we propose use-cases for clone detection by Linux security teams. We also propose a 
completely automated solution to find out-of-date clones that have outstanding 
security vulnerabilities. 

4.1 Use-Case of Clone Detection to Detect Vulnerabilities 

One method which we initially tried, for the purpose of vulnerability detection, was to 
look at packages that had reported vulnerabilities against them. We considered this a 
list of security sensitive packages. We used this list of packages as input to our clone 
detection analysis. Anytime a security sensitive package was cloned, we verified that 
the clone was not out of date. This is an effective method to detect vulnerabilities, but 
it requires manual analysis. Even though the technique we described is manual, it still 
has benefits today and can be used in an on-going basis to detect new vulnerabilities. 

If a new vulnerability is found in a package, then clone detection should be 
performed on the Linux distributions because it is likely the same vulnerability is 
present in the cloned software. For example, if a vulnerability is reported for libpng, 
then clone detection should be performed and each libpng clone checked to see if the 
vulnerability is present. This method can be used by Linux security teams, but for old 
vulnerabilities it is not advisable since many clones would be patched but not reported 
by a Linux vendor. Therefore, we looked at other automated methods to detect out-of-
date clones which we describe in the following sub-sections. 

4.2 Automated Vulnerability Inference 

In Clonewise, we can use clone detection in addition to Debian Linux's security 
tracking information to identify untracked vulnerabilities. 

Clonewise takes a vulnerability report given as a CVE (Common Vulnerabilities 
and Exposures) number as input and extracts the vulnerable package from the data. 
The standardized package name associated with the vulnerability, given as a CPE 
(Common Platform Enumeration) package name, is translated to a native Debian 
package name. 

Clonewise then parses the summary of the CVE report to find the vulnerable 
source files. It is possible to extract theses vulnerable source files from the summary 
by tokenizing the summary into words and extracting words that have a file extension 
of known programming languages. 

Clonewise then looks at all the clones of the vulnerable package and trims the list 
by ensuring one of the vulnerable source files is present in the clone and that the 
fuzzy hash between the vulnerable package’s source is similar to the clone’s. 

We also trim the list by ignoring clones that we believe have been patched to use 
the system wide dynamic library. We did this by checking if in the binary version of 
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the package the embedded package was a package dependency. If the embedded 
package is a dependency, then the main package almost certainly uses it for dynamic 
linking. Dynamic linking is the normal approach vendors use to address the security 
implications of package clones. 

Finally, Clonewise checks to see if Debian Linux is tracking this package clone as 
being affected by that particular CVE. If it is not being tracked, then Clonewise will 
report the package as being potentially vulnerable. 

This process of finding outstanding vulnerabilities is applied to every CVE of interest 
in the database, and a final report is generated. The normal process is that a security 
analyst then verifies each reported vulnerability and eliminates any false positives. 

5 Results and Evaluation 

In this section, we discuss how we use an Amazon EC2 cluster to generate our results. 
We then discuss how our system performs against a labelled dataset of package clones 
and the security vulnerabilities our system has discovered. Finally, we discuss a web 
service to perform online scanning of software using our EC2 generated database. 

5.1 Clonewise Compute Cluster 

Our system employs multicore and clustering. We analysed our Linux distribution using 
a high performance compute cluster. We purchased 4 hours of cluster computing time 
from the Amazon EC2 cloud computing service. We built a 4 node cluster with dual 
CPUs per node, Intel Xeon E5-2670, eight-core "Sandy Bridge" architecture), 60.5G of 
memory per node, and CPU performance identified as 88 EC2 compute units. We then 
performed package-level clone detection on this infrastructure. 

5.2 Establishing the Ground Truth for Training and Evaluation 

Debian Linux maintain a manually created database of packages that are cloned in 
their security tracker database. We use this list of entries to establish the ground truth 
for our labelled data in an evaluation. 

The Debian database was not originally created to be processed by a machine, so 
some of the data is not consistent in referencing packages with their correct machine 
readable names. Instead, shorthand or common names for packages and libraries are 
sometimes used. We cull all those entries which do not reference package sources and 
are therefore not suitable for our system. 

Table 1. Accuracy of Shared Package Clone Detection 

CLASSIFIER PRECISION RECALL ACCURACY F-MEASURE 
Naïve Bayes 0.47562 0.57687 0.98599 0.52137 

Multi. Perceptron 0.80555 0.26806 0.98948 0.40225 
C4.5 0.85878 0.68725 0.99436 0.76349 

Random Forest 0.89881 0.70039 0.99499 0.78728 
Rand. Forest (0.8) 0.96746 0.58607 0.99426 0.72994 
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Table 2. Accuracy of Shared Package Clone Detection 

CLASSIFIER TP/FN FP/TN TP RATE FP RATE 
Naïve Bayes 439/322 484/56296 57.69% 0.85% 

Multilayer Perceptron 204/557 48/56732 26.81% 0.08% 
C4.5 523/238 86/56694 68.73% 0.15% 

Random Forest 533/228 60/56720 70.04% 0.11% 
Random Forest (0.8) 446/315 15/56765 58.61% 0.03% 

Table 3. Accuracy of Embedded Package Clone Detection 

CLASSIFIER PRECISION RECALL ACCURACY F-MEASURE 
Naïve Bayes 0.10171 0.94349 0.35580 0.18362 

Multi. Perceptron 0.75229 0.43101 0.94540 0.54802 
C4.5 0.89235 0.75164 0.97396 0.81597 

Random Forest 0.89067 0.72798 0.97225 0.80114 
Asym. Bagging 0.53196 0.91852 0.93168 0.67372 

Table 4. Accuracy of Embedded Package Clone Detection 

CLASSIFIER TP/FN FP/TN TP RATE FP RATE 
Naïve Bayes 718/43 6341/2808 94.35% 69.31% 

Multilayer Perceptron 328/433 108/9041 43.10% 1.18% 
C4.5 572/189 69/9080 75.16% 0.75% 

Random Forest 554/207 68/9081 72.80% 0.74% 
Asymmetric Bagging 699/62 615/8534 91.86% 6.72% 

 
We had two types of negative labeled entries where two packages are said not to be 

cloned with each other. One case was for shared package clone detection, and the 
other was for embedded package clone detection. To establish true negatives for 
shared package clone detection, we randomly selected pairs of packages not in our 
true positive list. We label these package pairs as negatives. This data can be unclean 
since we observe the labeled true positives are incomplete, but even so, the true 
negatives we label are still useful for training our statistical model.  In total, we 
obtained 761 labelled positives and 56780 negatives. 

Table 5. Adhoc Detection of fedora Linux vulnerabilities 

Package Embedded Package 
OpenSceneGraph lib3ds 
mrpt-opengl lib3ds 
mingw32-OpenSceneGraph lib3ds 
libtlen expat 
centerim expat 
mcabber expat 
udunits2 expat 
libnodeupdown-backend-ganglia expat 
libwmf gd 
Kadu mimetex 
cgit git 
tkimg libpng 
tkimg libtiff 
ser php-Smarty 
pgpoolAdmin php-Smarty 
sepostgresql postgresql 

To generate true negatives for the embedded package clone detection, we paired up 
all packages that were reported as being embedded in X, ignoring those cases where 
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X was the embedded code. This is what we expect our system to report – that X is 
embedded in Y and Z, but Y is not embedded in Z, and Z is not embedded in Y. In 
total, we were able to label 9149 negative cases. 

5.3 Accuracy of Shared Package Clone Detection 

We  employed 10-fold validation from our labeled dataset to evaluate the accuracy of 
our system and experimented with a number of classifiers including Naïve Bayes 
[11], Multilayer Perceptron, C4.5 [12], and Random Forest  [13]. Our results are 
shown in Table 1 and Table 2. The data is very imbalanced and this skews the 
accuracy, which easily achieves better than 99%, because we can identify negative 
cases more easily than positive cases. We obtained the best result using the Random 
Forest classification algorithm. This classification algorithm performed significantly 
better than all other algorithms we evaluated. The true positive rate is 70.04%, the 
precision is 89.88%, the recall is 70.05%, and the f-measure is 78.73%, which we 
think is quite reasonable for the first implementation of an automated system for 
package clone detection. The false positive rate must be very low for our system to be 
used by Linux security teams. Our initial false positive rate is 0.11%. We then 
modified the decision threshold of the random forest algorithm to consider false 
positives as more significant than false negatives. Our false negative rate is 0.03% 
with a decision threshold of 0.8 which represents that 3 in every 10,000 package pairs 
is mislabeled as a positive. The true positive rate is lower with a higher decision 
threshold and is 58.61%. This is the trade-off we accept for a low false positive rate. 
There are about 18,000 source packages, so there are 18,000 package pairs that are 
classified when performing clone detection on an individual package. Therefore, if 
our training data were not noisy, we would predict 4 to 5 false positive per complete 
clone detection on an individual package. However, our labelled negatives are noisy, 
and some negatives are actually positives. Therefore, we think between 4 to 5 false 
positives is closer to an upper limit. This is reasonable for a manual analyst to verify 
and we think it will not cause significant burden on Linux security teams. 

Table 6. Adhoc Detection of Debian Linux vulnerabilities 

Package Embedded Package 
boson lib3ds 
libopenscenegraph7 lib3ds 
libfreeimage libpng 
libfreeimage libtiff 
libfreeimage openexr 
r-base-core libbz2 
r-base-core-ra libbz2 
lsb-rpm libbz2 
criticalmass libcurl 
albert expat 
mcabber expat 
centerim expat 
wengophone gaim 
libpam-opie libopie 
pysol-sound-server libmikod 
gnome-xcf-thumnailer xcftool 
plt-scheme libgd 
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Table 7. Automated Vulnerability Inference 

TP + FP (Packages) 19 

TP (Packages) 10 

FP (Packages) 9 

TP + FP (CVEs) 132 

TP (CVEs) 81 

FP (CVEs) 51 

Table 8.  Automated Detection of Potential Vulnerabilities 

Package Embedded Package 
freevo feedparser 
hedgewars freetype 
ia32-libs * (see text) 
libtk-img tiff 
likewise-open curl 
luatex poppler 
planet-venus feedparser 
syslinux libpng 
vnc4 freetype 
vtk tiff 

5.4 Accuracy of Embedded Package Clone Detection 

We evaluated the embedded package clone detection using a number of classifiers 
including Naïve Bayes, Multilayer Perceptron, C4.5, and Random Forest. Our results 
are shown in Table 3 and Table 4. We obtained the best result using the C4.5 
classification algorithm. The true positive rate was 75.16%, the false positive rate was 
0.75%, the precision was 89.24%, the recall was 75.16%, and the f-measure was 
81.60%. We then used this algorithm as a base classifier for our asymmetric bagging 
meta-classifier with 50 bags. This improved the true positive rate to 91.86% but also 
increased the false positive rate to 6.72%. We see this as an acceptable trade-off to 
improve the true positive rate. 

5.5 Practical Package Clone Detection 

As part of the practical results from our system we contributed 34 previously 
untracked package clones to Debian Linux’s embedded code copies database. Thus, 
we feel that the package clone detection provides tangible benefit to the Linux 
community. We also verified if the embedded packages we detected were not in fact 
patched by the Linux vendors to link dynamically against a system wide library.  

5.6 Vulnerability Detection 

A consequence of package clone detection is determining if a clone is out of date and 
if it has any outstanding and unpatched vulnerabilities. As part of our work we 



 Clonewise – Detecting Package-Level Clones Using Machine Learning 211 

 

detected over 30 vulnerabilities in Debian and Fedora Linux because of package clone 
issues by checking security sensitive packages manually, or using adhoc identification 
of out-of-date clones. The vulnerabilities in each package we found using clone 
detection are shown in Table 5 and 6. 

5.7 Automated Vulnerability Detection 

We performed a more recent evaluation of completely automated vulnerability 
inference over the years of 2010, 2011, and 2012. Clonewise reported 132 
vulnerabilities across 19 packages. We submitted bug reports against each package to 
Debian Linux. Not all our submitted bug reports were actual vulnerabilities. Some 
reports were erroneous because Clonewise falsely identified a package clone when 
one did not exist. Another source of errors was that some bugs we reported as 
vulnerabilities could not be triggered, even though the clone was correctly identified 
and had unpatched CVEs. This was true of libpng image processing library being 
embedded in the syslinux boot loader package. Boot loading displays an image, but 
does not allow an attacker to control that image to trigger the vulnerability. A high 
number (64) of vulnerabilities were found in the ia32-libs package. This package 
contains a list of embedded libraries and is only updated by Debian on point releases. 
Debian informed us that this package would invariably contain vulnerabilities, but in 
the unstable release of Debian an alternative approach will be employed which 
resolves these issues by not embedding libraries. 

Debian have not yet confirmed all our bug reports so we investigated each package 
manually to check that a package clone existed, and that the internal version number 
of the library was a version vulnerable to the CVE Clonewise reports. The results are 
shown in Table 7. It should be noted that the high number of true positives is largely 
accounted for by the 64 vulnerabilities we marked as such once Debian informed us 
that ia32-libs was by nature collecting vulnerabilities until point releases. 
Nonetheless, we detected unverified vulnerabilities in more than 50% of the packages 
Clonewise reported. We performed this manual analysis stage of all vulnerabilities, 
except for those in ia32-libs, in less than 2 hours. Our results are shown in Table 6. In 
the case that these potential vulnerabilities are not confirmed by Debian, then Debian 
will still need to update their internal CVE database to report that those packages are 
unaffected. Therefore, our work still remains beneficial. 

The results of our system demonstrate that we effectively identify vulnerabilities 
with a false positive rate that is practical for manual verification in a feasible amount 
of time. 

5.8 Clonewise as a Web Service 

We have made available some functionality that Clonewise implements at 
http://www.codeclones.com. The web service takes a tarball of source code and 
reports if any of around 420 common open source libraries are embedded in it. The 
web service frontend is implemented in PHP, shell scripts, and Python. The frontend 
passes the request to HTTP-based load balancer located on another server. The load 
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balancer then passes the request to a backend cluster. We can scale our system by 
running a script to add more nodes to the backend cluster as necessary. The web 
service uses Amazon EC2 to provide the virtual private servers. 

6 Related Work 

Large scale manual attempts at auditing specific Linux distributions for embedded 
packages have occasionally occurred in the past. In 2005, the Debian package 
repository was scanned for vulnerable zlib fingerprints based on version strings [14]. 
Antivirus signatures were generated and ClamAV performed the scanning. Our 
system improves practice by automating the discovery of embedded packages without 
prior knowledge of which packages are embedded. Additionally, our system 
automatically constructs the signatures to detect embedded packages. 

Related works to ours is that of software clone detection [15]. Clone detection 
identifies duplicated copies of code fragments. This can be used to identify 
duplication of effort in source code which can be a source of software bugs or 
confusion. Work has been done on detecting higher-level clones, including file-level 
clones [4]. Our work extends higher-level clones by being more accurate for package-
level duplication. Additionally, clone detection has been used on industrial sources 
like the Linux kernel [16] or as used by Microsoft engineers [17]. Our system is not as 
fine grained as traditional code clone detection and detects code similarity at the 
source file and package level. This allows us to integrate our system into existing 
practice as can be used by Linux vendors, and allows us to use vulnerability 
information which is provided at the package level. We believe that while our 
approach is simplistic, this method offers practical and immediately useful benefits to 
practitioners. 

Software plagiarism is another software similarity problem and detection systems 
for this often make the distinction between attribute counting and structure based 
techniques. Attribute counting is based on software metrics, or the frequencies of 
particular features occurring, as in [18]. Structure based techniques rely on using 
program structure which typically include the use of dependency graphs or parse 
trees, as in [19] and [20]. Tree and graph edit distances show similarity. [21] and [22] 
use greedy string tiling. Another approach [23] considers tokenization of source code 
adaptive sequence alignment. 

Clone detection can be performed on the textual stream in a source file once 
whitespace and comments are removed [24]. The key concept is that a fingerprint of a 
code fragment is obtained and then the remainder of the source scanned for possible 
matching duplicates. More recently [25, 26] has used the token approach with good 
success in large scale evaluations. Large scale copy and paste clones using a data 
mining approach was investigated in [27, 28]. 

An alternative approach is to use the abstract syntax tree of the source to generate a 
fingerprint [29]. Tree matching can subsequently be used to discover software clones. 
Abstract syntax trees are more impervious to superficial changes to the textual stream 
and textual organization of the code. 
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Other program abstractions can be used to fingerprint code fragments such as the 
program dependency graph which is a graph combining control and data 
dependencies [30]. An interesting semantic approach to clone detection is to use the 
memory states of a program [31]. 

In non-exact matching of code fragments, similarity searches can be used using 
appropriate distance metrics such as the Euclidean distance, given an appropriate 
threshold for similarity. In [32], trees were used to represent source code, and subtrees 
transformed to a vector representation. This allowed for the Euclidean distance and 
clustering to identify clones. Using non exact matching of code fragments allows 
detection of duplicated code that has been revised or that subjected to an evolutionary 
process. Our system allows for evolution and revision of code by using fuzzy hashing 
over the source. This has advantages in detecting package-level clones without storing 
all versions of a particular software package. 

7 Future Work 

Using our classification approach to clone detection, there are several ways we could 
see it applied to improve current practice. We could apply our system to more source 
code, including other Linux distributions, BSD vendors and also online source code 
repositories such as Sourceforge [33]. It is conceivable that source code repositories 
could offer services to find package clones. Our system could be integrated into a 
package build system to automatically update the embedded database information or 
ask for validation from a package maintainer. Debian Linux would like our Clonewise 
tool to run constantly in the background and scan the source code repository to update 
a live database of clones. If we did this, we could enforce build recommendations that 
aim for avoidance of embedded code. The Debian Linux security team has asked us to 
perform this integration into their distribution as part of a standard operating 
procedure for when a vulnerability is found in a package and this is a focus of our 
current work.  

8 Conclusion 

In addition to the number of reported vulnerabilities and subsequent patching and 
resolution of vulnerabilities, we believe our research has much value in the practical 
approach of coping with embedded code and packages that may or may not be known 
about. We believe all vendors benefit in creating and maintain databases of embedded 
code in their package repository and our research fills a gap when the manual task of 
auditing in excess of 10,000 packages per distribution is too time consuming to be 
practical. There is much work as a consequence that could be applied to current 
practice to aid operating system security and we feel our work is a good step towards 
this goal. 
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