
D. Pesch et al. (Eds.): MONAMI 2013, LNICST 125, pp. 108–121, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

A Distributed Control Plane for the Internet of Things
Based on a Distributed Hash Table

Jaime Jiménez Bolonio1, Manuel Urueña2, and Gonzalo Camarillo1

1 Ericsson Research, NomadicLab, Finland
{jaime.j.jimenez,gonzalo.camarillo}@ericsson.com

2 University Carlos III of Madrid, Spain
muruenya@it.uc3m.es

Abstract. As any other communication system, the Internet of Things (IoT)
requires a functional control plane. However developing such control plane in a
centralized way presents a number of challenges given the multiple
stakeholders, the huge number of devices distributed worldwide, their limited
connectivity, and specially that most IoT devices are battery-powered and thus
must be sleeping most of the time. This paper explores the possibility of
employing a distributed control plane for the IoT that leverages the intrinsic
scalability and flexibility of peer-to-peer Distributed Hash Tables (DHTs). In
particular, it proposes using a so-called “command mailbox” resource to
remotely control sleeping sensors and actuators in an asynchronous way, while
also solving important issues such as device bootstrapping and security.

Keywords: Internet of Things (IoT), Peer-to-Peer (P2P), Distributed Hash
Table (DHT), REsource Location And Discovery (RELOAD).

1 Introduction

The future vision of Internet of Things (IoT) is being realized by the interconnection
of a wealth of heterogeneous devices [1]. Due to their ubiquity, such devices are
likely to be connected to various types of networks, from NAT-based home networks
to cellular or low-range wireless sensor networks. Many of them will have limited
resources (i.e. computation, memory, etc.), power limitations being the most notable
constrain (e.g. battery powered). Thus, it will be likely that such devices will be
sleeping most of the time in order to save energy.

IoT has been defined in various ways, for our purposes we will use the definition
given by [2]: “The pervasive presence around us of a variety of things or objects
which, through unique addressing schemes, are able to interact with each other and
cooperate with their neighbors to reach common goals”

Such cooperation is achieved by collaboration between sensors that gather data
from their surroundings and actuators that interact with the physical world. A control
entity, the master, is the one issuing the commands to the actuators and who
configures both sensors and actuators. These masters are just logical entities that may
be IoT devices (e.g. a light sensor that controls a shades’ actuator), a simple user

 A Distributed Control Plane for the IoT Based on a DHT 109

application (e.g. a home automation web page), or a complex management software
orchestrating many sensors and actuators (e.g. a smart city). Moreover an IoT device
may be controlled by several masters simultaneously, which may be unknown at the
time the device was deployed.

When analyzing the IoT traffic we consider two main types of communication:
commands (i.e., sent by a master to a sensor or actuator) and data (e.g., measurements
sent periodically by a sensor). Since each type of traffic has quite different
communication patterns, we refer to those types of traffic using the control-plane and
data-plane terms, respectively.

This paper is focused on the challenges of building a control-plane for the IoT,
mainly the limited communication patterns of these devices, given that most IoT
devices will be behind firewalls/NATs and, more importantly, that they will be
sleeping most of the time in order to save battery, and thus cannot be contacted
directly by their masters. A simple solution to this problem may be employing
centralized servers that act as gateways between IoT devices and their masters (which
may be other IoT devices themselves). However any centralized solution has a limited
scalability and may complicate the multi-tenant requirements for the IoT.

Therefore this paper proposes a fully decentralized solution based on a Distributed
Hash Table (DHT) that is employed as a rendezvous mechanism between IoT devices
and their masters. In particular we specify how such solution may be implemented
using RELOAD/Chord, although, in order to do so in an efficient and secure way, we
propose a number of enhancements to the current RELOAD specification.

2 Related Work

Some works in the literature propose to connect wireless sensors with the network by
using some kind of local gateway, such as a mobile device [3][4]. Some of these data-
plane solutions try to decentralize those gateways, for instance by means of a
distributed overlay as in [4]. Sensors then connect to peers that are equipped with both
cellular and local Wireless Sensor Network (WSN) radio interfaces. The distributed
gateway overlay provides functions for resource discovery, network management,
storage and a rendezvous mechanism, featuring also the usual characteristics of P2P
systems, such as scalability and NAT traversal.

Albeit limited, P2P systems can be implemented by constrained devices [8][9] and
fit with the IoT requirements previously stated. Therefore the new enhancements we
propose in this paper will be also suitable for the deployment of a fully distributed IoT
scenario that does not require such local gateways, but devices will autonomously
connect to the P2P IoT.

3 Background and Problem Statement

We take REsource Location And Discovery (RELOAD) [5] as the reference P2P
protocol since it provides a standard, generic, self-organizing overlay network service.
On top the RELOAD overlay layer different application protocols can be plugged in,
such as the Session Initiation Protocol (SIP), Extensible Messaging and Presence

110 J.J. Bolonio, M. Urueña, and G. Camarillo

Protocol (XMPP) or even the Constrained Application Protocol (CoAP) [7], a
lightweight client-server protocol for sensors [6] that will probably be employed in
the data-plane of the IoT.

RELOAD proposes Chord [10] as its default Distributed Hash Table (DHT)
algorithm to organize the overlay. It also has an integrated Network Address
Translator (NAT) traversal mechanism, the Interactive Connectivity Establishment
(ICE) [11]. In a distributed and heterogeneous IoT scenario, this mechanism comes
very handy for interconnecting the autonomous devices, which will use whatever
communication technology is available. The DHT allows for storing information in
the overlay, where resources are identified by their resource-ID, which is usually
obtained by hashing some resource’s information, i.e. name, data, URI, owner ID, etc.
As with other DHTs, RELOAD identifies devices by their node-ID, usually calculated
with the same hash algorithm as the resource-ID. RELOAD supports two types of
nodes: peers and clients. Peers are nodes that run the DHT algorithm, route messages,
and store data on behalf of other nodes. Clients are nodes that do not run the DHT
algorithm, and neither provide message routing nor storage services. Instead, they use
other peers as proxies to the DHT.

Therefore, given the connectivity and resource constraints of most IoT devices, it is
reasonable that they connect as RELOAD clients to a DHT composed by stable peers.
However, there are some limitations in the way clients operates in the current
specification, related to enabling sleeping devices and adapting current access control
policies to the open and multi-stakeholder nature of IoT.

3.1 Enabling Sleeping IoT Devices in RELOAD

Although there has been a lot of research on network scalability, including P2P
networks, the sleepy behavior of network devices has been considered only recently
[1]. The main reason being that it changes one of the main assumptions about Internet
hosts, that is, that they can be contacted at any time. Both P2P protocols, like
RELOAD, and sensor protocols, like COAP, assume that nodes, either peers/clients or
COAP servers/gateways, are always able to receive messages. However, this would
require IoT devices to be fully awake all the time, or at least its wireless interface,
which will severely limit the lifetime of any battery-power device.

Still, many do not consider this an issue, since it is assumed that wireless sensor
devices just awake periodically to send one or few COAP messages with the last
sensor measurement to a gateway or central server, and immediately go to sleep again
[13]. Although in the data plane this client-only behavior of sensors is possible in
most scenarios, this is no longer the case for the control and management planes.
Although they have been overlooked by the research literature, they are essential for
the correct operation of all kind of networks, including the Internet of Things. For
example in order to configure a sensor with the COAP URI where to send its
measurements to, the time between those measurements, or a threshold to filter
unimportant events. Other example of management plane operation may be obtaining
the statistics about transmitted/received packets in order to troubleshoot a problem.

 A Distributed Control Plane for the IoT Based on a DHT 111

To save space and cost, many IoT devices will not have a dedicated
control/management interface (e.g. an USB port), but will rely on the same network
interface employed for the data plane, which should be sleeping most of the time.
Therefore, it is not possible to send control or management commands to sleeping
sensors or actuators, unless some additional synchronization or rendezvous
mechanism is in place. Our proposal is that low power devices can use a Distributed
Hash Table (DHT) as a rendezvous mechanism to receive commands from their
masters, since they may be behind a firewall or NAT and be sleeping most of the
time. To do so, a sensor device creates a resource in the DHT, called Command
Mailbox, and polls it periodically to check if it has new commands from its
(potentially unknown) masters, while always-on actuators may receive these
commands immediately by becoming DHT peers. Masters only need to know the
node-ID of the device (either a sensor or actuator), in order to send commands to it
through the DHT.

3.2 Security Considerations for the IoT Control-Plane

Although current sensor-based applications are vertically integrated, and thus a single
vendor provides the whole stack, which is usually specifically designed for a given
application and client, we envision the future IoT as an open and multi-stakeholder
network, where interoperable devices can be provided by multiple vendors, and new
applications can be deployed dynamically over the existing infrastructure. However,
such open environment poses clear security challenges. In our particular case,
although the commands from the master are encrypted and signed using a Message
Authentication Code (MAC), the main security problem is how to allow an arbitrary
number of masters (e.g. the users of a given IoT application) to write in the Command
Mailbox resource of an already deployed device without using a dedicated server or
directory [14].

Currently RELOAD has two control policies that can be employed to protect this
kind of resource sharing: node-based and list-based, although they have some
drawbacks:

• Node-based (USER-NODE-MATCH in RELOAD) [5] policy allows any node

of the DHT to write one entry in any Dictionary resource applying it. However,
in order to protect their own memory, peers responsible for the storage of the
Dictionary resource will certainly limit its size. This could easily lead to a Denial
of Service (DoS) attack, because an attacker with multiple valid certificates
would be able to store a high volume of data to overflow such limit, preventing
legitimate masters from storing their information. This happens because the peer
storing the resource does not know which nodes are the valid masters of a device.

• List-based (USER-CHAIN-ACL in RELOAD) [15] policy is not vulnerable to
this attack, because only the nodes explicitly allowed by the owner of the
resource are able to write data. However, this requires the device to know the list
of legitimate masters beforehand. Moreover, a device cannot be shared by an
arbitrary number of users, because that would be too great a burden for the peer

112 J.J. Bolonio, M. Urueña, and G. Camarillo

managing such list, as well as all associated certificates - thus the dedicated
server approaches such in [14]. In the IoT context, it implies that our sensor
device should have to know beforehand the user-IDs or node-IDs of all possible
masters before being deployed. This obviously complicates the management and
deployment of IoT devices, especially in the cases of embedded ones that do not
have a dedicated control interface. Therefore, a simpler mechanism to enable
initially unknown masters to write commands in the resource of a deployed
embedded device would be useful.

4 Proposed Solutions

As we have seen in the previous section, controlling sleeping IoT devices is
problematic because those devices are asleep most of the time. In addition, current
DHTs do not implement access control policies suitable for the large amount of
devices that will be part of the IoT future scenario and their multi-stakeholder
management. In this section we tackle those problems and present solutions to them.

4.1 A Command Mailbox for DHTs

Taking Chord’s implementation in RELOAD [5] as a model, devices that want to use
this method should be pre-configured at least with the following information:

• The node-ID of the device, which must be globally unique.
• A valid certificate from the Enrollment Server of the DHT.
• The DNS name of the overlay, or the IP addresses of Bootstrap Servers.
• An optional, randomly generated, secret key. The master can later change this

key, but if the device is reset, it goes back to this initial secret key.

In order to issue commands to the device, its masters must know the device’s node-
ID and its current secret key. This information may be shared in several ways, for
instance it can just be printed in the manual or in the device itself. In any case, the
master should change the secret-key as soon as possible (i.e. the very first control
command). Notice that it is not necessary neither that the master knows whether the
device is a sensor or an actuator, nor the device has to know whom its master or
masters are beforehand, which greatly simplifies the bootstrapping and the dynamic
ownership of IoT devices.

The proposed command mailbox resource is to be used by sensors, actuators and
masters. The initial operation procedure after being reset (see Figure 1) is the same for
devices plugged to the grid (e.g. actuators), thus awake and connected all the time,
and for battery-powered, or otherwise intermittent-connected, devices (e.g. sensors).

After booting, an IoT device contacts the Bootstrap Server to obtain the overlay
configuration and to identify its Admitting Peer, i.e. the one responsible for the node-
ID of the joining node. Then, in the case of an always-on actuator, since it has enough
resources to be a full peer, it joins the DHT as a RELOAD peer through its Admitting
Peer. A sensor, on the other hand, attaches to its Admitting Peer as a RELOAD client,
and thus has no routing or storage responsibilities.

 A Distributed Control Plane for the IoT Based on a DHT 113

Fig. 1. Issuing a command to a sleepy client device (e.g. a battery-powered sensor)

Then the booting device creates in the DHT a Dictionary resource with the new
COMMAND-MAILBOX kind-ID and the proposed CLIENT-ID-MATCH policy that
enables it to store it with the same key as its own node-ID. Note that this behavior is
not contemplated in current RELOAD specification because, to limit resource
consumption and provide more availability, data can only be stored when the
resource-ID are either a hash of the owner’s user-ID or node-ID. In the case of an
actuator peer, since it is the responsible for its own command mailbox resource, it is
not necessary to create a real resource (e.g. reserve memory or replicate it), but just to
process the DHT messages targeting it. In the case of a sensor device, the command
mailbox is created in its Admitting Peer by performing a DHT store operation with
the same key as the sensor’s node-ID.

At this point, once the Command Mailbox resource has been created, a sensor
device may leave the Admitting Peer and go to sleep for some pre-defined amount of
time between command checks (e.g. 10 minutes). Conversely, an actuator remains
connected as a peer in order to receive messages from its masters, requesting a store
operation in its Command Mailbox resource. Then, when the sensor awakes, it
attaches again as a client to its Admitting Peer and fetches its mailbox looking for any
new command. Both types of devices can verify the MAC code of the incoming
command, and optionally decrypt it, to guarantee that it comes from a valid master
that knows its current secret key.

Therefore, when a master has to issue commands to any of the IoT devices it
controls, it only has to be connected to the same DHT (either as a peer or as a client).
Then it can issue control messages just by storing the encrypted and signed command
into the Command Mailbox resource with the same resource-ID as the target device’s
node-ID. Thus, if the target device is an actuator, the command will be received
directly by the actuator peer and act accordingly. Sensors on the other hand will only
receive such command after checking the Command Mailbox at its Admitting Peer.

114 J.J. Bolonio, M. Urueña, and G. Camarillo

Once all commands have been executed or discarded (i.e. wrong MAC), the device
overwrites the whole Command Mailbox resource. If necessary it can write a response
to the command in the same mailbox, or sent it back to the master using other
mechanisms, like a RELOAD message routed through the overlay, or a direct COAP
message. If no response is needed, the command-mailbox entry can be just left empty.

To check that the device has processed the command, the master can just wait for a
direct response message (e.g. through the overlay) or, if the master is a sleepy node
itself, it may then try to fetch the same resource to check the response of the device,
or that at least verify if the key is empty, i.e. not containing its own command.

4.2 Access Control Policy for RELOAD Based on Shared Keys

Previously we have discussed how to solve the problem of sending control or
management commands to sleeping sensors or actuators. Now we address the issue of
sharing write permissions of the command mailbox resource with other (potentially
unknown) nodes in the overlay to prevent Denial of Service (DoS) attacks. To do so,
we propose the use of a shared-key mechanism (see Figure 2).

In our IoT deployment scenario every embedded device can be deployed without a
pre-configured list of masters, but rather just with a randomly generated secret key.
Any master would only need to know the device’s identifier and its initial secret key,
which can be printed in the manual or in the device itself. Therefore a device can be
easily controlled by an arbitrary number of masters without managing an explicit
access control list.

A device that wants to create a Command Mailbox resource and share its write
permissions with its (unknown) masters by means of the proposed shared-key
mechanism should follow two steps:

1. Establishing a Write Key: The device sends a Store Request message with the
same ID as the Command Mailbox resource being protected and a value identifying it
as a Write Key (in RELOAD this can be done by editing part of the StoreKindData
with an additional key_sign_type = WRITE_KEY attribute). The message should
also define the Message Authentication Code (MAC) algorithm to be employed by
other nodes, and include the shared key associated to that resource, and that may be
derived (e.g. by hashing) from the device’s secret key. The Write Key is encrypted
with the public key of the peer storing the resource, so it can be securely forwarded
through the overlay. Only the owner node can change the secret key or the MAC
algorithm at any time by sending a new Store Request message with a different
write_key field.

2. Storing in the Resource: After establishing the Write Key of the Command
Mailbox, any node that knows such key is also able to store information in the shared
resource. Those messages need to include a write_sign signature field containing
the MAC value of the whole message structure including the resource-ID, by using
the current Write Key. The MAC algorithm must be the one specified in the
mac_algorithm field of the Store Request operation by the owner device. When
considering RELOAD, other operations (i.e. Fetch, Stat, etc.) are not affected since
the write_key_sign field only appears in Store messages.

 A Distributed Control Plane for the IoT Based on a DHT 115

Fig. 2. RELOAD resource being shared between two owners

When the responsible peer needs to replicate the shared resource in one or more
replicas, it should also include the whole write_key field in the Store Request
message sent to the replica, and optionally encrypting the write key with the replica’s
public key. Usually the certificates of the replicas should be in the responsible peer’s
cache, but if not, the key can be obtained by sending a RELOAD ping message to the
replica’s node-ID.

5 Scalability Analysis

This section analyzes the scalability of the proposed DHT-based IoT control plane by
comparing it with using centralized servers, as well as analyzing the effect of the
proposed enhancements to RELOAD. To do so, let us define N as the total number of
nodes in the Internet of Things (IoT): ܰ ൌ ௌܰ ൅ ஺ܰ

Where NS and NA are, respectively, the total number of sensors and actuators in the
IoT. We will assume that actuators are mains-powered and have a permanent
connection (although they may be behind NATs/firewalls), so they can behave as DHT
peers. On the other hand, sensors are sleeping most of the time so they only wake up
periodically to check their command mailboxes. Due to this intermitted connection
sensors are not full peers, but connect as RELOAD clients to their Admitting Peers.

To model the IoT control traffic, we will also define Ox as the average rate,
measured in messages per time unit, of control operations issued to a given node of
type x. Thus, Os and Oa are the average rate of control operations issued to a sensor
and an actuator, respectively (e.g. Oa = 1 means that each actuator receives on average
one control operation per time unit). Ps and Pa are defined as the rate sensors and
actuators poll their associated Command Mailbox (e.g. Ps = 1 means that each sensor
polls its command mailbox once per time unit).

Now we can define MX as the total number of control messages exchanged (either
sent or received) per time unit by all nodes of type X. Then MC is the total number of

116 J.J. Bolonio, M. Urueña, and G. Camarillo

messages sent or received per unit time by all servers in the centralized scenario, and
M’DHT specifies all messages generated within the RELOAD DHT. Notice that
forwarding a control message, either by a central server or a RELOAD peer, involves
one reception and one transmission, and thus it is accounted as two messages.

Finally, the metric employed to compare the scalability of the different scenarios is
Lx, the average load of a node of type x, measured as the average number of messages
exchanged by a node per time unit. It is computed as the total number of messages
(MX) divided by the number of type X nodes (NX): ܮ௫ ൌ ௑௑ܰܯ

Next we provide an analytic model for this load metric in the three evaluated
scenarios.

5.1 Centralized Scenario

In this scenario, the control plane of the IoT is provided by a set of Nc centralized
servers. We will assume a perfect load balancing strategy so all servers handle exactly
the same number of messages. Then, actuators have a permanent connection with one
of these servers, which acts as a proxy of control commands, sending back and forth
the operation requests from masters and the replies from actuators. Therefore, the
total number messages exchanged by all IoT actuators is just two times (i.e. request +
reply) the average control operation rate of a single actuator (Oa) multiplied by the
total number of actuators (NA): ܯ஺ ൌ 2 ௔ܱ ஺ܰ

Sensors, on the other hand, do not have such permanent connection and thus cannot
receive control commands from their masters directly. Instead these masters’
operations are stored in a Command Mailbox at the central servers while the master
waits for a response. Sensors poll its mailbox periodically (at Ps rate), and when it
contains a new operation request, it is executed and the response is sent back to the
user through the central server. Therefore the total number of messages exchanged by
the sensors is the sum of the polling ones plus the two request/response messages
exchange with the master: ܯௌ ൌ 2 ௦ܲ ௌܰ ൅ 2 ௦ܱ ௌܰ ൌ 2 ௌܰሺ ௦ܲ ൅ ௦ܱሻ

Then, the total number of messages exchanged by all masters is: ܯெ ൌ 2 ௔ܱ ஺ܰ ൅ 2 ௦ܱ ௌܰ

Therefore, since the central servers forward all messages exchanged among masters,
sensors and actuators, the total number of messages handled by all servers (M’C) and
the average load per server (Lc) are: ܯ஼ ൌ 4 ௔ܱ ஺ܰ ൅ 2 ௌܰሺ ௦ܲ ൅ 2 ௦ܱሻ ܮ௖ ൌ ஼஼ܰܯ

 A Distributed Control Plane for the IoT Based on a DHT 117

5.2 Standard DHT without the Proposed RELOAD Enhancements

To avoid the extra cost and single point of failure of centralized servers, in the
following scenarios the control plane is provided by a global DHT comprised by all
IoT actuators that are powerful enough to act as RELOAD peers. Sensors act as
RELOAD clients and are connected to the DHT through their Admitting Peers.
Masters that want to issue control commands are also connected as RELOAD clients
in order to write the desired operation in the Command Mailbox of the target IoT
node and then, as in the previous case, wait for a direct response forwarded through
the DHT. Both operations are acknowledged to provide a reliable service.

However in the second scenario we will first not consider the proposed RELOAD
enhancements. Therefore the Command Mailbox resource of a sensor or an actuator is
stored by some (random) peer in the DHT obtained by hashing its node-ID, and both
sensors and actuators have to periodically poll it in order to check if there is any new
operation request. In that case, they execute it and send the reply back through the
DHT to the master (which has provided its node-ID in the command request) that
finally acknowledges back to the device. Therefore the number of messages
exchanged by all masters, sensors and actuators among them, as well as with the peers
storing their respective Command Mailboxes are: ܯԢௌ ൌ 2 ௦ܲ ௌܰ ൅ 2 ௦ܱ ௌܰ ൌ 2 ௌܰሺ ௦ܲ ൅ ௦ܱሻ ܯԢ஺ ൌ 2 ௔ܲ ஺ܰ ൅ 2 ௔ܱ ஺ܰ ൌ 2 ஺ܰሺ ௔ܲ ൅ ௔ܱሻ ܯԢெ ൌ 4 ௦ܱ ௌܰ ൅ 4 ௔ܱ ஺ܰ

However each of these messages, exchanged either with the peer storing the
command mailbox or with the master, must be forwarded through the DHT. For a
Chord ring with NDHT peers, the average number of hops is ܪ ൌ ଶ݃݋݈ ஽ܰு் [10] and,
since each hop requires receiving and sending each forwarded message, the total
number of forwarded messages doubles. Moreover there is certain overhead in order
to maintain the DHT structure. In case of RELOAD/Chord an update message must
be sent to all neighbor peers every 10 minutes (UNeighs = 6 msg/hr), while a search for
best fingers is performed each hour (UFingers = 1 msg/hr). Given that each peer must
have 16 fingers and 22 neighbors (i.e. 3 predecessors + 3 successors + 16 fingers) [5],
the total number of overhead messages per time unit to maintain the DHT is: ܯ஽ு் ൌ 22ܷே௘௜௚௛௦ ஽ܰு் ൅ 16ܷி௜௡௚௘௥௦ܪ4 ஽ܰு் ൌ ஽ܰு்ሺ22ܷே௘௜௚௛௦ ൅ ி௜௡௚௘௥௦ሻܷܪ64

Then, the total number of messages (exchanged among masters, sensors and
actuators) sent and received by all DHT peers (M’DHT), and the average peer load
(L’DHT) are: ܯԢ஽ு் ൌ ሺ2ܪ2 ௦ܲ ௌܰ ൅ 2 ௔ܲ ஺ܰ ൅ 4 ௦ܱ ௌܰ ൅ 4 ௔ܱ ஺ܰሻ ൅ Ԣ஽ு்ܮ ஽ு்ܯ ൌ Ԣ஽ு்஽ܰு்ܯ

118 J.J. Bolonio, M. Urueña, and G. Camarillo

5.3 Enhanced RELOAD DHT

In the third scenario, the IoT control plane is also provided by a global DHT, but now
it employs the proposed RELOAD enhancements. This way, the Command
Mailboxes of sensors and actuators are not stored in remote peers, but in the sensor’s
Admitting Peer or at the actuator itself. This greatly reduces polling overhead because
allows actuators to receive commands immediately, and polling messages from
sensors are not forwarded several hops away through the DHT, but just target the
local Admitting Peer. Therefore the total number of messages exchanged among
masters, sensors and actuators in this distributed scenario are: ܯԢԢ஺ ൌ 4 ௔ܱ ஺ܰ ܯԢԢௌ ൌ 2 ௌܰሺ ௦ܲ ൅ ௦ܱሻ ܯԢԢெ ൌ 4 ௦ܱ ௌܰ ൅ 4 ௔ܱ ஺ܰ

Now only the messages among masters and actuators, sensors or their Admitting
Peers have to be forwarded in the DHT (still with H hops on average), while sensors’
polling messages reach the Admitting Peer directly, leading to the following total
number of messages (also considering the MDHT overhead) in the DHT and the
average load per peer: ܯԢԢ஽ு் ൌ ሺ4ܪ2 ௦ܱ ௌܰ ൅ 4 ௔ܱ ஺ܰሻ ൅ 2 ௦ܲ ௌܰ ൅ ԢԢ஽ு்ܮ ஽ு்ܯ ൌ ԢԢ஽ு்஽ܰு்ܯ

6 Evaluation

In order to evaluate the scalability of the three analyzed scenarios, we should compare
them with similar parameters. Therefore let us assume that the control operation rate
for sensors is just one operation per node and day (Os = 1 op. per node and day = 1/24
op. per node and hour) while actuators receive one operation per hour (OA = 1 op. per
node and hour). The Command Mailbox polling rate is also the same for sensors and
actuators, but faster to reduce the response time (Ps = Pa = 1 poll per node every
minute = 60 polls per node and hour). To do not favor any device type, let us assume
that half of the IoT devices are sensors and the other half actuators (Ns = Na = N/2).
Moreover, all actuators form the IoT control-plane DHT (NDHT = Na).

Figure 3 shows the scalability of the three proposed scenarios. Each curve
represents the average load per node measured in messages per hour of each solution.
That is, Lc, L’DHT and L’’DHT that were defined in the previous section. Since the
average load depends on the number of nodes, the centralized solution has four curves
for different number of servers, ranging from one to 10,000. Notice that both axes are
in log scale.

 A Distributed Control Plane for the IoT Based on a DHT 119

Fig. 3. Load per node in the three evaluated scenarios (ࡸ ,ࢉࡸԢࡸ ,ࢀࡴࡰԢԢࢀࡴࡰ)

It can be clearly seen that the centralized solution requires deploying a high
number of servers in order to maintain the same average load as the DHT-based
solutions, which is low enough (2,351 msg/hr = 0.65 msg/sec with one billion - 10^9 -
IoT nodes) to be supported even by constrained devices. Moreover, the proposed
enhancements for RELOAD reduce one order of magnitude the total number of
messages in the DHT by avoiding polling remote Command Mailbox resources,
which constitute a high share of the total traffic.

However, due to the overhead to maintain the DHT, a distributed IoT control plane
does not make sense for small IoT deployments that may simply rely on few
centralized servers. On the other hand, a DHT composed by IoT actuators does not
require deploying and maintaining additional infrastructure, and continuously
upgrades as the IoT grows, given that the new actuators will help providing the IoT
control plane.

7 Conclusion

This paper provides the foundation of a fully distributed control plane for the Internet
of Things (IoT). It provides an asynchronous mechanism to send control plane
commands (e.g. CoAP, SNMP or custom ones) to intermittently connected devices.
Moreover this solution enables the IoT to be managed by different stakeholders,
which do not need to deploy its own infrastructure but may rely on the existing IoT
devices themselves.

120 J.J. Bolonio, M. Urueña, and G. Camarillo

For implementation purposes, we focus on the IETF standard P2P protocol:
RELOAD. Our enhancements would require minimal modifications to the current
specification. Since our mechanism is fully distributed it takes advantage of the
inherent properties of distributed systems such as scalability, NAT traversal and
autonomous operation. Moreover, since the IoT control and management traffic is not
concentrated in a single point of the network, but it is distributed among all peers of
the DHT, it does not have a single point of failure as centralized solutions. Our
estimations show that the overall traffic in the DHT is quite low since most messages
are sent towards their final destinations (i.e. actuator peers), or through a direct
connection (e.g. sensors polling their Admitting Peers). Moreover, our analysis shows
that the proposed DHT solution has remarkable scalability properties when compared
with a centralized solution, since the growth of the IoT as a fairly limited impact on
the control-plane load of DHT peers.

We have also provided a simple access control policy to enable a RELOAD
resource, such as the proposed Command Mailbox one, to be shared by an arbitrary
number of nodes, without requiring an explicit list of allowed devices as it happens
now with access list-based policies. Moreover the proposed resource sharing policy
does not allow external nodes (i.e. that do not know the shared key) to write any data
in the shared resource, and thus is not vulnerable by design to the Denial of Service
(DoS) attacks against node-based policies. This is a final requirement for an open, but
secure, distributed management of IoT devices.

Acknowledgments. The authors would like to thank Heikki Mahkonen and Petri
Jokela for their help with this work and for reviewing the final document.

References

[1] Mazhelis, O., Luoma, E., Warma, H.: Defining an Internet-of-Things Ecosystem.
In: Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART 2012. LNCS,
vol. 7469, pp. 1–14. Springer, Heidelberg (2012)

[2] Atzori, L., Iera, A., Morabito, G.: The Internet of things: A survey. Computer
Networks 54(15), 2787–2805 (2010)

[3] Hu, F., Rajatheva, N., Latva-aho, M., You, X.: Sensor Integration to LTE/LTE-A
Network through MC-CDMA and Relaying. VTC Spring, 1–5 (2012)

[4] Mäenpää, J., Bolonio, J.J., Loreto, S.: Using RELOAD and CoAP for wide area sensor
and actuator networking. EURASIP Journal on Wireless Communications and
Networking 2012(1), 121 (2012)

[5] Jennings, C., Baset, S., Schulzrinne, H., Lowekamp, B., Rescorla, E.: REsource LOcation
And Discovery (RELOAD) Base Protocol. In: 2013 IETF Internet-Draft, Intended status:
Standards Track

[6] Shelby, Z., Hartke, K., Bormann, C.: Constrained Application Protocol (CoAP). In: 2013
IETF. Internet-Draft, Intended Status: Standards Track (2013)

[7] Jimenez, J., Lopez-Vega, J.M., Maenpaa, J., Camarillo, G.: A Constrained Application
Protocol (CoAP) Usage for REsource LOcation And Discovery (RELOAD). In: 2013
IETF. Internet-Draft, Intended Status: Standards Track (2013)

 A Distributed Control Plane for the IoT Based on a DHT 121

[8] Mäenpää, J., Bolonio, J.J.: Performance of REsource LOcation and Discovery
(RELOAD) on Mobile Phones. In: 2010 IEEE Wireless Communications and
Networking Conference (WCNC). IEEE (2010)

[9] Tozlu, S., Senel, M.: Battery lifetime performance of Wi-Fi enabled sensors. In: 2012
IEEE Consumer Communications and Networking Conference (CCNC). IEEE (2012)

[10] Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek, F.,
Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for internet
applications 11, 17–32 (2003)

[11] Rosenberg, J.: Interactive Connectivity Establishment (ICE): A Protocol for Network
Address Translator (NAT) Traversal for Offer/Answer Protocols. RFC 5245 IETF (2010)

[12] Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., Shenker, S.: Making gnutella-like
p2p systems scalable. In: Proceedings of the 2003 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications, pp. 407–418.
ACM (2003)

[13] Vial, M.: CoRE Mirror Server. Draft-vial-core-mirror-proxy-01, IETF Internet-Draft,
Intended Status: Standards Track (2013)

[14] Sturm, C., Dittrich, K.R., Ziegler, P.: An access control mechanism for P2P
collaborations. In: Proceedings of the 2008 International Workshop on Data Management
in Peer-to-Peer Systems. ACM (2008)

[15] Knauf, A., Schmidt, T.C., Hege, G., Waehlisch, M.: A Usage for Shared Resources in
RELOAD (ShaRe). Draft-ietf-p2psip-share-01, 2013 IETF Internet-Draft, Intended
status: Standards Track (2013)

	A Distributed Control Plane for the Internet of Things
Based on a Distributed Hash Table

	1 Introduction
	2 Related Work
	3 Background and Problem Statement
	3.1 Enabling Sleeping IoT Devices in RELOAD
	3.2 Security Considerations for the IoT Control-Plane

	4 Proposed Solutions
	4.1 A Command Mailbox for DHTs
	4.2 Access Control Policy for RELOAD Based on Shared Keys

	5 Scalability Analysis
	5.1 Centralized Scenario
	5.2 Standard DHT without the Proposed RELOAD Enhancements
	5.3 Enhanced RELOAD DHT

	6 Evaluation
	7 Conclusion
	References

