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Abstract. In Elliptic Curve Cryptography(ECC), due to the characteristic of 
high efficiency, the modular multiplication operation in type II optimal normal 
basis(II-ONB) over binary field has become a key research trend. Based on B. 
Sunar’s basis conversion theory, in this paper, an improved II-ONB modular 
multiplication algorithm has been proposed and an efficient reconfigurable 
modular multiplier, which can support different lengths has been implemented. 
This work has been simulated using ModelSim and synthesized under 0.18μm 
CMOS technology. Then, complexity comparison has also been accomplished. 
The results prove that our proposed reconfigurable II-ONB modular multiplier 
can not only guarantee high flexibility for arbitrary modular multiplication, but 
also have area advantage in resource-constrained ECC applications. 
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1 Introduction 

In modern age, along with flourishing development of E-Commerce, E-
Administration and military communications, information security has been more and 
more widely focused by people. The public-key cryptography system can effectively 
solve problems like anti-repudiation, authentication and key distribution on public 
channels. Based on the elliptic curve discrete logarithm problem(ECDLP), Elliptic 
Curve Cryptography(ECC)[1-2] has already been proved to be more secure and more 
efficient than RSA. Therefore, ECC has gradually replaced RSA as the next 
generation of public-key cryptography standard[3]. Modern cryptanalysis indicates 
that ECC provides high security strength per bit[4], so at the same security level, it 
can offer the fastest computation, the least storage requirement and the lowest 
communication bandwidth, which is very suitable for resource restriction devices[5-6] 
like mobile telephones, PDA, wireless network and smart cards. In fields of high-end 
applications, such as network server and certificate authority, due to large secure 
connection number and certain real-time requirement, ECC can provide signature 
authentication service with higher throughput, too. 
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Finite field multiplication is a critical operation for ECC implementation 
performance, and how to design an efficient and flexible finite field multiplier has 
also become a focus in cryptographic applications[7-11]. At present, these are two 
main implementation methods for large integer multiplication: the software and the 
hardware. The software method is highly flexible and convenient to use, but restricted 
by the general purpose microprocessor instruction system, the operation efficiency is 
so low that it can’t meet the need for high speed applications. Therefore, it’s 
necessary to design application specific integrated circuit(ASIC). This hardware 
method can reach high speed and low power consumption, but the specific property in 
structure is too inflexible to further development. ECC usually chooses keys with 
different lengths for information graded protection. When key length changes, the 
hardware circuit must be redesigned that results in a waste of manpower and material 
resources. In the meanwhile, it increases ECC chip types and managing difficulty. 
One efficient solution is to design a kind of parameter reconfigurable hardware circuit 
to improve ECC chips flexibility, in which the reconfigurable design of finite field 
multiplier is the kernel[12-14]. 

Normal basis[15] is one of the most important representation over binary field. 
Currently, there is no flexible and reconfigurable design scheme for normal basis 
multiplier at all times. In order to simplify extremely complicated multiplication 
operation in normal basis, researchers have found a special class of normal basis 
called optimal normal basis(short for ONB)[16]. The ONB has the lowest 
computational complexity, whose exponentiation and multiplication operations are 
very simple. Type I ONB and type II ONB(short for II-ONB) are two kinds of most 
commonly used ONB[17], while with the highest efficiency, II-ONB multiplication 
operation has been widely used. For GF(2m), there are 174 m values in the range 
m∈[2,1000], for which a II-ONB exists. And multiplication matrix M of II-ONB has 
the minimum number of “1”, which is equal to 2m-1. Except the first column, every 
other column has only two “1”, which greatly reduces space complexity and 
computational complexity of modular multiplication operation. Consequently, designs 
for II-ONB multiplier have become hot. 

In 2001, B.Sunar proposed an idea and concrete method of basis conversion[18], 
which provided a new thinking for II-ONB multiplier. In 2008, A. H. Namin of 
Canada Windsor University brought forward a word-level multiplier for II-ONB[19]. 
This multiplier had advantage in computation speed, but disadvantage in circuit area. 
Moreover, it could not support modular multiplication operation with variable 
lengths. In 2009, T. F. Al-Somani of Saudi Umm Kula University presented an 
improved Massey-Omura normal basis multiplier using three-stage pipelines[20]. It 
had been advanced significantly in performance, but could not support modular 
multiplication operation with diverse lengths, too. 

Up to now, almost all II-ONB multipliers were designed fixed in structure and only 
achieved a sort of specific ECC operation over binary field. The bad flexibility was 
difficult to meet the need for ECC flexible processing. Therefore, this paper aims to 
do some research and design an efficient reconfigurable II-ONB multiplier to meet 
the needs of II-ONB multiplication operation with different lengths, and provide a 
new design method and technology for solving problems of II-ONB multiplier in 
multiplication operation with single length and poor flexibility. 
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2 Type II Optimal Normal Basis and Multiplication Operation 

For element β∈GF(2m), a normal basis can be expressed as 12 2{ , , , }
m

b b b
-

  and the 

corresponding normal polynomial is defined as F(t)=tm + cm-1t
m-1 + … + c1t + c0. II-

ONB can be constructed[17] if 2m+1 is a prime and if either 2 is a primitive root 
modulo 2m+1 or 2m+1=3 (mod 4) and the multiplicative order of 2 modulo 2m+1 is 
m holds. Then, 1r rα −= +  generates an optimal normal basis for GF(2m), where r is a 
primitive (2m+1)th root of unity, i.e., r2m+1=1 and ri ≠1 for any 1≤i<2m+1. 

In normal basis, the square operation of A is just simple cyclic shift operation, 
namely A2=(am a1 a2 

… am-1). However, the multiplication operation is relatively 
complex. Firstly, a multiplication matrix M should be computed, whose calculation 
steps are as follows[21]: 

1. Calculate the convert matrix E from (1, t, ..., tm-1) to 
12 2( , , , )
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The coefficients meeting all above equations form convert matrix E: 

0,0 0,1 0, 1

1,0 1,1 1, 1

1,0 1,1 1, 1
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2. Calculate the inverse matrix of E: G=E-1. 
3. Suppose matrix Q is expressed as: 

0 1 2 1

0 1 0 0

0 0 1 0

0 0 0 1

m
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q q q q -
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Calculate matrix D =EQG. 
4. Suppose μi,j=dj-i,-i(i, j=0, 1, …, m-1) and subscripts of d get the least non-negative 

integer values of modulo m. The multiplication matrix M is obtained: 
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The product of A ⋅ B in normal basis can be expressed as C=AMBT, where BT 
denotes the transpose of B.  

The modular multiplication algorithm in normal basis is shown as Algorithm 1. 
The core operation is the matrix multiplication (step 3), which calculates 1 bit product 
in every cycle. 

 
Algorithm 1. Modular multiplication algorithm in normal basis[21] 

1 2 1 2

1 2

Input: ( , , , ), ( , , , ),

(2 )

Output: Product ( , , , )

1. ,

2. for 1 to   do

3. ( , )

4. 1 (1 )

5.

m m

m

m

T

i

A a a a B b b b

multiplication matrix M for GF

C c c c

x A y B

i m

c f x y xMy

x bit cyclic left shift of x

y

= =

=

  = =

  =

       = =

       <<<

       <<

 



1 2

1 (1 )

end  for

6.  ( , , , )
m

bit cyclic left shift of y

C c c c

<

     

= 

 

3 II-ONB Modular Multiplication Algorithm 

There are two important steps during the design of II-ONB modular multiplier: the 
first step is converting elements represented in II-ONB to a specific basis N’, which 
makes multiplication operation in basis N’ have a regular representation; the second 
step is multiplying the elements in basis N’. 

3.1 Basis Conversion Theory 

According to II-ONB construction method, for GF(2m), normal element β = r + r-1, 
where r is a primitive (2m + 1)th root of unity, i.e., r2m + 1 = 1 and ri 

≠ 1 for any i ∈[1, 
2m+1), the normal basis is given as 

12 2{ , , , }
m

N β β β
−

=  . If 2 is a primitive root modulo 
2m+1, then the set of powers of 2 modulo 2m + 1 is: 

2 2
1 {2,2 , , 2 }mod (2 1)mP m= +     (1) 

Equation (1) is equivalent to 1 {1,2, ,2 }Q m=  . Therefore, a basis element 2 2i i

r r−+  
can be written as rj + r-j for j∈[1, 2m]. Furthermore, it is always possible to rewrite rj + 
r-j as r(2m+1)-j + r-(2m+1)+j. If j≥m+1, then this has the benefit of bringing the power of r 
to the range [1, m]. If the multiplicative order of 2 modulo 2m+1 is equal to m, then 
the set of powers of 2 modulo 2m + 1 is: 
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2

2 {2,2 , , 2 }mod (2 1)mP m= +    (2) 

Equation (2) is equivalent to 2 {1,2, , }Q m=  . As a result, a basis element 2 2i i

r r−+  
can be written uniquely as rj + r-j with j∈[1, m]. The basis whose element is r j + r-j is 
defined as N’ = {β1, β2, 

..., βm}, where βj = r j + r-j and j∈[1, m]. 

Let A be expressed in the basis N as 12 4 2
1 2 3

m

mA a a a aβ β β β
−′ ′ ′ ′= + + + +  where β=r + 

r-1. The representation of A in the basis N’ is given as A=a1β1 + a2β2 + a3β3 + ... + amβm 
where βi = ri + r-i. We can express the permutation between the coefficients aj=ai’ 
as[18,22]: 

 

[1, ]

(2 1) [ 1,2 ]

k if k m
j

m k if k m m

                     ∈
=  + −      ∈ +   

(3) 

Where k = 2i-1(mod 2m + 1) for i=1, 2, ..., m. Not a normal basis, basis N’ is just a 
shifted form of canonical basis[16]. 

3.2 II-ONB Modular Multiplication Algorithm Based on Basis Conversion 

Adopt Equation (3) for basis conversion. A, B∈GF(2m), can be represented in basis N’ 

as 
1 1

( )
m m

i i

i i i
i i

A a a r rβ −

= =

= = +   and 
1 1

( )
m m

i i

i i i
i i

B b b r rβ −

= =

= = +  . Then product C=A ⋅ B can be 

written as: 
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1 1 1 1
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( ) ( )

( ) ( )

m m
i i j j
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m m m m
i j i j i j i j

i j i j
i j i j
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a b r r a b r r

C C

− −
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  
    
 

   
(4) 

If i = j, then ri-j + r-(i-j)=r0 + r0=0, so the coefficients of βk in C1 are the sum of all 
aibj for which k=|i - j|∈[1, m]. In C2, |i + j|∈[1, 2m] can be divided into |i + j|∈[1, m] 
and |i + j|∈[m+1, 2m], while the latter case can be replaced by 2m + 1-|i + j|. So C2 can 
be transformed into the following: 

  

( )

2
1 1

( ) ( )

1 1 1 1

1 2

( )

( ) ( )

m m
i j i j

i j
i j

m m i m m
i j i j i j i j

i j i j
i j i j m i

C a b r r

a b r r a b r r

D D

+ − +

= =

−
+ − + + − +

= = = = − +

= +

= + + +

= +
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  

 

(5) 
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In Equation (5), the coefficients of βk in D1 are the sum of all aibj for which k=|i + 
j|∈[1, m] where i∈[1, m] and j∈[1, m-i]. And D2 can be represented as: 

  

( )

2
1 1

2 1 ( ) (2 1 ( ))

1 1

( )

( )

m m
i j i j

i j
i j m i

m m
m i j m i j

i j
i j m i

D a b r r

a b r r

+ − +

= = − +

+ − + − + − +

= = − +

= +

= +

 

 
 

(6) 

In Equation (6), the coefficients of βk in D2 are the sum of aibj for which k = 2m + 1 
- |i + j|∈[1, m] where i∈[1, m] and j∈[m-i+1, 2m]. 

Suppose 
mod 2 1 mod 2 +1

( )
2 1 mod 2 1

i m i m m
k i

m i m others

                  +     0 ≤  ≤
=

+ −    +      




（ ）

（ ）
. According to above 

deduce, it is easy to prove that j j ( ) ( ) ( ) ( )
1 1 1

( ) ( )
m m m

i i i k i j k i j k i j k i j i
i i i

A a a a aβ β β β β β+ − + −
= = =

= = + = +   [19]. 

Thus, product C also can be represented as: 
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 
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(7) 

The single bit ci can be written as: 

( ) ( ) ( ) ( )
1 1

( ) ( )
m m

i j k i j k i j j k i j k i j
j j

c b a a a b b+ − + −
= =

= + = + 
 

(8) 

From above analysis, II-ONB modular multiplication algorithm based on basis 
conversion is brought forward, as shown in Algorithm 2. This is a serial algorithm, 
composed by outer and inner loops. Operations of AND (&), XOR (⊕) and cyclic 
shift (>>>) can be directly mapped to hardware implementation. 
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Algorithm 2. II-ONB modular multiplication algorithm based on basis conversion 

1 2 1 2

1 2

1 2 1 2

0

0 1 2

Input: ( , , ), ( , , , )

Output: Product ( , , , )

1. : ( , , ), ( , , , )

2. 0, 0

3. [1 : 2 1] { , , , , ,

m m

m

m m

m m

A a a a B b b b in normal basis N

C c c c in normal basis N

Basis conversion A a a a B b b b in basis N

C b

D m b b b b b

′ ′ ′ ′ ′ ′= =

′ ′ ′=

′  = =

  = =

  + =

 



 


2 1

1 2

, , , }

4. for 1 to  do

5. for 1 to  do

6. c c ( & ( [ ] [2 1 ]))

end  for

7. 1 (1 )

end  for

8. : ( , ,

i i j

b b

i m

j m

a D j D m j

D bit cyclic right shift of D

Basis conversion C c c

  =

        =

               = ⊕ ⊕ + −

           

        >>>

     

′ ′  =



, )
m

c in normal basis N′
 

In Algorithm 2, input data 
1 2

( , , )
m

A a a a′ ′ ′=   and 1 2
( , , , )

m
B b b b′ ′ ′=   are in normal 

basis N. Firstly, convert operands A and B from normal basis N to basis N’. Then, 
calculate 1 bit ci after m inner loops and product C after m outer loops. Finally, 
convert product C from basis N’ back to normal basis N after the operation is 
completed. From analysis we can learn that the computational complexity of 
Algorithm 2 is O(m2), which can be further improved adopting parallel computation. 
Therefore, this paper proposes an improved II-ONB modular multiplication algorithm 
based on basis conversion, as shown in Algorithm 3. 

Algorithm 3. An improved II-ONB modular multiplication algorithm based on basis 
conversion 

1 2 1 2

1 2 1 2

0

0 1 2

1 2

Input: ( , , ), ( , , , )

Output: Product ( )

1. : ( , , ) ( , , , )

2. 0, 0

3. [1 : 2 1] { , , , , ,

, , ,
m m

m m

m

m

in normal basis

in normal basis

A a a a B b b b N

C N

Basis conversion A a a a B b b b in basis N

C b

D m b b b b

c c c

′ ′ ′ ′ ′ ′= =

=
′  = =

  = =

  + =

′ ′ ′
 

 




，

2 1

1 2

, , , }

4. for 1 to  do

5.       & ( [1: ] [2 : 1])

6.       1 (1 )

end  for

7.  : ( , , , )

m

i

m

b b b

i m

C C a D m D m m

D bit cyclic right shift of D

Basis conversion C c c c in normal basis N

  =

  = ⊕ ⊕ +  

  >>>

     
′ ′ ′=



  
In Algorithm 3, there exists only one layer loop that can generate product C in 

basis N’ after m loops. So, the computational complexity reduces to O(m). In public-
key cryptography, it usually performs continuous modular multiplication operations, 
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so basis conversion is only needed before the first modular multiplication operation 
and after the last modular multiplication operation. Consequently, the implementing 
time of basis conversion can be ignored. 

4 Design of Reconfigurable II-ONB Modular Multiplier 

4.1 Reconfigurable Basis Conversion Circuit 

According to above analysis, based on B. Sunar’s basis conversion theory, the basis 
conversion circuit is designed adopting reconfiguration method in this paper. The 
implementation of basis conversion circuit is closely related to the finite field length 
m. Basis conversion of fixed length can be accomplished by simple connections, but 
for different lengths, it requires very complex computing circuit. In ECC algorithms, 
basis conversion is only demanded before and after continuous modular 
multiplication operations respectively and the implementing time of basis conversion 
can be ignored, hence it can be realized by SW/HW method. From basis conversion 
theory we can see the corresponding relationship between j and i is fixed when m is 
determinate. So in this paper, we calculate corresponding position information in 
advance by software, then write them into configuration registers. In this way, when 
performing basis conversion by hardware, choosing values through configuration 
registers is enough. 

a'2 a'3 a'ma'4 a'm-1a'1

MUX

ai

Configura
tion 

Registers

clk
WEN

Cfg_datain
Cfg_dataout

reset

 

Fig. 1. Reconfigurable basis conversion circuit 

The reconfigurable basis conversion circuit is shown in Fig. 1. It requires m clock 
cycles to complete once basis conversion. If hardware resources are adequate, it can 
use multiple MUXs in parallel to increase basis conversion implementing efficiency. 
In the best situation, it can complete basis conversion in only one clock cycle. 

4.2 Reconfigurable Modular Multiplier Design 

In order to support modular multiplication in II-ONB with different lengths, 
according to Algorithm 3, this paper designs an efficient reconfigurable II-ONB 
modular multiplier based on basis conversion, as shown in Fig. 2. In the right part, 
there are two 385-bit registers R1 and R2, both of which are used to store B values 
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and b0 is constant “0”. In every one clock cycle, these two registers carry out 1-bit 
joint shift operation: for R1, bi=bi+1; for R2, bi=bi-1⊕(bj & Datapath_ctl[i-1]). Register 
C is used to store product C. Datapath_ctl[0:383] is the control signal of the data path, 
whose value is also associated with the finite field length 

384 length length-1

Datapath _ ctl {00 0 ,1,0 00}
−

=    . In the left part, there are two shift registers, which 

are used to store A and B separately. Their control signals RegA_ctl[7:0] and 
RegB_ctl[7:0] are given by the control unit. In all the clock cycles, 
RegA_ctl=RegB_ctl=1. 

When signal start is valid, the multiplier begins initialization. The controlled 
registers R1 and R2 jointly shift 1 bit. At the same time, in order to make the MSB of 
operation data and registers align right, two barrel shift registers shift (384-length) 
bits. After length clock cycles, the multiplier generates product C in basis N’ . The 
maximum length of the multiplier is set 384. When operands are less than 384 bits, all 
data in registers align right and high bits are filled up zero. According to different 
length ranges, registers in our design also can be extended to support modular 
multiplication operation of larger length. 

 

Fig. 2. Reconfigurable II-ONB modular multiplier structure 

5 Implementation and Performance Analysis 

5.1 Simulation and Synthesis 

In order to validate our design, the proposed reconfigurable II-ONB modular 
multiplier has been modeled in Verilog HDL and simulated functionally with 
ModelSim SE 6.1f. The implementation has verified our design’s function correctly 
[21]. Fig. 3 depicts simulation results of B-191. 
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The operation data are: 

A= 7a12de5c_d5e55e5a_d587de51_a51c551a_de1b2151_b11a21de 
B= 64545d85_5da54d5e_c4b545a5_d45e4456_7aadcccd_dbeebdad 

The modular multiplication product is: 

C=18db1d7c_d6274cb7_d760e71a_35ae72e5_6de25e4a_73e6fac9 
 

 
 

 

Fig. 3. Simulation of B-191 modular multiplication operation 

Additional efforts have also been devoted to as ASIC implementation. In order to 
evaluate performance more accurately, making use of Synopsys’s Design Complier 
for Solaris, logical synthesis has been accomplished under 0.18μm CMOS 
technology. Table 1 depicts the result report under the constraint of 4.0ns. Our design 
only occupancies 55k gates in area, while the clock frequency can reach 320MHz. 

Table 1. Synthesis results under 0.18μm CMOS technology 

Constraint
(ns) 

Area(μm2)
Equivalent Gates 

(kgates)

Delay 
(ns) Combinational Logic Registers

4.0 398 868 156 892 55 3.1 

5.2 Analysis and Comparison 

Area-Timing complexity comparison of different II-ONB modular multipliers are 
shown in Table 2. The delays of a two-input AND gate and an n-input XOR gate have 
been approximated by TA and 

2log n   TX separately. In [19] and [23], multipliers were 

both designed on word-level, where m denotes the finite field length, k denotes the 
number of parallel modules and w denotes the word length. Because the hardware 
structure of our design is fixed, the area and delay of circuit are finalized. The space 
complexity of this work is 768#AND+1152#XOR and the computational complexity 
is 2TA+3TX. In order to compare our design with others, we have chosen the practical 
finite field size of m=233 that is a recommended NIST(National Institute of Standards 
and Technology) binary field degree with k=8 and w=32 which are practical for VLSI 
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implementation. The complexity comparison of different II-ONB modular multipliers 
in F2233 with k=8 and w=32 are shown in Table 3. 

Table 2. Area-Timing complexity comparison of different II-ONB modular multipliers 

Designs # AND # XOR Multiplication Delay 

Namin[19] 2km (4k-1)m wTA+(w+
2log 2k   )TX 

Massey[23] k(2m-1) k(2m-2) w(TA+(1+
2log m   )TX) 

This work 768 1152 2TA+3TX 

Table 3. Complexity comparison of different II-ONB modular multipliers in F2233 with k=8 
and w=32 

Designs # of AND # of XOR Multiplication Delay 

Namin[19] 3728 7223 32TA+36TX 
Massey[23] 3720 3712 32TA+288TX 
This work 768 1152 64TA+96TX 

 
It can be seen from Table 3 that, due to the word-level structure, compared to our 

design, in spite of owning shorter multiplication delays, Namin’s and Massey-
Omura’s multipliers occupied much more hardware resources. In addition, both of 
these two multipliers couldn’t support modular multiplication operation with scalable 
lengths, and it required to re-design the hardware circuit when parameters changed. 
However, our proposed reconfigure multiplier is one efficient solution for modular 
multiplications with variable parameters. When parameters changed, only 
reconfiguring the structural parameters is enough, and the hardware structure doesn’t 
need to change. So, among above designs, our reconfigurable multiplier is the most 
flexible in structure. 

6 Conclusions 

In this paper, some researches on reconfiguration design of II-ONB modular 
multiplier over binary field in ECC have been done. According to B. Sunar’s basis 
conversion theory, operation data in normal basis have been converted to a new 
defined basis. On this condition, an improved II-ONB modular multiplication 
algorithm has been proposed, and an efficient reconfigurable modular multiplier 
supporting different lengths has been implemented. Finally, this work has been 
simulated and synthesized. Besides, performance analysis has also been 
accomplished. The experimental results prove that our design has higher flexibility 
and smaller area, which is the most suitable to resource-constrained ECC applications. 
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