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Abstract. In this paper, we consider the security of public-key encryp-
tion schemes under linear related-key attacks, where an adversary is
allowed to tamper the private key stored in a hardware device, and sub-
sequently observe the outcome of a public-key encryption system under
this modified private key. Following the existing work done in recent years,
we define the security model for related-key attack (RKA) secure public-
key encryption schemes as chosen-ciphertext and related-key attack (CC-
RKA) security, in which we allow an adversary to issue queries to the
decryption oracle on the linear shifts of the private keys. On the basis
of the adaptive trapdoor relations via the one-time signature schemes,
Wee (PKC’12) proposed a generic construction of public-key encryption
schemes in the setting of related-key attacks, and some instantiations from
Factoring, BDDH with CC-RKA security, and DDH but with a weaker
CC-RKA security. These schemes are efficient, but one-time signatures
still have their price such that in some cases they are not very efficient com-
pared to those without one-time signatures. Bellare, Paterson and Thom-
son (ASIACRYPT’12) put forward a generic method to build RKA secure
public-key encryption schemes, which is transformed from the identity-
based encryption schemes. However, so far, the efficient identity-based en-
cryption schemes are generally based on parings. To generate a specific
construction of public-key encryption schemes against related-key attacks
without pairings, after analyzing the related-key attack on the Cramer-
Shoup basic public-key encryption scheme, we present an efficient public-
key encryption scheme resilient against related-key attacks without using
one-time signature schemes from DDH. Finally, we prove the CC-RKA
security of our scheme without random oracles.

Keywords: Public-key encryption, Related-key attack, CC-RKA
security.

1 Introduction

In the traditional security model, it is assumed that the adversary is isolated
from the internal states of the honest communication parties. However, with
the development of information technologies, the security of cryptographic al-
gorithms in modern cryptography is analyzed in the black-box model, where an
adversary may view the algorithm’s inputs and outputs, but the private key as
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well as all the internal computation remains perfectly hidden. Unfortunately,
this idealized assumption is often hard to satisfy in real systems. In many sit-
uations, the adversary might get some partial information about private keys
through methods which were not anticipated by the designer of the system and,
correspondingly, not taken into account when arguing its security. Such attacks,
referred to as key-leakage attacks, come in a large variety. An important example
is side-channel [18] attacks that exploit information leakage from the implemen-
tation of an algorithm, where an adversary observes some “physical output” of a
computation (such as radiation, power, temperature, running time), in addition
to the “logical output” of the computation.

In recent two decades, this requirement has been relaxed to capture security
under the scenarios where some information of the keys is leaked to the adversary.
When an adversary tampers the private key stored in a cryptographic hardware
device, and observes the result of the cryptographic primitive under this modified
private key, there is a related-key attack (RKA) [4,11]. The key here could be
a signing key of a certificate authority or a decryption key of an encryption
scheme. In related-key attacks, the adversary attempts to break an encryption
scheme by invoking it with several private keys satisfying some known relations.

Wee [20] proposed a generic construction of public-key encryption schemes in
the setting of linear related-key attacks. In [20], the constructions exploit certain
existing public-key encryption schemes that are susceptible to linear related-
key attacks, to obtain public-key encryption schemes that are secure against
linear related-key attacks from adaptive trapdoor relations via strong one-time
signatures, which generates a tag in the ciphertext of the concrete scheme. The
security of this realization is analogous to those for obtaining chosen-ciphertext
attack (CCA) security from extractable hash proofs [19], and trapdoor functions
[15], which implies a trick that the RKA decryption oracle will return ⊥ for tag
= tag∗ generated from an one-time signature scheme, whenever the ciphertext
with tag given by the adversary matches the challenge ciphertext with tag∗ or
not. Briefly, RKA.Decrypt oracle outputs ⊥ when given a ciphertext with tag
= tag∗ even φ(sk) �= sk, where φ denotes a linear shift. That is to say, the
RKA decryption query will not help the adversary to obtain more information if
tag = tag∗. Besides, Wee [20] designed some efficient strong one-time signatures
to reduce the total overhead of the specific schemes. However, though one-time
signatures are easy to construct in theory, and are more efficient than full-fledged
signatures, they still have their price. Particularly,

– Known one-time signature schemes based on general one-way functions [10]
allow very efficient signing, key generation and signature verification, but
they require the expensive valuations of the one-way function. More prob-
lematic, such schemes usually have long public keys and signatures, resulting
in long ciphertexts.

– Although one-time signature schemes constructed based on number-theoretic
assumptions by adapting full-fledged signature schemes have the advantage
of shorter public keys and signatures, but this yields schemes of which com-
putational cost for key generation, signing, and verifying is more expensive.
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Bellare, Paterson and Thomson [6] provided a framework to enable the con-
struction of identity-based encryption schemes that are secure under related-key
attacks. In [6], a very particular type of framework, which allows to reduce RKA
security of a modified identity-based encryption scheme directly to the normal
identity-based encryption security of a base identity-based encryption scheme,
is used. Because of this framework, exploiting known results on identity-based
encryption in a black-box way is allowed and re-entering the often complex se-
curity proofs of the base identity-based encryption schemes is avoided. Based
on this, they constructed the RKA secure schemes for public-key encryption.
Their schemes are achieved in the standard model and hold under reasonable
hardness assumptions in the standard model, but they are transformed from the
identity-based encryption schemes. Anyway, most of the current identity-based
encryption schemes based on bilinear pairings, which are not very efficient.

Our Contributions. Inspired by the above, in this paper, we attempt to bridge
this gap in Wee’s public-key encryption schemes resilient against related-key
attacks from DDH [20] without using any one-time signature schemes. First of
all, we review the definition of linear related-key attacks introduced by Wee [20]
in the setting of public-key encryption, and describe how to attack the public-key
encryption system of Cramer and Shoup [9] in our RKA security model, which
is a bit different from that described in [20]. In Wee’s attack [20], a related-
key deriving function only changes one part of the secret keys, while our attack
changes all parts of the secret keys with the same linear shift function φ. In the
second place, on the practical side, with some trivial modifications to the basic
cryptosystem of Cramer and Shoup [9], we obtain an efficient scheme that is RKA
secure based on the decisional Diffie-Hellman assumption. Our technique is to
hide the functions related to the randomness that appear in the Cramer-Shoup
scheme, such that even given the private keys used in the encryption function
of the message, the adversary still has no idea to output the message under
the modified secret keys without the hiding information. Our scheme is very
efficient, as we do not need any pairing computation to implement encryption
and decryption. Finally, we prove the CC-RKA security of our scheme under
the DDH assumption. Interestingly, regarding the CC-RKA security proof, [20]
simulates the RKA decryption queries via key homomorphism and make the
adversary fail through key fingerprint, and [6] uses key malleability to simulate
the RKA decryption queries and collision-resistant identity renaming to make
the proof goes; however, in our specific construction, we avoid to make use of
such techniques to claim the security.

To begin with, we briefly describe the framework introduced in [4]. Infor-
mally, a public-key encryption scheme is resilient to related-key attacks, then
it is chosen-ciphertext attack secure even when the adversary obtains partial
information of the message in the scheme under the modified private keys of the
adversary. This is modeled by providing the adversary with access to a related-
key attack decryption oracle: the adversary can query the decryption oracle
with any function (φ, C), and then receive (φ(sk), C), where sk is the secret
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key (we note that the related-key deriving functions can be chosen depending on
the public key, which is known to the adversary). The adversary can query the
related-key attack decryption oracle adaptively, with only one restriction that
the decryption of a ciphertext C with the private key φ(sk) cannot equal the
decryption of the challenge ciphertext C∗ with the original private key sk.

1.1 Related Works

Micali and Reyzin [17] put forward a comprehensive framework for modeling
security against side-channel attacks in 2004, which relies on the assumption
that there is no leakage of information in the absence of computation. Later in
2008, Halderman et al. [14] described a set of attacks violating the assumption
of the framework of Micali and Reyzin. Specially speaking, their “cold boot”
attacks showed that a significant fraction of the bits of a cryptographic key
can be recovered if the key is ever stored in memory, of which the framework
was modeled by Akavia, Goldwasser and Vaikuntanathan [1]. Similarly, fault
injection techniques can be used to falsify, inducing the internal state of the
devices being modified, if given physical access to the hardware devices [7].

Bellare and Kohno [5] investigated related-key attacks from a theoretical point
of view and presented an approach to formally handle the notion of related-key
attacks. Followed the approach in [5], Lucks [16] presented some constructions for
block ciphers and pseudorandom function generators. To solve the open problem
in related-secret security whether or not related-key secure blockciphers exist,
Bellare and Cash [3] provided the first constructions to create related-secret
pseudorandom bits. Based on the work in [3], Applebaum, Harnik, and Ishai [2]
gave RKA secure symmetric encryption schemes, which can be used in garbled
circuits in secure computation. Later, Bellare, Cash and Miller [4] proposed
approaches to build high-level primitives secure against related-key attacks like
signatures, CCA secure public-key encryption, identity-based encryption, based
on RKA secure pseudorandom functions. Also, there are a lot of other works
about cryptographic systems with RKA security such as signatures [6,13], CCA
secure public-key encryption [6,20], identity-based encryption [6].

The remainder of this paper is organized as follows. In Section 2, we briefly
present the basic definitions, and the security assumptions that are used in our
construction. In Section 3, we review the concepts associated to this work and the
security model of RKA secure public-key key encryption systems. In Section 4,
we propose an efficient public-key encryption scheme resilient against related-key
attacks, after the analysis of a linear attack on the Cramer-Shoup cryptosystem
[9], and prove its security under the hardness of the DDH problem. Finally, we
conclude this paper in Section 5.

2 Preliminaries

In this section, we look back some basic notions, definitions, and tools that
are used in our construction. We formally state the decisional Diffie-Hellman
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assumptions, and present the technical definitions that will be used repeatedly
in our analysis.

2.1 Complexity Assumptions

Suppose that Groupgen is a probabilistic polynomial-time algorithm that inputs
a security parameter 1λ, and outputs a triplet (G, p, g) where G is a group of
order p that is generated from g, and p is a prime number.

The Decisional Diffie-Hellman Assumption. The decisional Diffie-Hellman
(DH) assumption is that the ensembles {G, g, f, gr, f r} and {G, g, f, gr1, f r2}
are computationally indistinguishable, where (G, p, g) ← Groupgen(1λ), and
the elements g, f ∈ G, r, r1, r2 ∈ Zp are chosen independently and uniformly
at random.

A Basic Scheme Based on DDH. Since the introduction of DDH assumption
[8], it has already found several interesting applications. Note that the DDH
assumption readily gives a chosen-plaintext attack (CPA) secure public-key en-
cryption scheme. Let the public key consist of random elements g, f , gx1 , fx2 ∈
G, and the secret key consist of random element x1, x2 ∈ Zp. The encryption of
a message M ∈ G is given by (C1, C2, C3) = (gr, f r, (gx1fx2)r ·M), where r ∈
Zp is a random element. The message M can be recovered with the secret key
x1, x2 by computing M = C3 · (C1)

−x1 · (C2)
−x2 .

2.2 Public-Key Encryption

A public-key encryption scheme is composed of the following four randomized
algorithms [12]: Keygen, Encrypt, and Decrypt.

– Keygen(1λ) → (sk, pk): Taking a security parameter λ as input, this algo-
rithm outputs a private key and a public key pair (sk, pk).

– Encryptpk(m) → C: Taking a plaintext m (in some implicit message space),
and a public key pk as input, this algorithm outputs a ciphertext C.

– Decryptsk(C) → m: Taking a plaintext m, a ciphertext C, and a private
key sk as input, this algorithm outputs m for a valid ciphertext or ⊥ for an
invalid ciphertext.

We require that a public-key encryption system is correct, meaning that if
(sk, pk) ← Keygen(1λ), and C ← Encryptpk(m), then Decryptsk(C) → m.

3 Modeling Related-Key Attacks

In this section, we define the notion of a chosen-ciphertext attack; in addition, we
present a natural extension of this notion to the setting of related-key attacks,
as introduced by Bellare, Cash and Miller [4]. Also, we introduce some notions
about related-key attacks, as proposed in [2].
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3.1 Chosen-Ciphertext Attacks

A public-key encryption scheme (Keygen, Encrypt, Decrypt) is secure against
chosen-ciphertext attacks (CCA security) if for a stateful adversary algorithm
A, the advantage in the following game is negligible in the security parameter λ.

1. (sk, pk) ← Keygen(1λ).
2. (m0, m1) ← ADecryptsk(·)(pk) such that |m0| = |m1|.
3. C∗ ← Encryptpk(md) where d ∈ {0, 1}.
4. d′ ← ADecryptsk(·)(C∗).
5. Output d′.

Here Decryptsk(·) is an oracle that on an input C, it returns Decryptsk(C).
The weaker security notion of CPA security (i.e. secure against CPAs) is

obtained in the above security game when depriving adversary A of the the
access to the decryption oracle.

3.2 RKA Security

Related-Key Deriving Functions.Our definition follows the notion of related-
key deriving functions given in [5]. Briefly speaking, a class Φ of related-key de-
riving functions φ: sk → sk is a finite set of functions with the same domain
and range, which map a key to a related key. Additionally, Φ should allow an
efficient membership test, and φ should be efficiently computable. Note that in
our concrete constructions, we only consider the class Φ+ as linear shifts.

The family Φ+. Any function φ : Zp → Zp in this class is indexed by � ∈ Zp,
where φ�(sk) : = sk +�.

We constraint that if sk is composed of several elements as (sk1, . . . , skn) with
n ∈ Z+, for any ski where i ∈ {1, . . . , n}, φ�(ski) : = ski +� with � ∈ Zn

p .

CC-RKA Security. A public-key encryption scheme (Keygen, Encrypt, De-
crypt) is Φ-CC-RKA secure if for a stateful adversary algorithmA, the advantage
in the following game is negligible in the security parameter λ.

1. (sk, pk) ← Keygen(1λ).
2. (m0, m1) ← ARKA.Decryptsk(·,·)(pk) such that |m0| = |m1|.
3. C∗ ← Encryptpk(md) where d ∈ {0, 1}.
4. d′ ← ARKA.Decryptsk(·,·)(C∗).
5. Output d′.

Here RKA.Decryptsk(·, ·) is an oracle that on an input (φ, C), it returns
Decryptφ(sk)(C). We constraint that algorithm A can only make queries (φ,
C) such that φ ∈ Φ and (φ(sk), C) �= (sk, C∗).

We say that algorithm A succeeds if d′ = d, and algorithm A’s advantage can
be defined as

AdvCCRKA
Φ,A (λ)

def
= |PrCCRKA

Φ,A [Succ]− 1/2|,
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where PrCCRKA
Φ,A [Succ] denotes the event that algorithm A outputs the bit d′ =

d.
Briefly speaking, key fingerprint means that any attempt to forge sk induces

a random output of Decryptsk(c
′).

4 An Efficient Construction without Pairings

In this section, we put forward our construction based on the Cramer-Shoup
cryptosystem [9], and present its security proof under the DDH assumption. To
begin with, we describe a simple linear related-key attack on the Cramer-Shoup
public-key encryption scheme, which to some extent illustrate some technical
obstacles in achieving RKA security.

4.1 Related-Key Attacks on Cramer-Shoup Cryptosystem

We point out a linear related-key attack on the CCA secure encryption scheme
based on the DDH assumption proposed by Cramer and Shoup [9]. The details
of the Cramer-Shoup public-key encryption scheme is given as follows.

– Key generation. Choose random g, f ∈ G, x, y, a, b, α, β ∈ Zp, a collision
resistant hash function H : G3 → Zp, and sets u1 = gxfy, u2 = gaf b, u3 =
gαfβ.
The public key is PK = (g, f , u1, u2, u3, H), and the secret key is SK =
(x, y, a, b, α, β).

– Encryption. To encrypt message M ∈ G,
1. choose random r ∈ Zp, and set C1 = gr, C2 = f r, C3 = u1

r ·M .
2. compute t = H(C1, C2, C3), C4 = (u2u3

t)r.
3. output ciphertext C = (C1, C2, C3, C4).

– Decryption. To decrypt ciphertext C = (C1, C2, C3, C4),
1. compute t = H(C1, C2, C3), and output ⊥ if C4 �= C1

a+tαC2
b+tβ .

2. otherwise, output M = C3 · C1
−x · C2

−y.

Suppose we are given a valid ciphertext (C1, C2, C3, C4) of some message
M . We can recover M by making decryption queries to RKA.Decrypt oracle
on related secret keys via the following attack. For any � ∈ Zp, we change the
secret key (x, y, a, b, α, β) to (x+�, y+�, a+�, b+�, α+�, β+�), then
(C1, C2, C3, C4 · (C1 · C2)

�+t·�) can be decrypted to M · (C1 · C2)
−� under

the modified secret keys. As C1, C2 and � are known to us, we can obtain M
easily by computing M · (C1 · C2)

−� · (C1 · C2)
�.

Obviously in the above cases, message M can be easily recovered given the
output of the decryption algorithm on the modified secret keys.

4.2 Our Construction

Let G be a group of prime order p. We present a public-key encryption scheme
which is CCA secure under the linear related-key attacks as follows.
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– Key generation. Choose random elements g, f , h ∈ G, x, y, a, b, α, β, γ
∈ Zp, a collision resistant hash function H : G4 → Zp, and sets u1 = gxfy,
u2 = gaf b, u3 = gαfβ , v = hγ .
The public key is PK = (g, h, f , u1, u2, u3, v), and the secret key is SK =
(x, y, a, b, α, β, γ).

– Encryption. To encrypt message M ∈ G,
1. choose random elements r, r′ ∈ Zp, and set

C1 = grvr
′
, C2 = f rvr

′
, C3 = hr′ , C4 = u1

r ·M.

2. compute t = H(C1, C2, C3, C4), C5 = (u2u3
t)r.

3. output ciphertext C = (C1, C2, C3, C4, C5).
– Decryption. To decrypt ciphertext C = (C1, C2, C3, C4, C5),

1. compute t = H(C1, C2, C3, C4), and output ⊥ if the following equation
holds.

C5 �= (C1 · C3
−γ)a+tα(C2 · C3

−γ)b+tβ .

2. otherwise, output M as M = C4 · (C1 · C3
−γ)−x · (C2 · C3

−γ)−y.

Correctness. For any sequence of the key generation and encryption algorithms,
it holds that

(u2u3
t)r = (C1 · C3

−γ)a+tα(C2 · C3
−γ)b+tβ

= (gaf b(gαfβ)t)r,

M = C4 · (C1 · C3
−γ)−x · (C2 · C3

−γ)−y

= C4 · (gxfy)−r,

and therefore the decryption algorithm is always correct.

Remarks. Note that compared to the scheme proposed in [20], our construction
is more efficient. The CCA-RKA secure public-key encryption schemes in [20] are
built from adaptive trapdoor relations [15] to generate a tag for every ciphertext
via a strong one-time signature scheme, which implies a trick in it such that the
adversary cannot obtain more information if tag of a ciphertext C equals tag∗ of
the challenge ciphertext C∗, not to mention C = C∗; while in our construction,
we use the Cramer-Shoup public-key encryption scheme [9] as the basis, and the
strong one-time signature schemes are replaced by the ciphertext to generate
tag, such that RKA.Decrypt oracle will still not facilitate the adversary when a
given ciphertext C matches the challenge one C∗, as long as SK does not equal
to φ(SK) for any φ ∈ Φ.

4.3 Security

Theorem 1. Assume the hardness of decisional DH problem, the above public-
key encryption scheme is secure in the CC-RKA security game regarding linear
related-key deriving function φ+.
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Proof. The proof of security is based on augmenting the proof of Cramer and
Shoup with the ideas of generating a generic construction. Specifically, we show
that any algorithm A that breaks the security of the scheme, we can build an
algorithm B that can distinguish between a DH instance and a non-DH instance,
which is given a random tuple (g, f , Z1 = gr, Z2 = f r) ∈ G4 as input.

Setup. Algorithm B chooses random elements h ∈ G, x, y, a, b, α, β, γ ∈ Zp,
and a collision resistant hash function H : G4 → Zp, and then sets u1 = gxfy,
u2 = gaf b, u3 = gαfβ, v = hγ .

Algorithm B sends the public key PK = (g, h, f , u1, u2, u3, v) to algorithm
A, and keeps the private key SK = (x, y, a, b, α, β, γ).

Phase 1. Algorithm A queries (φ, C) to RKA.Decrypt oracle. Algorithm B
responds using the private key φ(SK).

Challenge. Algorithm A outputs two messagesM0,M1 on which it wishes to be
challenged. Algorithm B chooses a random bit d ∈ {0, 1}, and a random element
r′ ∈ Zp, and then responds with the ciphertext C∗ = (C∗

1 , C
∗
2 , C

∗
3 , C

∗
4 , C

∗
5 ),

where

C∗
1 = Z1v

r′ , C∗
2 = Z2v

r′ , C∗
3 = hr′ ,

C∗
4 = Z1

xZ2
y ·Md, C∗

5 = Z1
a+αt∗Z2

b+βt∗ .

Here t∗ = H(C∗
1 , C

∗
2 , C

∗
3 , C

∗
4 ).

Phase 2. Algorithm A continues to adaptively issue queries (φ, C) to
RKA.Decrypt oracle.

– If φ(SK) = SK and C = C∗, such queries are ruled out by the definition of
CC-RKA security game, so algorithm B responds with ⊥.

– Otherwise, algorithm B responds as in Phase 1.

Output. Algorithm A output a guess d′ ∈ {0, 1}. If d′ = d, algorithm B output
1; otherwise, algorithm B outputs 0.

Obviously, if (g, f , Z1, Z2) is a DH instance, then the simulation will be iden-
tical to the actual attack, such that algorithm A has a non-negligible advantage
in outputting the bit d′ = d.

Lemma 1. If (g, f , Z1, Z2) is a DH instance then algorithm A’s view is iden-
tical to the actual attack.

Proof. The actual attack and simulated attack are identical except for the chal-
lenge ciphertext. It remains to prove that the challenge ciphertext has the correct
distribution when (g, f , Z1, Z2) is a DH instance. Actually, in this case, for a
random r ∈ Zp, Z1 = gr and Z2 = f r, the ciphertext C∗ = (C∗

1 , C
∗
2 , C

∗
3 , C

∗
4 , C

∗
5 )

as it should be. Assume that algorithm A’s advantage in breaking the CC-RKA
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security of the above scheme is ε, then we can see that algorithm A’s probability
in outputting the bit d = d′ could be 1/2 + ε.

Next, we show that if (g, f , Z1, Z2) is a non-DH instance, then algorithm A
has a negligible advantage in outputting the bit d′ = d. We assume that (g, f ,
Z1, Z2) is a non-DH instance, where logg Z1 = r1, logf Z2 = r2, and r1 �= r2.

Let (C∗
1 , C

∗
2 , C

∗
3 , C

∗
4 ) be the challenge ciphertext given to algorithm A by al-

gorithm B. We use Failure to denote the event where for RKA decryption queries
(φ, C) it holds that (C1, C2, C3, C4) �= (C∗

1 , C
∗
2 , C

∗
3 , C

∗
4 ), and H(C1, C2, C3, C4)

= H(C∗
1 , C

∗
2 , C

∗
3 , C

∗
4 ). Note that the event Failure has a negligible probability to

occur because hash function H is collision resistant. We say that a ciphertext C
is invalid if logg

C1

C3
γ+� �= logf

C2

C3
γ+� for any � ∈ Zn

p .
Below we prove that algorithm A has a negligible advantage in outputting the

bit d′ = d if the event Failure does not happen. Specifically speaking, we perform
it in two cases: (1) if the event Failure does not happen, then the RKA decryption
oracle rejects all invalid ciphertexts except with a negligible probability; (2) if
the RKA decryption oracle rejects all invalid ciphertexts, then algorithm A has
a negligible advantage in outputting the bit d′ = d. We conclude by the fact that
the event Failure occurs with a negligible probability.

Lemma 2. If (g, f , Z1, Z2) is a non-DH instance and the event Failure does
not happen, then the RKA decryption algorithm rejects all invalid ciphertexts
except with a negligible probability.

Proof. The probability of the invalid ciphertexts happening in our security
game is analogous to that in the Cramer-Shoup public-key encryption scheme [9]
except that for the RKA decryption oracles, some invalid ciphertexts which will
be rejected in the security game of the Cramer-Shoup scheme will be accepted
in our security game. Suppose that algorithm A is given the public key PK =
(g, h, f , u1, u2, u3, v), and the challenge ciphertext C∗ = (C∗

1 , C
∗
2 , C

∗
3 , C

∗
4 , C

∗
5 ).

We prove this lemma via considering (a, b, α, β) ∈ Zp from algorithm A’s point
of view, such that for k = logg f , (a, b, α, β) is uniformly random subject to

⎧
⎨

⎩

logg u2 = a+ kb
logg u3 = α+ kβ
logg C

∗
5 = r1a+ r2kb+ t∗r1α+ t∗r2kβ

.

Note that algorithm A learns nothing on (a, b, α, β) by querying valid ci-
phertexts to the decryption oracle. Actually, from submitting a valid ciphertext,
algorithm A only learns a linear combination of the constraint logg u1 = x+ ky
which is know from the public key.

We denote (C1, C2, C3, C4, C5) �= (C∗
1 , C

∗
2 , C

∗
3 , C

∗
4 , C

∗
5 ) as the first invalid

ciphertext queried by algorithm A, where C1 = gr1vr
′
, C2 = f r2vr

′
, r1 �= r2,

and t = H(C1, C2, C3, C4). In this case, there are three cases we need to take
into consideration.

– (C1, C2, C3, C4) �= (C∗
1 , C

∗
2 , C

∗
3 , C

∗
4 ) and t = t∗. This is impossible since we

assume that the event Failure does not happen.
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Note that the event Failure will never happen because the hash function
H in our construction is collision resistant.

– (C1, C2, C3, C4) �= (C∗
1 , C

∗
2 , C

∗
3 , C

∗
4 ) and t �= t∗. In this case, if the RKA

decryption algorithm accepts the invalid ciphertext, we obtain the following
equations.

⎧
⎪⎪⎨

⎪⎪⎩

logg u2 = a+ kb
logg u3 = α+ kβ
logg C

∗
5 = r1a+ r2kb+ t∗r1α+ t∗r2kβ

logg C5 = r′1(a+�) + r′2k(b+�) + tr′1(α+�) + tr′2k(β +�)

.

where w = logg h.
These equations are linearly independent as long as k2(r1−r2)(r

′
1−r′2)(t−

t∗) �= 0, so algorithm A can be used to guess (a, b, α, β). Therefore, the
probability that the decryption algorithm accepts the first invalid ciphertexts
is at most 1/p.

– (C1, C2, C3, C4) = (C∗
1 , C

∗
2 , C

∗
3 , C

∗
4 ), t = t∗ but C5 �= C∗

5 , In this case, if
the RKA decryption algorithm accepts the invalid ciphertext, we obtain the
following equations.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

logg u2 = a+ kb
logg u3 = α+ kβ
logg C

∗
5 = r1a+ r2kb+ t∗r1α+ t∗r2kβ

logg C5 = r1(a+�) + r2k(b+�) + t∗r1(α+�) + t∗r2k(β +�)
− r′w�(a+�+ t∗(α+�) + b+�+ t∗(β +�))

.

where w = logg h.
These equations are linearly independent as long as � �= 0, which is ruled

out by the definition of CC-RKA security, so algorithm A can be used to
guess (a, b, α, β).

For all the subsequent invalid decryption queries, the above analysis holds
except that each time the RKA decryption oracle rejects an invalid ciphertext
algorithm A can rule out one more value of (a, b, α, β).

Lemma 3. If (g, f , Z1, Z2) is a non-DH instance and the RKA decryption
algorithm rejects all invalid ciphertexts, then algorithm A has a negligible ad-
vantage in outputting the bit d′ = d.

Proof. We prove this lemma by considering the distribution of (x, y, γ) ∈
Zp from the view of algorithm A. Algorithm A is given the public key PK
= (g, h, f , u1, u2, u3, v), such that algorithm A’s point of view, (x, y, γ) is
uniformly random subject to logg u1 = x + ky where k = logg f and logg v =
k′γ where k′ = logg h. We suppose that the RKA decryption algorithm rejects
all invalid ciphertexts, and note that by querying valid ciphertexts to the RKA
decryption oracle, algorithm A does not learn any more information about (x,
y, γ) except the relations of the constraint logg u1 = x + ky and logg v = k′γ.
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Hence, algorithm A cannot learn any information about (x, y, γ) through the
RKA decryption queries.

Let C1 = Z1v
r′ , C2 = Z2v

r′ , C3 = hr′ . Note that as long as k′k(r1 − r2) �= 0,

⎧
⎨

⎩

logg u1 = x+ ky
logg v = k′γ
logg Z1

xZ2
y = r1x+ kr2y

are linearly independent. In the following, we consider two cases.

– φ(SK) = SK and (C1, C2, C3, C4, C5) = (C∗
1 , C

∗
2 , C

∗
3 , C

∗
4 , C

∗
5 ). In this case,

from the definition of the CC-RKA security game, such queries will be ruled
out, therefore the RKA decryption algorithm outputs ⊥ with noticeable
probability.

– φ(SK) �= SK and (C1, C2, C3, C4) = (C∗
1 , C

∗
2 , C

∗
3 , C

∗
4 ). If the verification

of C5 on (C1, C2, C3, C4) with φ(SK) fails, the RKA decryption algorithm
outputs ⊥. Otherwise, the RKA decryption algorithm responds as

M ′ = C∗
4 · (C∗

1 · C∗
3
−γ−�)−x−� · (C∗

2 · C∗
3
−γ−�)−y−�

= Md · g−r·� · hr′·�·(x+�) · f−r·� · hr′·�·(y+�)

= Md · g−r·� · f−r·� · hr′·�·(x+y+�+�).

We can see that even the all the ciphertexts submitted to RKA.Decrypt oracle
are exactly the same as the challenge ciphertext, algorithm A procures nothing
about (x, y, γ) from the RKA decryption queries under (x+�, y+�, γ +�),
as long as (x +�, y +�, γ +�) �= (x, y, γ). On the one hand, without (x, y,
γ), algorithm A fails to compute d′ = d under the modified secret keys (x +�,
y+�, γ +�). Therefore algorithm A’s probability in outputting the bit d′ = d
is 1/2.

Lemma 2 makes sure that as long as the event Failure does not happen, the
RKA decryption algorithm rejects all invalid ciphertexts except with a negligible
probability. Lemma 3 proves that as long as the RKA decryption algorithm
rejects all the invalid ciphertexts, algorithm A has a negligible advantage in
outputting the bit d′ = d. Therefore, we can say that algorithm A’s probability
in outputting the bit d′ = d is 1/2.

To sum up, we can see that if (g, f , Z1, Z2) is a DH tuple, algorithm A
wins the CC-RKA game with the probability 1/2 + ε, such that algorithm B’s
probability in solving the decisional DH problem is 1/2 + ε; if (g, f , Z1, Z2) is
a non-DH tuple, algorithm A wins the CC-RKA game with the probability 1/2,
such that algorithm B’s probability in solving the decisional DH problem is 1/2.
Denote by B(g, f , Z1, Z2) = 1 the event that algorithm B solves the decisional
DH problem. Hence, algorithm B has a non-negligible probability

Pr[B(g, f, Z1, Z2) = 1] = 1/2 · (1/2 + ε) + 1/2 · 1/2 = 1/2 + ε/2

of solving the decisional DH problem.
This concludes the proof of Theorem 1.
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4.4 Efficiency

We compareWee’s CC-RKA secure public-key encryption scheme from factoring,
from BDH, from DDH with weaker security and ours from DDH in Table 1.

In this table, “Pairing-E” means the sum of paring computation executed dur-
ing the encryption phase, and “Pairing-D” means the sum of paring computation
executed during the decryption phase. “Ex-E” means the the sum of exponen-
tiation computation executed during the encryption phase, “Ex-D” means the
the sum of exponentiation computation executed during the decryption phase.

Table 1. Comparison between public-key encryption schemes with CC-RKA security

Scheme Ciphertext Size Pairing-E Pairing-D Ex-E Ex-D

Factoring[20] 6 0 0 9 7

BDH[20] 6 1 3 7 5

DDH[20] 7 0 0 9 9

Ours 5 0 0 7 5

5 Conclusions

Followed the work in [4], Wee [20] proposed the first public-key encryption
scheme against related-key attacks via adaptive trapdoor relations [19] while
paying a small overhead in efficiency, of which the existing public-key set-ups
can be maintained without changing. In the constructions of [20], to make sure
the efficiency of the specific constructions, Wee [20] designed some efficient strong
one-time signatures in their instantiations. However, though one-time signatures
are easy to construct in theory, and are more efficient than full-fledged signa-
tures, (i.e., those which are strongly unforgeable under adaptive chosen-message
attack), they still have their price.

Based on a framework to enable the construction of identity-based encryption
schemes that are secure under related-key attacks, Bellare, Paterson and Thom-
son [6] provided a framework to enable the construction of public-key encryp-
tion schemes that are secure under related-key attacks. Public-key encryption
schemes in [6] are achieved in the standard model and hold CC-RKA under rea-
sonable hardness assumptions in the standard model, but they are transformed
from the identity-based encryption schemes such that pairing computation is
inevitable in the efficient instantiations.

To construct an efficient public-key encryption scheme under the setting of
CC-RKA security without pairings and any one-time signature schemes, in this
paper, we focus on the achievement of a full fledged CCA secure public-key
encryption scheme in the context of related-key attack security. After a succinct
review of the security notions related to public-key encryption schemes with
RKA security, we start with pointing out a simple linear related-key attack on
the Cramer-Shoup basic CCA secure public-key encryption scheme [9]. Next,
we propose an efficient public-key encryption scheme which is resilient against
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related-key attacks from DDH, which is in fact a variant of the Cramer-Shoup
public-key encryption scheme [9]. Finally, we prove its CC-RKA security under
the difficulty of solving the DDH problem.
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