

T. Zia et al. (Eds.): SecureComm 2013, LNICST 127, pp. 169–181, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

An Efficient Reconfigurable II-ONB
Modular Multiplier

Li Miao1,2, He Liangsheng1, Yang Tongjie1,* Gao Neng2,
Liu Zongbin2, and Zhang Qinglong2

1 Zhengzhou Information Science and Technology Institute, Zhengzhou, 450004, China
2 SKLOIS, Institute of Information Engineering,

Chinese Academy of Sciences, Beijing, 100093, China
{limiao12,lshhe,tjyang,gaoneng,zbliu,qlzhang}@is.ac.cn

Abstract. In Elliptic Curve Cryptography(ECC), due to the characteristic of
high efficiency, the modular multiplication operation in type II optimal normal
basis(II-ONB) over binary field has become a key research trend. Based on B.
Sunar’s basis conversion theory, in this paper, an improved II-ONB modular
multiplication algorithm has been proposed and an efficient reconfigurable
modular multiplier, which can support different lengths has been implemented.
This work has been simulated using ModelSim and synthesized under 0.18μm
CMOS technology. Then, complexity comparison has also been accomplished.
The results prove that our proposed reconfigurable II-ONB modular multiplier
can not only guarantee high flexibility for arbitrary modular multiplication, but
also have area advantage in resource-constrained ECC applications.

Keywords: Elliptic Curve Cryptography; Type II Optimal Normal Basis;
Reconfigurable Modular Multiplier; Basis Conversion.

1 Introduction

In modern age, along with flourishing development of E-Commerce, E-
Administration and military communications, information security has been more and
more widely focused by people. The public-key cryptography system can effectively
solve problems like anti-repudiation, authentication and key distribution on public
channels. Based on the elliptic curve discrete logarithm problem(ECDLP), Elliptic
Curve Cryptography(ECC)[1-2] has already been proved to be more secure and more
efficient than RSA. Therefore, ECC has gradually replaced RSA as the next
generation of public-key cryptography standard[3]. Modern cryptanalysis indicates
that ECC provides high security strength per bit[4], so at the same security level, it
can offer the fastest computation, the least storage requirement and the lowest
communication bandwidth, which is very suitable for resource restriction devices[5-6]
like mobile telephones, PDA, wireless network and smart cards. In fields of high-end
applications, such as network server and certificate authority, due to large secure
connection number and certain real-time requirement, ECC can provide signature
authentication service with higher throughput, too.

* Corresponding author.

170 L. Miao et al.

Finite field multiplication is a critical operation for ECC implementation
performance, and how to design an efficient and flexible finite field multiplier has
also become a focus in cryptographic applications[7-11]. At present, these are two
main implementation methods for large integer multiplication: the software and the
hardware. The software method is highly flexible and convenient to use, but restricted
by the general purpose microprocessor instruction system, the operation efficiency is
so low that it can’t meet the need for high speed applications. Therefore, it’s
necessary to design application specific integrated circuit(ASIC). This hardware
method can reach high speed and low power consumption, but the specific property in
structure is too inflexible to further development. ECC usually chooses keys with
different lengths for information graded protection. When key length changes, the
hardware circuit must be redesigned that results in a waste of manpower and material
resources. In the meanwhile, it increases ECC chip types and managing difficulty.
One efficient solution is to design a kind of parameter reconfigurable hardware circuit
to improve ECC chips flexibility, in which the reconfigurable design of finite field
multiplier is the kernel[12-14].

Normal basis[15] is one of the most important representation over binary field.
Currently, there is no flexible and reconfigurable design scheme for normal basis
multiplier at all times. In order to simplify extremely complicated multiplication
operation in normal basis, researchers have found a special class of normal basis
called optimal normal basis(short for ONB)[16]. The ONB has the lowest
computational complexity, whose exponentiation and multiplication operations are
very simple. Type I ONB and type II ONB(short for II-ONB) are two kinds of most
commonly used ONB[17], while with the highest efficiency, II-ONB multiplication
operation has been widely used. For GF(2m), there are 174 m values in the range
m∈[2,1000], for which a II-ONB exists. And multiplication matrix M of II-ONB has
the minimum number of “1”, which is equal to 2m-1. Except the first column, every
other column has only two “1”, which greatly reduces space complexity and
computational complexity of modular multiplication operation. Consequently, designs
for II-ONB multiplier have become hot.

In 2001, B.Sunar proposed an idea and concrete method of basis conversion[18],
which provided a new thinking for II-ONB multiplier. In 2008, A. H. Namin of
Canada Windsor University brought forward a word-level multiplier for II-ONB[19].
This multiplier had advantage in computation speed, but disadvantage in circuit area.
Moreover, it could not support modular multiplication operation with variable
lengths. In 2009, T. F. Al-Somani of Saudi Umm Kula University presented an
improved Massey-Omura normal basis multiplier using three-stage pipelines[20]. It
had been advanced significantly in performance, but could not support modular
multiplication operation with diverse lengths, too.

Up to now, almost all II-ONB multipliers were designed fixed in structure and only
achieved a sort of specific ECC operation over binary field. The bad flexibility was
difficult to meet the need for ECC flexible processing. Therefore, this paper aims to
do some research and design an efficient reconfigurable II-ONB multiplier to meet
the needs of II-ONB multiplication operation with different lengths, and provide a
new design method and technology for solving problems of II-ONB multiplier in
multiplication operation with single length and poor flexibility.

 An Efficient Reconfigurable II-ONB Modular Multiplier 171

2 Type II Optimal Normal Basis and Multiplication Operation

For element β∈GF(2m), a normal basis can be expressed as 12 2{ , , , }
m

b b b
-

 and the

corresponding normal polynomial is defined as F(t)=tm + cm-1t
m-1 + … + c1t + c0. II-

ONB can be constructed[17] if 2m+1 is a prime and if either 2 is a primitive root
modulo 2m+1 or 2m+1=3 (mod 4) and the multiplicative order of 2 modulo 2m+1 is
m holds. Then, 1r rα −= + generates an optimal normal basis for GF(2m), where r is a
primitive (2m+1)th root of unity, i.e., r2m+1=1 and ri ≠1 for any 1≤i<2m+1.

In normal basis, the square operation of A is just simple cyclic shift operation,
namely A2=(am a1 a2

… am-1). However, the multiplication operation is relatively
complex. Firstly, a multiplication matrix M should be computed, whose calculation
steps are as follows[21]:

1. Calculate the convert matrix E from (1, t, ..., tm-1) to
12 2(, , ,)

m

t t t
−

 :

1

2 1
0,0 0,1 0,2 0, 1

2 2 1
1,0 1,1 1,2 1, 1

4 2 1
2,0 2,1 2,2 2, 1

2 2 1
1,0 1,1 1,2 1, 1

mod ()

mod ()

mod ()

mod ()
m

m
m

m
m

m
m

m
m m m m m

t e e t e t e t F t

t e e t e t e t F t

t e e t e t e t F t

t e e t e t e t F t
−

−
−

−
−

−
−

−
− − − − −

= + ⋅ + ⋅ + + ⋅

= + ⋅ + ⋅ + + ⋅

= + ⋅ + ⋅ + + ⋅

= + ⋅ + ⋅ + + ⋅










The coefficients meeting all above equations form convert matrix E:

0,0 0,1 0, 1

1,0 1,1 1, 1

1,0 1,1 1, 1

m

m

m m m m

e e e

e e e
E

e e e

-

-

- - - -

é ù
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê úë û




   


2. Calculate the inverse matrix of E: G=E-1.
3. Suppose matrix Q is expressed as:

0 1 2 1

0 1 0 0

0 0 1 0

0 0 0 1

m

Q

q q q q -

é ù
ê ú
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê ú
ê úë û




    



Calculate matrix D =EQG.
4. Suppose μi,j=dj-i,-i(i, j=0, 1, …, m-1) and subscripts of d get the least non-negative

integer values of modulo m. The multiplication matrix M is obtained:

0,0 0,1 0, 1

1,0 1,1 1, 1

1,0 1,1 1, 1

m

m

m m m m

M

m m m
m m m

m m m

-

-

- - - -

é ù
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê úë û




   


172 L. Miao et al.

The product of A ⋅ B in normal basis can be expressed as C=AMBT, where BT
denotes the transpose of B.

The modular multiplication algorithm in normal basis is shown as Algorithm 1.
The core operation is the matrix multiplication (step 3), which calculates 1 bit product
in every cycle.

Algorithm 1. Modular multiplication algorithm in normal basis[21]

1 2 1 2

1 2

Input: (, , ,), (, , ,),

(2)

Output: Product (, , ,)

1. ,

2. for 1 to do

3. (,)

4. 1 (1)

5.

m m

m

m

T

i

A a a a B b b b

multiplication matrix M for GF

C c c c

x A y B

i m

c f x y xMy

x bit cyclic left shift of x

y

= =

=

 = =

 =

 = =

 <<<

 <<

 



1 2

1 (1)

end for

6. (, , ,)
m

bit cyclic left shift of y

C c c c

<

= 

3 II-ONB Modular Multiplication Algorithm

There are two important steps during the design of II-ONB modular multiplier: the
first step is converting elements represented in II-ONB to a specific basis N’, which
makes multiplication operation in basis N’ have a regular representation; the second
step is multiplying the elements in basis N’.

3.1 Basis Conversion Theory

According to II-ONB construction method, for GF(2m), normal element β = r + r-1,
where r is a primitive (2m + 1)th root of unity, i.e., r2m + 1 = 1 and ri

≠ 1 for any i ∈[1,
2m+1), the normal basis is given as

12 2{ , , , }
m

N β β β
−

=  . If 2 is a primitive root modulo
2m+1, then the set of powers of 2 modulo 2m + 1 is:

2 2
1 {2,2 , , 2 }mod (2 1)mP m= + (1)

Equation (1) is equivalent to 1 {1,2, ,2 }Q m=  . Therefore, a basis element 2 2i i

r r−+
can be written as rj + r-j for j∈[1, 2m]. Furthermore, it is always possible to rewrite rj +
r-j as r(2m+1)-j + r-(2m+1)+j. If j≥m+1, then this has the benefit of bringing the power of r
to the range [1, m]. If the multiplicative order of 2 modulo 2m+1 is equal to m, then
the set of powers of 2 modulo 2m + 1 is:

 An Efficient Reconfigurable II-ONB Modular Multiplier 173

2

2 {2,2 , , 2 }mod (2 1)mP m= + (2)

Equation (2) is equivalent to 2 {1,2, , }Q m=  . As a result, a basis element 2 2i i

r r−+
can be written uniquely as rj + r-j with j∈[1, m]. The basis whose element is r j + r-j is
defined as N’ = {β1, β2,

..., βm}, where βj = r j + r-j and j∈[1, m].

Let A be expressed in the basis N as 12 4 2
1 2 3

m

mA a a a aβ β β β
−′ ′ ′ ′= + + + + where β=r +

r-1. The representation of A in the basis N’ is given as A=a1β1 + a2β2 + a3β3 + ... + amβm
where βi = ri + r-i. We can express the permutation between the coefficients aj=ai’
as[18,22]:

[1,]

(2 1) [1,2]

k if k m
j

m k if k m m

 ∈
=  + − ∈ +

(3)

Where k = 2i-1(mod 2m + 1) for i=1, 2, ..., m. Not a normal basis, basis N’ is just a
shifted form of canonical basis[16].

3.2 II-ONB Modular Multiplication Algorithm Based on Basis Conversion

Adopt Equation (3) for basis conversion. A, B∈GF(2m), can be represented in basis N’

as
1 1

()
m m

i i

i i i
i i

A a a r rβ −

= =

= = +  and
1 1

()
m m

i i

i i i
i i

B b b r rβ −

= =

= = +  . Then product C=A ⋅ B can be

written as:

1 1

() ()

1 1 1 1

1 2

() ()

() ()

m m
i i j j

i j
i j

m m m m
i j i j i j i j

i j i j
i j i j

C A B a r r b r r

a b r r a b r r

C C

− −

= =

− − − + − +

= = = =

= ⋅ = + +

= + + +

= +

  
    
 

 
(4)

If i = j, then ri-j + r-(i-j)=r0 + r0=0, so the coefficients of βk in C1 are the sum of all
aibj for which k=|i - j|∈[1, m]. In C2, |i + j|∈[1, 2m] can be divided into |i + j|∈[1, m]
and |i + j|∈[m+1, 2m], while the latter case can be replaced by 2m + 1-|i + j|. So C2 can
be transformed into the following:

()

2
1 1

() ()

1 1 1 1

1 2

()

() ()

m m
i j i j

i j
i j

m m i m m
i j i j i j i j

i j i j
i j i j m i

C a b r r

a b r r a b r r

D D

+ − +

= =

−
+ − + + − +

= = = = − +

= +

= + + +

= +



  

(5)

174 L. Miao et al.

In Equation (5), the coefficients of βk in D1 are the sum of all aibj for which k=|i +
j|∈[1, m] where i∈[1, m] and j∈[1, m-i]. And D2 can be represented as:

()

2
1 1

2 1 () (2 1 ())

1 1

()

()

m m
i j i j

i j
i j m i

m m
m i j m i j

i j
i j m i

D a b r r

a b r r

+ − +

= = − +

+ − + − + − +

= = − +

= +

= +

 

 

(6)

In Equation (6), the coefficients of βk in D2 are the sum of aibj for which k = 2m + 1
- |i + j|∈[1, m] where i∈[1, m] and j∈[m-i+1, 2m].

Suppose
mod 2 1 mod 2 +1

()
2 1 mod 2 1

i m i m m
k i

m i m others

 + 0 ≤ ≤
=

+ − +




（ ）

（ ）
. According to above

deduce, it is easy to prove that j j () () () ()
1 1 1

() ()
m m m

i i i k i j k i j k i j k i j i
i i i

A a a a aβ β β β β β+ − + −
= = =

= = + = +   [19].

Thus, product C also can be represented as:

1 1

() ()
1 1

() ()
1 1

() ()
1 1

()

()

()

()

m m

j j j j
j j

m m

j i k i j k i j
j i

m m

j k i j k i j i
j i

m m

j k i j k i j i
i j

C A b b A

b a

b a a

b a a

β β

β β

β

β

= =

+ −
= =

+ −
= =

+ −
= =

= =

= +

= +

= +

 

 

 



(7)

The single bit ci can be written as:

() () () ()
1 1

() ()
m m

i j k i j k i j j k i j k i j
j j

c b a a a b b+ − + −
= =

= + = + 

(8)

From above analysis, II-ONB modular multiplication algorithm based on basis
conversion is brought forward, as shown in Algorithm 2. This is a serial algorithm,
composed by outer and inner loops. Operations of AND (&), XOR (⊕) and cyclic
shift (>>>) can be directly mapped to hardware implementation.

 An Efficient Reconfigurable II-ONB Modular Multiplier 175

Algorithm 2. II-ONB modular multiplication algorithm based on basis conversion

1 2 1 2

1 2

1 2 1 2

0

0 1 2

Input: (, ,), (, , ,)

Output: Product (, , ,)

1. : (, ,), (, , ,)

2. 0, 0

3. [1 : 2 1] { , , , , ,

m m

m

m m

m m

A a a a B b b b in normal basis N

C c c c in normal basis N

Basis conversion A a a a B b b b in basis N

C b

D m b b b b b

′ ′ ′ ′ ′ ′= =

′ ′ ′=

′ = =

 = =

 + =

 



 


2 1

1 2

, , , }

4. for 1 to do

5. for 1 to do

6. c c (& ([] [2 1]))

end for

7. 1 (1)

end for

8. : (, ,

i i j

b b

i m

j m

a D j D m j

D bit cyclic right shift of D

Basis conversion C c c

 =

 =

 = ⊕ ⊕ + −

 >>>

′ ′ =



,)
m

c in normal basis N′

In Algorithm 2, input data
1 2

(, ,)
m

A a a a′ ′ ′=  and 1 2
(, , ,)

m
B b b b′ ′ ′=  are in normal

basis N. Firstly, convert operands A and B from normal basis N to basis N’. Then,
calculate 1 bit ci after m inner loops and product C after m outer loops. Finally,
convert product C from basis N’ back to normal basis N after the operation is
completed. From analysis we can learn that the computational complexity of
Algorithm 2 is O(m2), which can be further improved adopting parallel computation.
Therefore, this paper proposes an improved II-ONB modular multiplication algorithm
based on basis conversion, as shown in Algorithm 3.

Algorithm 3. An improved II-ONB modular multiplication algorithm based on basis
conversion

1 2 1 2

1 2 1 2

0

0 1 2

1 2

Input: (, ,), (, , ,)

Output: Product ()

1. : (, ,) (, , ,)

2. 0, 0

3. [1 : 2 1] { , , , , ,

, , ,
m m

m m

m

m

in normal basis

in normal basis

A a a a B b b b N

C N

Basis conversion A a a a B b b b in basis N

C b

D m b b b b

c c c

′ ′ ′ ′ ′ ′= =

=
′ = =

 = =

 + =

′ ′ ′
 

 




，

2 1

1 2

, , , }

4. for 1 to do

5. & ([1:] [2 : 1])

6. 1 (1)

end for

7. : (, , ,)

m

i

m

b b b

i m

C C a D m D m m

D bit cyclic right shift of D

Basis conversion C c c c in normal basis N

 =

 = ⊕ ⊕ +

 >>>

′ ′ ′=




In Algorithm 3, there exists only one layer loop that can generate product C in

basis N’ after m loops. So, the computational complexity reduces to O(m). In public-
key cryptography, it usually performs continuous modular multiplication operations,

176 L. Miao et al.

so basis conversion is only needed before the first modular multiplication operation
and after the last modular multiplication operation. Consequently, the implementing
time of basis conversion can be ignored.

4 Design of Reconfigurable II-ONB Modular Multiplier

4.1 Reconfigurable Basis Conversion Circuit

According to above analysis, based on B. Sunar’s basis conversion theory, the basis
conversion circuit is designed adopting reconfiguration method in this paper. The
implementation of basis conversion circuit is closely related to the finite field length
m. Basis conversion of fixed length can be accomplished by simple connections, but
for different lengths, it requires very complex computing circuit. In ECC algorithms,
basis conversion is only demanded before and after continuous modular
multiplication operations respectively and the implementing time of basis conversion
can be ignored, hence it can be realized by SW/HW method. From basis conversion
theory we can see the corresponding relationship between j and i is fixed when m is
determinate. So in this paper, we calculate corresponding position information in
advance by software, then write them into configuration registers. In this way, when
performing basis conversion by hardware, choosing values through configuration
registers is enough.

a'2 a'3 a'ma'4 a'm-1a'1

MUX

ai

Configura
tion

Registers

clk
WEN

Cfg_datain
Cfg_dataout

reset

Fig. 1. Reconfigurable basis conversion circuit

The reconfigurable basis conversion circuit is shown in Fig. 1. It requires m clock
cycles to complete once basis conversion. If hardware resources are adequate, it can
use multiple MUXs in parallel to increase basis conversion implementing efficiency.
In the best situation, it can complete basis conversion in only one clock cycle.

4.2 Reconfigurable Modular Multiplier Design

In order to support modular multiplication in II-ONB with different lengths,
according to Algorithm 3, this paper designs an efficient reconfigurable II-ONB
modular multiplier based on basis conversion, as shown in Fig. 2. In the right part,
there are two 385-bit registers R1 and R2, both of which are used to store B values

 An Efficient Reconfigurable II-ONB Modular Multiplier 177

and b0 is constant “0”. In every one clock cycle, these two registers carry out 1-bit
joint shift operation: for R1, bi=bi+1; for R2, bi=bi-1⊕(bj & Datapath_ctl[i-1]). Register
C is used to store product C. Datapath_ctl[0:383] is the control signal of the data path,
whose value is also associated with the finite field length

384 length length-1

Datapath _ ctl {00 0 ,1,0 00}
−

=    . In the left part, there are two shift registers, which

are used to store A and B separately. Their control signals RegA_ctl[7:0] and
RegB_ctl[7:0] are given by the control unit. In all the clock cycles,
RegA_ctl=RegB_ctl=1.

When signal start is valid, the multiplier begins initialization. The controlled
registers R1 and R2 jointly shift 1 bit. At the same time, in order to make the MSB of
operation data and registers align right, two barrel shift registers shift (384-length)
bits. After length clock cycles, the multiplier generates product C in basis N’ . The
maximum length of the multiplier is set 384. When operands are less than 384 bits, all
data in registers align right and high bits are filled up zero. According to different
length ranges, registers in our design also can be extended to support modular
multiplication operation of larger length.

Fig. 2. Reconfigurable II-ONB modular multiplier structure

5 Implementation and Performance Analysis

5.1 Simulation and Synthesis

In order to validate our design, the proposed reconfigurable II-ONB modular
multiplier has been modeled in Verilog HDL and simulated functionally with
ModelSim SE 6.1f. The implementation has verified our design’s function correctly
[21]. Fig. 3 depicts simulation results of B-191.

178 L. Miao et al.

The operation data are:

A= 7a12de5c_d5e55e5a_d587de51_a51c551a_de1b2151_b11a21de
B= 64545d85_5da54d5e_c4b545a5_d45e4456_7aadcccd_dbeebdad

The modular multiplication product is:

C=18db1d7c_d6274cb7_d760e71a_35ae72e5_6de25e4a_73e6fac9

Fig. 3. Simulation of B-191 modular multiplication operation

Additional efforts have also been devoted to as ASIC implementation. In order to
evaluate performance more accurately, making use of Synopsys’s Design Complier
for Solaris, logical synthesis has been accomplished under 0.18μm CMOS
technology. Table 1 depicts the result report under the constraint of 4.0ns. Our design
only occupancies 55k gates in area, while the clock frequency can reach 320MHz.

Table 1. Synthesis results under 0.18μm CMOS technology

Constraint
(ns)

Area(μm2)
Equivalent Gates

(kgates)

Delay
(ns) Combinational Logic Registers

4.0 398 868 156 892 55 3.1

5.2 Analysis and Comparison

Area-Timing complexity comparison of different II-ONB modular multipliers are
shown in Table 2. The delays of a two-input AND gate and an n-input XOR gate have
been approximated by TA and

2log n   TX separately. In [19] and [23], multipliers were

both designed on word-level, where m denotes the finite field length, k denotes the
number of parallel modules and w denotes the word length. Because the hardware
structure of our design is fixed, the area and delay of circuit are finalized. The space
complexity of this work is 768#AND+1152#XOR and the computational complexity
is 2TA+3TX. In order to compare our design with others, we have chosen the practical
finite field size of m=233 that is a recommended NIST(National Institute of Standards
and Technology) binary field degree with k=8 and w=32 which are practical for VLSI

 An Efficient Reconfigurable II-ONB Modular Multiplier 179

implementation. The complexity comparison of different II-ONB modular multipliers
in F2233 with k=8 and w=32 are shown in Table 3.

Table 2. Area-Timing complexity comparison of different II-ONB modular multipliers

Designs # AND # XOR Multiplication Delay

Namin[19] 2km (4k-1)m wTA+(w+
2log 2k  )TX

Massey[23] k(2m-1) k(2m-2) w(TA+(1+
2log m  )TX)

This work 768 1152 2TA+3TX

Table 3. Complexity comparison of different II-ONB modular multipliers in F2233 with k=8
and w=32

Designs # of AND # of XOR Multiplication Delay

Namin[19] 3728 7223 32TA+36TX
Massey[23] 3720 3712 32TA+288TX
This work 768 1152 64TA+96TX

It can be seen from Table 3 that, due to the word-level structure, compared to our

design, in spite of owning shorter multiplication delays, Namin’s and Massey-
Omura’s multipliers occupied much more hardware resources. In addition, both of
these two multipliers couldn’t support modular multiplication operation with scalable
lengths, and it required to re-design the hardware circuit when parameters changed.
However, our proposed reconfigure multiplier is one efficient solution for modular
multiplications with variable parameters. When parameters changed, only
reconfiguring the structural parameters is enough, and the hardware structure doesn’t
need to change. So, among above designs, our reconfigurable multiplier is the most
flexible in structure.

6 Conclusions

In this paper, some researches on reconfiguration design of II-ONB modular
multiplier over binary field in ECC have been done. According to B. Sunar’s basis
conversion theory, operation data in normal basis have been converted to a new
defined basis. On this condition, an improved II-ONB modular multiplication
algorithm has been proposed, and an efficient reconfigurable modular multiplier
supporting different lengths has been implemented. Finally, this work has been
simulated and synthesized. Besides, performance analysis has also been
accomplished. The experimental results prove that our design has higher flexibility
and smaller area, which is the most suitable to resource-constrained ECC applications.

Acknowledgments. This work is partially supported by National Natural Science
Foundation of China grant 70890084/G021102 and 61003274, Strategy Pilot Project
of Chinese Academy of Sciences sub-project XDA06010702, and National High

180 L. Miao et al.

Technology Research and Development Program of China (863 Program, No.
2013AA01A214 and 2012AA013104).

References

1. Kammler, D., Zhang, D., Schwabe, P., Scharwaechter, H., Langenberg, M., Auras, D.,
Ascheid, G., Mathar, R.: Designing an ASIP for Cryptographic Pairings over Barreto-
Naehrig Curves. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 254–271.
Springer, Heidelberg (2009)

2. Gura, N., Shantz, S.C., Eberle, H., Gupta, S., Gupta, V., Finchelstein, D., Goupy, E.,
Stebila, D.: An End-to-End Systems Approach to Elliptic Curve Cryptography. In: Kaliski
Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 349–365. Springer,
Heidelberg (2003)

3. Chen, H.: Research on Elliptic Curve Cryptography Algorithm and Chip Implementation
Method, pp. 56-60. Zhengjia University, Hangzhou (2008)

4. Certicom White Papers, The Elliptic Curve Cryptosystem (1997-1998),
http://www.certicom.com

5. Okada, S., Torii, N., Itoh, K., Takenaka, M.: Implementation of Elliptic Curve
Cryptographic Coprocessor over GF(2m) on an FPGA. In: Paar, C., Koç, Ç.K. (eds.)
CHES 2000. LNCS, vol. 1965, pp. 25–40. Springer, Heidelberg (2000)

6. Potgieter, M.J., van Dyk, B.J.: Two Hardware Implementations of the Group operations
Necessary for Implementing an Elliptic Curve Cryptosystem over a Characteristic Two
Finite Field. In: IEEE Africon 2002, pp. 187–192 (2002)

7. Kitsos, P., Theodoridis, G., Koufopavlou, O.: An Efficient Reconfigurable Multiplier
Architecture for Galois Field GF(2m). Microelectronic Journal 34, 975–980 (2003)

8. Amanor, D.N.: Efficient Hardware Architecture for Modular Multiplication. Master.
Thesis, The University of Applied Science Offenburg, Germany (2005)

9. Kaihara, M.E., Takagi, N.: Bipartite Modular Multiplication Method. IEEE Transactions
on Computers 57(2), 157–164 (2008)

10. Chu, J., Benaissa, M.: Polynomial Residue Number System GF(2m) Multiplier Using
Trinomials. In: 17th European Signal Processing Conference (EUSIPCO 2009), pp. 958–
962 (2009)

11. Knežević, M., Vercauteren, F., Verbauwhede, I.: Speeding Up Bipartite Modular
Multiplication. In: Hasan, M.A., Helleseth, T. (eds.) WAIFI 2010. LNCS, vol. 6087, pp.
166–179. Springer, Heidelberg (2010)

12. Estrin, G., et al.: Parallel Processing in a Restructurable Computer System. IEEE Trans. on
Electronic Computers, 747–755 (December 1963)

13. Sigh, H., Lee, M.H., Lu, G., et al.: An Integerated Reconfigurable System for Data-Parallel
and Computation-Intensive Applications. IEEE Transcations on Computer 49(5), 465–481
(2000)

14. Bouma, H.: Design and Implementation of an FPGA. University of Twente, Twente (2001)
15. Masoleh, A.R., Hasan, M.A.: Efficient Multiplication beyond Optimal Normal Bases.

IEEE Trans. Computers 52(4), 428–439 (2003)
16. Koc, C.K., Sunar, B.: Low-Complexity Bit-Parallel Canonical and Normal Basis

Multipliers for a Class of Finite Fields. IEEE Trans. Computers 47(3), 353–356 (1998)
17. Liao, Q.: On Multiplication Tables of Optimal Normal Bases over Finite Fields. Acta

Mathematica Sinica 45(5), 947–954 (2005)

 An Efficient Reconfigurable II-ONB Modular Multiplier 181

18. Sunar, B., Koc, C.K.: An Efficient Optimal Normal Basis Type II Multiplier. IEEE
Transactions on Computers 50(1), 83–87 (2001)

19. Namin, A.H., Wu, H., Ahmadi, M.: A High Speed Word Level Finite Field Multiplier
Using Reordered Normal Basis. In: IEEE International Symposium on Circuits and
Systems, pp. 3278–3281 (2008)

20. Al-Somani, T.F., Amin, A.: High performance Elliptic Curve Point Operations with
Pipelined GF(2m) Field Multiplier. Journal of Communication and Computer 6(10), 62–69
(2009)

21. IEEE STD 1363-2000. IEEE Standard Specifications for Public-Key Cryptography (2000)
22. Fang, B., Fan, H., Dai, Y.: An Optimal Normal Basis Type II Multiplier over GF(2n) for

FPGAs. Chinese Journal of Electronics 30(12A), 2045–2048 (2002)
23. Massey, J.L., Omura, J.K.: Computational Method and Apparatus for Finite Arithmetic.

US: Patent No.4587627 (1986)

	An Efficient Reconfigurable II-ONB Modular Multiplier
	1 Introduction
	2 Type II Optimal Normal Basis and Multiplication Operation
	3 II-ONB Modular Multiplication Algorithm
	3.1 Basis Conversion Theory
	3.2 II-ONB Modular Multiplication Algorithm Based on Basis Conversion

	4 Design of Reconfigurable II-ONB Modular Multiplier
	4.1 Reconfigurable Basis Conversion Circuit
	4.2 Reconfigurable Modular Multiplier Design

	5 Implementation and Performance Analysis
	5.1 Simulation and Synthesis
	5.2 Analysis and Comparison

	6 Conclusions
	References

