
D. Pesch et al. (Eds.): MONAMI 2013, LNICST 125, pp. 108–121, 2013. 
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013 

A Distributed Control Plane for the Internet of Things 
Based on a Distributed Hash Table 

Jaime Jiménez Bolonio1, Manuel Urueña2, and Gonzalo Camarillo1 

1 Ericsson Research, NomadicLab, Finland 
{jaime.j.jimenez,gonzalo.camarillo}@ericsson.com 

2 University Carlos III of Madrid, Spain 
muruenya@it.uc3m.es 

Abstract. As any other communication system, the Internet of Things (IoT) 
requires a functional control plane. However developing such control plane in a 
centralized way presents a number of challenges given the multiple 
stakeholders, the huge number of devices distributed worldwide, their limited 
connectivity, and specially that most IoT devices are battery-powered and thus 
must be sleeping most of the time. This paper explores the possibility of 
employing a distributed control plane for the IoT that leverages the intrinsic 
scalability and flexibility of peer-to-peer Distributed Hash Tables (DHTs). In 
particular, it proposes using a so-called “command mailbox” resource to 
remotely control sleeping sensors and actuators in an asynchronous way, while 
also solving important issues such as device bootstrapping and security.  
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1 Introduction 

The future vision of Internet of Things (IoT) is being realized by the interconnection 
of a wealth of heterogeneous devices [1]. Due to their ubiquity, such devices are 
likely to be connected to various types of networks, from NAT-based home networks 
to cellular or low-range wireless sensor networks. Many of them will have limited 
resources (i.e. computation, memory, etc.), power limitations being the most notable 
constrain (e.g. battery powered). Thus, it will be likely that such devices will be 
sleeping most of the time in order to save energy. 

IoT has been defined in various ways, for our purposes we will use the definition 
given by [2]: “The pervasive presence around us of a variety of things or objects 
which, through unique addressing schemes, are able to interact with each other and 
cooperate with their neighbors to reach common goals” 

Such cooperation is achieved by collaboration between sensors that gather data 
from their surroundings and actuators that interact with the physical world. A control 
entity, the master, is the one issuing the commands to the actuators and who 
configures both sensors and actuators. These masters are just logical entities that may 
be IoT devices (e.g. a light sensor that controls a shades’ actuator), a simple user 
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application (e.g. a home automation web page), or a complex management software 
orchestrating many sensors and actuators (e.g. a smart city). Moreover an IoT device 
may be controlled by several masters simultaneously, which may be unknown at the 
time the device was deployed.  

When analyzing the IoT traffic we consider two main types of communication: 
commands (i.e., sent by a master to a sensor or actuator) and data (e.g., measurements 
sent periodically by a sensor). Since each type of traffic has quite different 
communication patterns, we refer to those types of traffic using the control-plane and 
data-plane terms, respectively. 

This paper is focused on the challenges of building a control-plane for the IoT, 
mainly the limited communication patterns of these devices, given that most IoT 
devices will be behind firewalls/NATs and, more importantly, that they will be 
sleeping most of the time in order to save battery, and thus cannot be contacted 
directly by their masters. A simple solution to this problem may be employing 
centralized servers that act as gateways between IoT devices and their masters (which 
may be other IoT devices themselves). However any centralized solution has a limited 
scalability and may complicate the multi-tenant requirements for the IoT. 

Therefore this paper proposes a fully decentralized solution based on a Distributed 
Hash Table (DHT) that is employed as a rendezvous mechanism between IoT devices 
and their masters. In particular we specify how such solution may be implemented 
using RELOAD/Chord, although, in order to do so in an efficient and secure way, we 
propose a number of enhancements to the current RELOAD specification. 

2 Related Work 

Some works in the literature propose to connect wireless sensors with the network by 
using some kind of local gateway, such as a mobile device [3][4]. Some of these data-
plane solutions try to decentralize those gateways, for instance by means of a 
distributed overlay as in [4]. Sensors then connect to peers that are equipped with both 
cellular and local Wireless Sensor Network (WSN) radio interfaces. The distributed 
gateway overlay provides functions for resource discovery, network management, 
storage and a rendezvous mechanism, featuring also the usual characteristics of P2P 
systems, such as scalability and NAT traversal.  

Albeit limited, P2P systems can be implemented by constrained devices [8][9] and 
fit with the IoT requirements previously stated. Therefore the new enhancements we 
propose in this paper will be also suitable for the deployment of a fully distributed IoT 
scenario that does not require such local gateways, but devices will autonomously 
connect to the P2P IoT. 

3 Background and Problem Statement 

We take REsource Location And Discovery (RELOAD) [5] as the reference P2P 
protocol since it provides a standard, generic, self-organizing overlay network service. 
On top the RELOAD overlay layer different application protocols can be plugged in, 
such as the Session Initiation Protocol (SIP), Extensible Messaging and Presence 
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Protocol (XMPP) or even the Constrained Application Protocol (CoAP) [7], a 
lightweight client-server protocol for sensors [6] that will probably be employed in 
the data-plane of the IoT. 

RELOAD proposes Chord [10] as its default Distributed Hash Table (DHT) 
algorithm to organize the overlay. It also has an integrated Network Address 
Translator (NAT) traversal mechanism, the Interactive Connectivity Establishment 
(ICE) [11]. In a distributed and heterogeneous IoT scenario, this mechanism comes 
very handy for interconnecting the autonomous devices, which will use whatever 
communication technology is available. The DHT allows for storing information in 
the overlay, where resources are identified by their resource-ID, which is usually 
obtained by hashing some resource’s information, i.e. name, data, URI, owner ID, etc. 
As with other DHTs, RELOAD identifies devices by their node-ID, usually calculated 
with the same hash algorithm as the resource-ID. RELOAD supports two types of 
nodes: peers and clients. Peers are nodes that run the DHT algorithm, route messages, 
and store data on behalf of other nodes. Clients are nodes that do not run the DHT 
algorithm, and neither provide message routing nor storage services. Instead, they use 
other peers as proxies to the DHT.  

Therefore, given the connectivity and resource constraints of most IoT devices, it is 
reasonable that they connect as RELOAD clients to a DHT composed by stable peers. 
However, there are some limitations in the way clients operates in the current 
specification, related to enabling sleeping devices and adapting current access control 
policies to the open and multi-stakeholder nature of IoT. 

3.1 Enabling Sleeping IoT Devices in RELOAD 

Although there has been a lot of research on network scalability, including P2P 
networks, the sleepy behavior of network devices has been considered only recently 
[1]. The main reason being that it changes one of the main assumptions about Internet 
hosts, that is, that they can be contacted at any time. Both P2P protocols, like 
RELOAD, and sensor protocols, like COAP, assume that nodes, either peers/clients or 
COAP servers/gateways, are always able to receive messages. However, this would 
require IoT devices to be fully awake all the time, or at least its wireless interface, 
which will severely limit the lifetime of any battery-power device. 

Still, many do not consider this an issue, since it is assumed that wireless sensor 
devices just awake periodically to send one or few COAP messages with the last 
sensor measurement to a gateway or central server, and immediately go to sleep again 
[13]. Although in the data plane this client-only behavior of sensors is possible in 
most scenarios, this is no longer the case for the control and management planes. 
Although they have been overlooked by the research literature, they are essential for 
the correct operation of all kind of networks, including the Internet of Things. For 
example in order to configure a sensor with the COAP URI where to send its 
measurements to, the time between those measurements, or a threshold to filter 
unimportant events. Other example of management plane operation may be obtaining 
the statistics about transmitted/received packets in order to troubleshoot a problem. 
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To save space and cost, many IoT devices will not have a dedicated 
control/management interface (e.g. an USB port), but will rely on the same network 
interface employed for the data plane, which should be sleeping most of the time. 
Therefore, it is not possible to send control or management commands to sleeping 
sensors or actuators, unless some additional synchronization or rendezvous 
mechanism is in place. Our proposal is that low power devices can use a Distributed 
Hash Table (DHT) as a rendezvous mechanism to receive commands from their 
masters, since they may be behind a firewall or NAT and be sleeping most of the 
time. To do so, a sensor device creates a resource in the DHT, called Command 
Mailbox, and polls it periodically to check if it has new commands from its 
(potentially unknown) masters, while always-on actuators may receive these 
commands immediately by becoming DHT peers. Masters only need to know the 
node-ID of the device (either a sensor or actuator), in order to send commands to it 
through the DHT. 

3.2 Security Considerations for the IoT Control-Plane 

Although current sensor-based applications are vertically integrated, and thus a single 
vendor provides the whole stack, which is usually specifically designed for a given 
application and client, we envision the future IoT as an open and multi-stakeholder 
network, where interoperable devices can be provided by multiple vendors, and new 
applications can be deployed dynamically over the existing infrastructure. However, 
such open environment poses clear security challenges. In our particular case, 
although the commands from the master are encrypted and signed using a Message 
Authentication Code (MAC), the main security problem is how to allow an arbitrary 
number of masters (e.g. the users of a given IoT application) to write in the Command 
Mailbox resource of an already deployed device without using a dedicated server or 
directory [14]. 

Currently RELOAD has two control policies that can be employed to protect this 
kind of resource sharing: node-based and list-based, although they have some 
drawbacks: 

 
• Node-based (USER-NODE-MATCH in RELOAD) [5] policy allows any node 

of the DHT to write one entry in any Dictionary resource applying it. However, 
in order to protect their own memory, peers responsible for the storage of the 
Dictionary resource will certainly limit its size. This could easily lead to a Denial 
of Service (DoS) attack, because an attacker with multiple valid certificates 
would be able to store a high volume of data to overflow such limit, preventing 
legitimate masters from storing their information. This happens because the peer 
storing the resource does not know which nodes are the valid masters of a device. 

 

• List-based (USER-CHAIN-ACL in RELOAD) [15] policy is not vulnerable to 
this attack, because only the nodes explicitly allowed by the owner of the 
resource are able to write data. However, this requires the device to know the list 
of legitimate masters beforehand. Moreover, a device cannot be shared by an 
arbitrary number of users, because that would be too great a burden for the peer 
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managing such list, as well as all associated certificates - thus the dedicated 
server approaches such in [14]. In the IoT context, it implies that our sensor 
device should have to know beforehand the user-IDs or node-IDs of all possible 
masters before being deployed. This obviously complicates the management and 
deployment of IoT devices, especially in the cases of embedded ones that do not 
have a dedicated control interface. Therefore, a simpler mechanism to enable 
initially unknown masters to write commands in the resource of a deployed 
embedded device would be useful. 

4 Proposed Solutions 

As we have seen in the previous section, controlling sleeping IoT devices is 
problematic because those devices are asleep most of the time. In addition, current 
DHTs do not implement access control policies suitable for the large amount of 
devices that will be part of the IoT future scenario and their multi-stakeholder 
management. In this section we tackle those problems and present solutions to them. 

4.1 A Command Mailbox for DHTs 

Taking Chord’s implementation in RELOAD [5] as a model, devices that want to use 
this method should be pre-configured at least with the following information: 

 

• The node-ID of the device, which must be globally unique. 
• A valid certificate from the Enrollment Server of the DHT. 
• The DNS name of the overlay, or the IP addresses of Bootstrap Servers. 
• An optional, randomly generated, secret key. The master can later change this 

key, but if the device is reset, it goes back to this initial secret key. 
 

In order to issue commands to the device, its masters must know the device’s node-
ID and its current secret key. This information may be shared in several ways, for 
instance it can just be printed in the manual or in the device itself. In any case, the 
master should change the secret-key as soon as possible (i.e. the very first control 
command). Notice that it is not necessary neither that the master knows whether the 
device is a sensor or an actuator, nor the device has to know whom its master or 
masters are beforehand, which greatly simplifies the bootstrapping and the dynamic 
ownership of IoT devices. 

The proposed command mailbox resource is to be used by sensors, actuators and 
masters. The initial operation procedure after being reset (see Figure 1) is the same for 
devices plugged to the grid (e.g. actuators), thus awake and connected all the time, 
and for battery-powered, or otherwise intermittent-connected, devices (e.g. sensors).  

After booting, an IoT device contacts the Bootstrap Server to obtain the overlay 
configuration and to identify its Admitting Peer, i.e. the one responsible for the node-
ID of the joining node. Then, in the case of an always-on actuator, since it has enough 
resources to be a full peer, it joins the DHT as a RELOAD peer through its Admitting 
Peer. A sensor, on the other hand, attaches to its Admitting Peer as a RELOAD client, 
and thus has no routing or storage responsibilities. 
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Fig. 1. Issuing a command to a sleepy client device (e.g. a battery-powered sensor) 

Then the booting device creates in the DHT a Dictionary resource with the new 
COMMAND-MAILBOX kind-ID and the proposed CLIENT-ID-MATCH policy that 
enables it to store it with the same key as its own node-ID. Note that this behavior is 
not contemplated in current RELOAD specification because, to limit resource 
consumption and provide more availability, data can only be stored when the 
resource-ID are either a hash of the owner’s user-ID or node-ID. In the case of an 
actuator peer, since it is the responsible for its own command mailbox resource, it is 
not necessary to create a real resource (e.g. reserve memory or replicate it), but just to 
process the DHT messages targeting it. In the case of a sensor device, the command 
mailbox is created in its Admitting Peer by performing a DHT store operation with 
the same key as the sensor’s node-ID. 

At this point, once the Command Mailbox resource has been created, a sensor 
device may leave the Admitting Peer and go to sleep for some pre-defined amount of 
time between command checks (e.g. 10 minutes). Conversely, an actuator remains 
connected as a peer in order to receive messages from its masters, requesting a store 
operation in its Command Mailbox resource. Then, when the sensor awakes, it 
attaches again as a client to its Admitting Peer and fetches its mailbox looking for any 
new command. Both types of devices can verify the MAC code of the incoming 
command, and optionally decrypt it, to guarantee that it comes from a valid master 
that knows its current secret key.  

Therefore, when a master has to issue commands to any of the IoT devices it 
controls, it only has to be connected to the same DHT (either as a peer or as a client). 
Then it can issue control messages just by storing the encrypted and signed command 
into the Command Mailbox resource with the same resource-ID as the target device’s 
node-ID. Thus, if the target device is an actuator, the command will be received 
directly by the actuator peer and act accordingly. Sensors on the other hand will only 
receive such command after checking the Command Mailbox at its Admitting Peer. 
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Once all commands have been executed or discarded (i.e. wrong MAC), the device 
overwrites the whole Command Mailbox resource. If necessary it can write a response 
to the command in the same mailbox, or sent it back to the master using other 
mechanisms, like a RELOAD message routed through the overlay, or a direct COAP 
message. If no response is needed, the command-mailbox entry can be just left empty.  

To check that the device has processed the command, the master can just wait for a 
direct response message (e.g. through the overlay) or, if the master is a sleepy node 
itself, it may then try to fetch the same resource to check the response of the device, 
or that at least verify if the key is empty, i.e. not containing its own command.  

4.2 Access Control Policy for RELOAD Based on Shared Keys 

Previously we have discussed how to solve the problem of sending control or 
management commands to sleeping sensors or actuators. Now we address the issue of 
sharing write permissions of the command mailbox resource with other (potentially 
unknown) nodes in the overlay to prevent Denial of Service (DoS) attacks. To do so, 
we propose the use of a shared-key mechanism (see Figure 2).  

In our IoT deployment scenario every embedded device can be deployed without a 
pre-configured list of masters, but rather just with a randomly generated secret key. 
Any master would only need to know the device’s identifier and its initial secret key, 
which can be printed in the manual or in the device itself. Therefore a device can be 
easily controlled by an arbitrary number of masters without managing an explicit 
access control list.  

A device that wants to create a Command Mailbox resource and share its write 
permissions with its (unknown) masters by means of the proposed shared-key 
mechanism should follow two steps: 

 
1. Establishing a Write Key: The device sends a Store Request message with the 
same ID as the Command Mailbox resource being protected and a value identifying it 
as a Write Key (in RELOAD this can be done by editing part of the StoreKindData 
with an additional key_sign_type = WRITE_KEY attribute). The message should 
also define the Message Authentication Code (MAC) algorithm to be employed by 
other nodes, and include the shared key associated to that resource, and that may be 
derived (e.g. by hashing) from the device’s secret key. The Write Key is encrypted 
with the public key of the peer storing the resource, so it can be securely forwarded 
through the overlay. Only the owner node can change the secret key or the MAC 
algorithm at any time by sending a new Store Request message with a different 
write_key field.  
 

2. Storing in the Resource: After establishing the Write Key of the Command 
Mailbox, any node that knows such key is also able to store information in the shared 
resource. Those messages need to include a write_sign signature field containing 
the MAC value of the whole message structure including the resource-ID, by using 
the current Write Key. The MAC algorithm must be the one specified in the 
mac_algorithm field of the Store Request operation by the owner device. When 
considering RELOAD, other operations (i.e. Fetch, Stat, etc.) are not affected since 
the write_key_sign field only appears in Store messages.  



 A Distributed Control Plane for the IoT Based on a DHT 115 

 
Fig. 2. RELOAD resource being shared between two owners 

When the responsible peer needs to replicate the shared resource in one or more 
replicas, it should also include the whole write_key field in the Store Request 
message sent to the replica, and optionally encrypting the write key with the replica’s 
public key. Usually the certificates of the replicas should be in the responsible peer’s 
cache, but if not, the key can be obtained by sending a RELOAD ping message to the 
replica’s node-ID. 

5 Scalability Analysis 

This section analyzes the scalability of the proposed DHT-based IoT control plane by 
comparing it with using centralized servers, as well as analyzing the effect of the 
proposed enhancements to RELOAD. To do so, let us define N as the total number of 
nodes in the Internet of Things (IoT): ܰ ൌ ௌܰ ൅ ஺ܰ 

Where NS and NA are, respectively, the total number of sensors and actuators in the 
IoT. We will assume that actuators are mains-powered and have a permanent 
connection (although they may be behind NATs/firewalls), so they can behave as DHT 
peers. On the other hand, sensors are sleeping most of the time so they only wake up 
periodically to check their command mailboxes. Due to this intermitted connection 
sensors are not full peers, but connect as RELOAD clients to their Admitting Peers.  

To model the IoT control traffic, we will also define Ox as the average rate, 
measured in messages per time unit, of control operations issued to a given node of 
type x. Thus, Os and Oa are the average rate of control operations issued to a sensor 
and an actuator, respectively (e.g. Oa = 1 means that each actuator receives on average 
one control operation per time unit). Ps and Pa are defined as the rate sensors and 
actuators poll their associated Command Mailbox (e.g. Ps = 1 means that each sensor 
polls its command mailbox once per time unit).  

Now we can define MX as the total number of control messages exchanged (either 
sent or received) per time unit by all nodes of type X. Then MC is the total number of 
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messages sent or received per unit time by all servers in the centralized scenario, and 
M’DHT specifies all messages generated within the RELOAD DHT. Notice that 
forwarding a control message, either by a central server or a RELOAD peer, involves 
one reception and one transmission, and thus it is accounted as two messages. 

Finally, the metric employed to compare the scalability of the different scenarios is 
Lx, the average load of a node of type x, measured as the average number of messages 
exchanged by a node per time unit. It is computed as the total number of messages 
(MX) divided by the number of type X nodes (NX): ܮ௫ ൌ ௑௑ܰܯ   

Next we provide an analytic model for this load metric in the three evaluated 
scenarios. 

5.1 Centralized Scenario 

In this scenario, the control plane of the IoT is provided by a set of Nc centralized 
servers. We will assume a perfect load balancing strategy so all servers handle exactly 
the same number of messages. Then, actuators have a permanent connection with one 
of these servers, which acts as a proxy of control commands, sending back and forth 
the operation requests from masters and the replies from actuators. Therefore, the 
total number messages exchanged by all IoT actuators is just two times (i.e. request + 
reply) the average control operation rate of a single actuator (Oa) multiplied by the 
total number of actuators (NA): ܯ஺ ൌ 2 ௔ܱ ஺ܰ 

Sensors, on the other hand, do not have such permanent connection and thus cannot 
receive control commands from their masters directly. Instead these masters’ 
operations are stored in a Command Mailbox at the central servers while the master 
waits for a response. Sensors poll its mailbox periodically (at Ps rate), and when it 
contains a new operation request, it is executed and the response is sent back to the 
user through the central server. Therefore the total number of messages exchanged by 
the sensors is the sum of the polling ones plus the two request/response messages 
exchange with the master: ܯௌ ൌ 2 ௦ܲ ௌܰ ൅ 2 ௦ܱ ௌܰ ൌ 2 ௌܰሺ ௦ܲ ൅ ௦ܱሻ 

Then, the total number of messages exchanged by all masters is: ܯெ ൌ 2 ௔ܱ ஺ܰ ൅ 2 ௦ܱ ௌܰ 

Therefore, since the central servers forward all messages exchanged among masters, 
sensors and actuators, the total number of messages handled by all servers (M’C) and 
the average load per server (Lc) are: ܯ஼ ൌ 4 ௔ܱ ஺ܰ ൅ 2 ௌܰሺ ௦ܲ ൅ 2 ௦ܱሻ ܮ௖ ൌ ஼஼ܰܯ  
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5.2 Standard DHT without the Proposed RELOAD Enhancements 

To avoid the extra cost and single point of failure of centralized servers, in the 
following scenarios the control plane is provided by a global DHT comprised by all 
IoT actuators that are powerful enough to act as RELOAD peers. Sensors act as 
RELOAD clients and are connected to the DHT through their Admitting Peers. 
Masters that want to issue control commands are also connected as RELOAD clients 
in order to write the desired operation in the Command Mailbox of the target IoT 
node and then, as in the previous case, wait for a direct response forwarded through 
the DHT. Both operations are acknowledged to provide a reliable service. 

However in the second scenario we will first not consider the proposed RELOAD 
enhancements. Therefore the Command Mailbox resource of a sensor or an actuator is 
stored by some (random) peer in the DHT obtained by hashing its node-ID, and both 
sensors and actuators have to periodically poll it in order to check if there is any new 
operation request. In that case, they execute it and send the reply back through the 
DHT to the master (which has provided its node-ID in the command request) that 
finally acknowledges back to the device. Therefore the number of messages 
exchanged by all masters, sensors and actuators among them, as well as with the peers 
storing their respective Command Mailboxes are: ܯԢௌ ൌ 2 ௦ܲ ௌܰ ൅ 2 ௦ܱ ௌܰ ൌ 2 ௌܰሺ ௦ܲ ൅ ௦ܱሻ ܯԢ஺ ൌ 2 ௔ܲ ஺ܰ ൅ 2 ௔ܱ ஺ܰ ൌ 2 ஺ܰሺ ௔ܲ ൅ ௔ܱሻ ܯԢெ ൌ 4 ௦ܱ ௌܰ ൅ 4 ௔ܱ ஺ܰ 

However each of these messages, exchanged either with the peer storing the 
command mailbox or with the master, must be forwarded through the DHT. For a 
Chord ring with NDHT peers, the average number of hops is ܪ ൌ ଶ݃݋݈ ஽ܰு் [10] and, 
since each hop requires receiving and sending each forwarded message, the total 
number of forwarded messages doubles. Moreover there is certain overhead in order 
to maintain the DHT structure. In case of RELOAD/Chord an update message must 
be sent to all neighbor peers every 10 minutes (UNeighs = 6 msg/hr), while a search for 
best fingers is performed each hour (UFingers = 1 msg/hr). Given that each peer must 
have 16 fingers and 22 neighbors (i.e. 3 predecessors + 3 successors + 16 fingers) [5], 
the total number of overhead messages per time unit to maintain the DHT is: ܯ஽ு் ൌ 22ܷே௘௜௚௛௦ ஽ܰு் ൅ 16ܷி௜௡௚௘௥௦ܪ4 ஽ܰு் ൌ  ஽ܰு்ሺ22ܷே௘௜௚௛௦ ൅  ி௜௡௚௘௥௦ሻܷܪ64

Then, the total number of messages (exchanged among masters, sensors and 
actuators) sent and received by all DHT peers (M’DHT), and the average peer load 
(L’DHT) are: ܯԢ஽ு் ൌ ሺ2ܪ2 ௦ܲ ௌܰ ൅ 2 ௔ܲ ஺ܰ ൅ 4 ௦ܱ ௌܰ ൅ 4 ௔ܱ ஺ܰሻ ൅ Ԣ஽ு்ܮ ஽ு்ܯ ൌ Ԣ஽ு்஽ܰு்ܯ  
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5.3 Enhanced RELOAD DHT 

In the third scenario, the IoT control plane is also provided by a global DHT, but now 
it employs the proposed RELOAD enhancements. This way, the Command 
Mailboxes of sensors and actuators are not stored in remote peers, but in the sensor’s 
Admitting Peer or at the actuator itself. This greatly reduces polling overhead because 
allows actuators to receive commands immediately, and polling messages from 
sensors are not forwarded several hops away through the DHT, but just target the 
local Admitting Peer. Therefore the total number of messages exchanged among 
masters, sensors and actuators in this distributed scenario are: ܯԢԢ஺ ൌ 4 ௔ܱ ஺ܰ ܯԢԢௌ ൌ 2 ௌܰሺ ௦ܲ ൅ ௦ܱሻ ܯԢԢெ ൌ 4 ௦ܱ ௌܰ ൅ 4 ௔ܱ ஺ܰ 

Now only the messages among masters and actuators, sensors or their Admitting 
Peers have to be forwarded in the DHT (still with H hops on average), while sensors’ 
polling messages reach the Admitting Peer directly, leading to the following total 
number of messages (also considering the MDHT overhead) in the DHT and the 
average load per peer: ܯԢԢ஽ு் ൌ ሺ4ܪ2 ௦ܱ ௌܰ ൅ 4 ௔ܱ ஺ܰሻ ൅ 2 ௦ܲ ௌܰ ൅ ԢԢ஽ு்ܮ ஽ு்ܯ ൌ ԢԢ஽ு்஽ܰு்ܯ  

6 Evaluation 

In order to evaluate the scalability of the three analyzed scenarios, we should compare 
them with similar parameters. Therefore let us assume that the control operation rate 
for sensors is just one operation per node and day (Os = 1 op. per node and day = 1/24 
op. per node and hour) while actuators receive one operation per hour (OA = 1 op. per 
node and hour). The Command Mailbox polling rate is also the same for sensors and 
actuators, but faster to reduce the response time (Ps = Pa = 1 poll per node every 
minute = 60 polls per node and hour). To do not favor any device type, let us assume 
that half of the IoT devices are sensors and the other half actuators (Ns = Na = N/2). 
Moreover, all actuators form the IoT control-plane DHT (NDHT = Na).  

Figure 3 shows the scalability of the three proposed scenarios. Each curve 
represents the average load per node measured in messages per hour of each solution. 
That is, Lc, L’DHT and L’’DHT that were defined in the previous section. Since the 
average load depends on the number of nodes, the centralized solution has four curves 
for different number of servers, ranging from one to 10,000. Notice that both axes are 
in log scale. 
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Fig. 3. Load per node in the three evaluated scenarios (ࡸ ,ࢉࡸԢࡸ ,ࢀࡴࡰԢԢࢀࡴࡰ) 

It can be clearly seen that the centralized solution requires deploying a high 
number of servers in order to maintain the same average load as the DHT-based 
solutions, which is low enough (2,351 msg/hr = 0.65 msg/sec with one billion - 10^9 - 
IoT nodes) to be supported even by constrained devices. Moreover, the proposed 
enhancements for RELOAD reduce one order of magnitude the total number of 
messages in the DHT by avoiding polling remote Command Mailbox resources, 
which constitute a high share of the total traffic. 

However, due to the overhead to maintain the DHT, a distributed IoT control plane 
does not make sense for small IoT deployments that may simply rely on few 
centralized servers. On the other hand, a DHT composed by IoT actuators does not 
require deploying and maintaining additional infrastructure, and continuously 
upgrades as the IoT grows, given that the new actuators will help providing the IoT 
control plane. 

7 Conclusion 

This paper provides the foundation of a fully distributed control plane for the Internet 
of Things (IoT). It provides an asynchronous mechanism to send control plane 
commands (e.g. CoAP, SNMP or custom ones) to intermittently connected devices. 
Moreover this solution enables the IoT to be managed by different stakeholders, 
which do not need to deploy its own infrastructure but may rely on the existing IoT 
devices themselves. 
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For implementation purposes, we focus on the IETF standard P2P protocol: 
RELOAD. Our enhancements would require minimal modifications to the current 
specification. Since our mechanism is fully distributed it takes advantage of the 
inherent properties of distributed systems such as scalability, NAT traversal and 
autonomous operation. Moreover, since the IoT control and management traffic is not 
concentrated in a single point of the network, but it is distributed among all peers of 
the DHT, it does not have a single point of failure as centralized solutions. Our 
estimations show that the overall traffic in the DHT is quite low since most messages 
are sent towards their final destinations (i.e. actuator peers), or through a direct 
connection (e.g. sensors polling their Admitting Peers). Moreover, our analysis shows 
that the proposed DHT solution has remarkable scalability properties when compared 
with a centralized solution, since the growth of the IoT as a fairly limited impact on 
the control-plane load of DHT peers.  

We have also provided a simple access control policy to enable a RELOAD 
resource, such as the proposed Command Mailbox one, to be shared by an arbitrary 
number of nodes, without requiring an explicit list of allowed devices as it happens 
now with access list-based policies. Moreover the proposed resource sharing policy 
does not allow external nodes (i.e. that do not know the shared key) to write any data 
in the shared resource, and thus is not vulnerable by design to the Denial of Service 
(DoS) attacks against node-based policies. This is a final requirement for an open, but 
secure, distributed management of IoT devices.  
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