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Abstract. With the ever increasing number of devices, nodes and the events 
they create, scalability and performance become important aspects for 
Operation Support Systems (OSS). One solution is to distribute the work load, 
i.e. ‘cloudify’ the formerly centralized monitoring and decision functions. This 
requires remodeling Complex Event Processing (monitoring) and Policies 
(decision making) towards a distributed yet coordinated system. This paper 
describes an extended architecture, implementation and performance tests for a 
policy-based event processing system. The main advantage of our approach is 
that we use policies for event pattern matching (an advanced form of Complex 
Event Processing) and for the selection of corrective actions (called Distributed 
Governance). Policies are (a) distributed (over multiple components) and (b) 
coordinated (using centralized authoring). The resulting system can deal with 
large numbers of incoming events, as is required in a telecommunication 
environment. Peak load will be well above 1 million events per second, 
combining different data sources of a mobile network. This paper presents the 
motivation for such a system, along with a comprehensive presentation of its 
design, implementation and evaluation. 

Keywords: Complex Event Processing, Rule System, Distributed Processing, 
Performance. 

1 Introduction 

Mobile networks are growing, cell sizes are decreasing and the number of connected 
devices is exploding. These conditions result in an ever increasing number of events 
from the network. The situation becomes critical and requires scalable solutions for 
event processing and the selection of corrective actions, i.e. for alarm events. Our 
work combines rule systems to encode event processing knowledge and messaging to 
provide for a distributed system. Other earlier work used centralized rules over a 
distributed system [5-8], which drastically limits the scalability. We use distributed 
rules that are coordinated by centralized authoring to address this limitation. In this 
paper, we describe the general architecture, the reference implementation we have 
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developed and performance tests with regard to end-to-end message processing. The 
work is integrated into a wider research project in the Ericsson Network Management 
labs that deals with extreme volumes of mobile network events. 

This paper is organized as follows: section 2 introduces core concepts, 
technologies and products from messaging systems and rule systems. Section 3 
briefly discusses the architecture and main design decisions of our system. The 
sections 4 and 5 then detail the implementation and provide a discussion of test 
results, mainly looking into the performance for the end-to-end event processing. 
Section 6 discusses related work from academia and industry. Finally, a conclusion 
summaries this paper and discusses future work items of our project. 

2 Conceptual Background, Products and Tools 

Combining concepts from messaging systems with concepts from rule systems 
requires an understanding of two disjoint domains. In general, messaging system 
provides the main communication links between the components of a distributed 
system. A rule system provides the intelligence to manage and process events and 
event patterns to trigger appropriate actions. In this section we look into the 
fundamental idea of both to introduce relevant terms and concepts. 

2.1 Messaging System 

A distributed system has multiple components that may be built independently, with 
potentially different languages and platforms, dispersed at different locations. There 
are a number of approaches including: distributed data stores, streamed data, query-
response models, or asynchronous messaging. Using a message-based approach 
distributed components share and process data in a responsive asynchronous way and 
it is this approach we focus on in this work. Our works use Advanced Message 
Queuing Protocol (AMQP) messaging due to external project requirements, namely 
RabbitMQ, an open source AMQP implementation. 

AMQP is “an open standard for passing business messages between applications” 
[1]. Data (the messages) is sent in a stream of octets, thus it is often called a ‘wire 
protocol’. Version 1.0 of the AMQP standard defines three main components: the 
networking protocol, a message representation and the semantics of broker services. 
All of these components address core features such as queuing, routing, reliability and 
security. Message encoding is separated into links, sessions, channels and 
connections, with links being the highest level and connections the lowest level of 
abstraction. A link connects network nodes, also known as distributed nodes in 
AMQP. 

RabbitMQ [2] is an open source implementation of the AMQP standard. It 
facilitates ‘producers’ to send messages to ‘brokers’, which in turn deliver them to 
‘consumers’. Messages can also be routed, buffered and made persistent, depending 
on runtime configuration. 
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AMQP is designed to be programmable, allowing application to configure 
‘entities’ and ‘routing schemas’. The three important entities in RabbitMQ realizing 
the programmability are ‘exchange’, ‘queue’ and ‘binding’. An exchange receives 
events from a producer and realizes different routing schemes. A queue is bound to an 
exchange and handles consumer-specific message reception. A binding defines the 
rules for message transfer between an exchange and a queue. See [3] for details. 

2.2 Rule System 

Rule systems provide the means to define and process rules. In our work, we are 
focusing on Production Rule Systems (PRS) due to external project requirements. The 
computational model of PRS implements the notion of a set of rules, where each rule 
has a sensory precondition (“left-hand-side”, LHS, or “WHEN” clause) and a 
consequential action (“right-hand-side”, RHS, or “THEN” clause). Rules are also 
referred to as productions and they are the primary form of knowledge representation. 
The rule engine also maintains knowledge-base of facts. When the facts stored satisfy 
the precondition of a rule, the rule “fires”, thus invoking the action part of the rule. 
Often, the action part of the rule can change the fact knowledge-base, potentially 
triggering more rules. 

Drools Expert is an open source implementation of a PRS. In Drools Expert, Rules 
and facts of a PRS constitute a knowledge base. Rules are present in the production 
memory and the facts are kept in a database called working memory, which maintains 
current system knowledge. There is an Inference Engine based on Charles Forgy’s 
Rete Algorithm, which efficiently matches the facts from working memory to 
conditions of the rules in the production memory. 

Also, a conflict resolution is required when there are multiple rules on the agenda. 
As firing a rule may have side effects on working memory, the rule engine needs to 
know in what order the rules should fire (for instance, firing ‘ruleA’ may cause 
‘ruleB’ to be removed from the agenda). The default conflict resolution strategies 
employed by Drools Expert are: Salience and LIFO (last in, first out). [4] 

3 Architecture and Design 

We receive events from streams (using other Ericsson software), process them and 
forward them via queues. Each component employs a rule engine to process events. A 
typical process is to receive an event or a number of events (pattern) and create/send 
composite events. The events we process are actual mobile network events, such as 
performance events (counters) or alarm events. However, for simplification we refer 
to events as characters, e.g. ‘A’, ‘B’ and ‘C’. Figure 1 shows how an incoming event 
stream (ABABCA…) is directed to a dedicated queue (CEP) and processed. 

Events are received, one by one, by the Complex Event Processing (CEP) 
component. It takes simple events (‘A’, ‘B’) and generates complex events (‘@A’, 
‘@AA’). These complex events represent patterns, i.e. sequences of events that are of 
special interest. The rules in the CEP component specify which patterns need to be 
matched and which corresponding complex event needs to be generated. Finally, 
complex events are sent to the next queue. 
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The Distributed Governance (DG) component receives complex events and selects 
appropriate actions to respond to them. The rules in the DG component define which 
complex events are being processed and what actions are associated with them.  
The number of associated actions can be zero or more, with zero action indicating an 
un-decidable situation, while more than one indicates multiple possible actions. DG 
then sends the actions to a new queue, which can feed into multiple applications of a 
broader management process, e.g. as part of Network Operation Center (NOC). 

Combining messaging (AMQP) and rule systems (PRS) allows for a design of a 
flexible and scalable system. Using queues for communication not only facilitates the 
CEP and DG components to be distributed, but also for multiple redundant or load-
balanced instances of each component to be run in parallel at runtime. If one CEP 
instance reaches its performance limits a new CEP instance can be executed, 
connected to the CEP queue and some patterns of the original CEP instance allocated 
to the new CEP instance. Figure 1 shows a scenario with three CEP instances and two 
DG instances. 

 

Fig. 1. Architecture and deployment scenario 

One characteristic of the described system design requires special attention: the 
processing of patterns and the selection of actions is (a) distributed over two 
components (CEP and DG in the architecture) and can also be (b) distributed over 
multiple instances (CEP and DG instances in design and runtime). An effective and 
efficient coordination is required to guarantee that all patterns are processed and that 
the resulting complex events find related rules for action selection. Figure 1 shows a 
process for ‘Rule Authoring’ which is responsible for the coordination. The details of 
this process are out of scope for this paper, which focuses on the implementation and 
testing of the message processing. 
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4 Implementation 

This section details the implemented system. We have built four components (which 
we call nodes), developed in Java 7. Two nodes realize the core of the event 
processing and two are used to automate tests. The two core nodes are CEP and  
DG (Figure 2). The other two supporting nodes are the input and output consoles 
(Figure 3). CEP and DG are built in a very similar way: they read events (messages) 
from a topic, invoke a rule engine to process events and then publish the results of the 
rule evaluation on another topic in form of complex events (CEP) or actions (DG). 

4.1 Core Nodes 

Both nodes, CEP and DG, start with an initialization of their respective topics and 
knowledge base (rules, for rule processing). CEP waits to get events from the input 
console, processes it (applies rules) and sends it out on another topic where DG 
receives it. Similarly, DG dispatches events with the associated action after 
processing the received composite event from CEP. This cycle of waiting and 
processing goes on endlessly for the core nodes. 
 

 

Fig. 2. Core Nodes, CEP (left) and DG (right) 

4.2 Complex Event Processing (CEP) Node 

Figure 2 (left) shows the CEP node with its three main parts: start, wait and 
processing. Start creates the knowledge base and two topics CEP and DG. When an 
event is received on CEP topic, a corresponding fact is inserted into the knowledge 
base and all rules are ‘fired’ (processed). Rules evaluate to match patterns as the  
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knowledge base holds the information (facts) of previously received events. To keep 
the knowledge base light and efficient these facts are retracted when they are of no 
use to match patterns. In our system we have kept up to four facts in knowledge base 
to match the pattern, we call it the window of events. This window size can be 
changed per event pattern required to be matched. After rules evaluation complex 
events are generated and published to the DG topic. 

4.3 Distributed Governance (DG) Node 

Figure 2 (right) shows the DG node with its three main parts: start, wait and 
processing. Similar to the CEP node, DG creates its knowledge base and two topics 
called DG and OUT. The topic DG is the same as that created by the CEP node for its 
output, thus the two nodes a bound via that topic. When a complex event is received, 
a corresponding fact is inserted into the knowledge base and all appropriate triggered 
rules are then fired. Rules evaluate in DG to associate identified patterns to actions, 
which are then published to OUT topic. 

Table 1. Single and Multi-event Pattern (examples) 

Single event Pattern Multi-event Pattern 

Incoming 
Event 

Composite 
Event 

Associative 
Action  

Incoming 
Events 

Composite 
Event 

Associative 
Action 

A @A Action-A A-A @AA Action- AA 

B @B Action-B A-B† @AB Action- AB 

C @C Action-C A-A-B @AAB Action- AAB 

D @D Action-D A-A-B-B @AABB Action- AABB 

E @E Action-E †A-B implies that ‘B’ occurs after ‘A’ 

Table 1 shows an example of events (single and multi) and corresponding complex 
events with associative action. This pattern matching can be extended to generate new 
complex events, by simply writing the new CEP rules and corresponding rules in the 
DG for associative action. 

4.4 Supporting Nodes 

For testing, we have added an input and an output console, which will later be 
replaced by real systems for event processing and action respond. For the current 
system the input node provides the functionality of reading a file containing events, 
and then splitting the string to publish events on the CEP topic one by one. The output 
node receives the actions on the OUT topic and prints them out. 
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Figure 3 shows the two supporting nodes and their main phases (input console on 
the left and output console on the right). The input console starts and publishes as 
described above. When all events read from a file are published, it terminates. The 
output console starts once and waits indefinitely (until the process is terminated). Start 
creates the topic OUT and wait waits for actions from the DG node to print them to 
the console as they arrive. 

 

Fig. 3. Input (left) and Output (right) Console support Nodes 

5 Testing and Evaluation (“Strings” as Alarm Events) 

The tests we have performed are modeled to provide a good understanding about  
the performance of the overall system. Special attention focuses on the impact the 
message processing and the rule processing have on the overall system performance. 
The goal is to understand the technology impact on an end-to-end event processing. 
Tests have been run for 10 up to 1,000,000 events in a single stream with 10 test runs 
per input stream size. The numbers of rules and the actual rules have not been 
changed between test runs, so the results show the processing of a fixed set of 10 rules 
for CEP and 9 rules for DG. Further test runs will be needed to understand the impact 
of increasing rule sets on the performance. All tests have been run on a Intel i5  
(dual core) Windows 7 laptop. 

Each component of the system has fixed measurement points. They are shown in 
the figures in the implementation section. Initialization phases (called start) are not 
part of the measurement. The following list shows all measurement points of each 
component: 

•   Core nodes (Figure 2): Start, Wait, Rules, Publish (for CEP and DG) 
•   Supporting Nodes (Figure 3: Publish (Input node) and Wait (Output node) 

Figure 4 shows the overall processing time, i.e. the time it takes to process all 
events from input console to output console. The time for up to 1,000 events is 
negligibly small. From 10,000 events onwards the time rises in proportion with the 
increasing number of event in the input stream. 
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Fig. 4. Averaged Maximum Time for system (with String events) 

5.1 Time Consumption on Core Nodes 

The different times within CEP and DG namely Start, Wait, Rules, Publish, 
Processing and Total are measured and plotted on the graphs shown in Figure 5. The 
initialization phase of the nodes (Start) has been included here to show that it has no 
impact on the overall system performance (note: the number of rules and topics did 
not change). 

An important metric evaluated is the time consumed during rule evaluation and the 
wait a node does before fetching the next event from the queue. These times, Wait 
and Rules, shown in Figure 6 and discussed in the following section, depict the 
performance of Drools Expert. 

Another Important metric is the time each node takes to publish events to the  
topic. There are three nodes doing this task on their corresponding topics; the input 
console, CEP and DG. The publish time of these nodes measures the efficiency  
of RabbitMQ. 

5.2 Discussion 

Drools Expert rules are used on the nodes CEP and DG. DG’s Wait is directly 
proportional to the time the CEP node takes for rule evaluation. The output console 
also waits with DG for CEP rules evaluation and then waits for the DG rules 
evaluation. Hence it has the longest wait time. Figure 6 compares wait time with the 
rules evaluation time with increasing number of events. 

CEP rules are complex and identify patterns that take more time compared to DG 
rules which are used to select actions associated to patterns. 
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Fig. 5. Different time consumptions in CEP and DG 

 
Fig. 6. ‘DG and OUT node Wait’ vs ‘CEP and DG Rules’ 

 
Fig. 7. Publish time for Input, CEP and DG nodes 

There are three locations where events are published: CEP, DG and the input 
console. Figure 7 shows the time it takes to publish. The time taken by the input 
console to publish all the events is very small (virtually negligible) for up to 30,000 
events finishing even before CEP starts processing events. 

Above 30,000 events, as the number of events increases it affects the CEP 
processing time and generates a cascading effect for the overall system performance. 
Thus, separating the input console from CEP (and subsequently DG) is important for 
any event stream above 30,000 events. 
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6 Testing and Evaluation (“Maps” as Alarm Events) 

Extending our distributed system to work with Maps (LinkedHashMap<String, 
Object>). Maps are closer to the real world mobile network alarms and by hence 
replacing Strings with Maps (alarms); we will be able to find out the real world 
performance of our distributed system. The main information that a Map event 
contains are the alarm ID, the language, its type, timestamps and payload. With Maps 
we have a flexibility to add some critical information during processing that could 
help in final decision for action in response to the alarm. 

 

Fig. 8. Number of Mobile Network Alarms during a day 

Figure 8 shows a possible event pattern of a mobile network for 24 hour period. 
During the event storms (at the peaks in figure above), we require a system that could 
work seamlessly and provides for an efficient alarm management system. 

 

Fig. 9. Averaged Maximum Time for System (with Map events) 

We need our system to perform at a speed of thousands of events per second.  
So that with multiple nodes we could make it more efficient for congestion free  
peak hours. For such performance the response time of a system should not be more 
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than 5-6 minutes for an event storm. We have kept our experiments bound to a limit 
of 5 minutes of total system run. We went up to 1 million events with Strings but with 
Maps we are able to go up to 100k events within our time bound. 

Figure 9 shows the mean processing time for Map events, for 100k events it 
exceeds 5 minutes which is considered under our test environment but not acceptable 
in real world mobile networks scenario. 

 
Maps Strings

 

 

 

Fig. 10. Map Events vs String Events 

6.1 Discussion: Map Events vs String Events 

The comparison of Maps as events to the Strings as events is shown in Figure 10.  
 The important difference we noted by the comparison is that input takes a very long 
time to publish as the number of events increase. This increases the wait time of 
cascaded system (CEP-DG-OUT) and hence the total processing time. For Maps 
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messaging system has to hold and process more than 10 times of data per event 
compared to Strings and hence becomes slow. 

We observe that RabbitMQ is not the best for messaging system when the load 
becomes high during events storm and hence we get a backlog processing at that time; 
which is not be acceptable for real world mobile networks. We have considered a 
couple of alternatives for messaging system which are under testing to be made 
compatible and function in parallel with our rule processing system. 

 

 

Fig. 11. Rules Processing time: Maps and Strings 

Rules for CEP and DG are re-written to work with Maps but rules processing. For 
CEP which holds the knowledge of 4 concurrent events for pattern matching, it takes 
longer now with heavier data of maps. But for DG it is almost equal as the rules are 
simple and no pattern matching is done. 

This time consumption is not critical as it is still under 25 seconds for 100k events. 
With highly complex pattern matching, which is a part of our future work, we can 
safely assume that rule system would take longer time without going critical. 

We conclude that with maps we have gathered a better analytics for the 
performance of our distributed system in real environment. 

7 Related Work 

In the Policy-Based Information Sharing in Publish/Subscribe Middleware [5] author 
describes a control of sensitive information system in health care environment. The 
criticality of information sharing and data access is controlled by rules, precisely hook 
rules (Postgres SQL). Information that travels on the messaging system is tailored for 
a particular subscriber, on need-to-know basis. We have found that this paper has 
similar architecture as of our system with a slightly different implementation. Our 
system analyzes the patterns inside the incoming messages and modifies the 
forwarded message to correspond to the identified pattern, whereas it analyses the 
incoming messages and modifies it for particular subscriber according to information 
relevant to that subscriber. 
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A rule-based middleware for business process execution [6] implements rules over 
messaging middleware to provide a simple and efficient way of describing executable 
business processes. The complex conditional workflows and enterprise integration 
patterns are implemented in terms of rules. The Prova rule language and the Rule 
Markup Language (RuleML) are used to implement rules over an Enterprise Service 
Bus (ESB). 

Policy-driven middleware for self-adaptation of web services compositions [7] 
focuses on specifying and enforcing monitoring-policies to help in fault detection and 
corrective adaptation of web services compositions. Since monitoring and corrective 
action selection is combined in a single policy, this work does not scale well when the 
number of faults increases drastically. It also does not allow for smart filtering of fault 
events, which is essential to address high-priority events immediately and add lower-
priority events to maintenance reports. 

Message oriented middleware with integrated rules engine [8] is a patented 
invention addressing deficiencies in respect to the management of message oriented 
middleware. It describes the integration of a rule engine with message-oriented 
middleware. Their method includes creating a shared memory in the memory of a 
computer and adding or deleting tokens in the shared memory corresponding to 
objects such as messages and message queues, created in and removed from, 
respectively, in a messaging component of message oriented middleware, or topics or 
subscriptions or log file space for messages queues in the messaging component. The 
method additionally includes applying rules in a rules engine to the tokens in the 
shared memory. 

Our work differs from the above in that we use distributed and coordinated policies 
(between two components for event processing and governance), while policy 
instances in each component are atomic, i.e. do not effect each other. This results in a 
system that is hugely scalable, since only a combination of event processing policy 
and governance policy depend on each other. 

8 Summary and Future Work 

This paper describes the second phase of our work on building a rule-based event 
processing distributed system, which combines a messaging system with a rules 
system. We start by describing the underlying technologies, tools and products being 
used. Messaging using AMQP is implemented by RabbitMQ and our rule system uses 
Drools-Expert. 

The architecture we have created consists of several interconnected components 
with communication links, realizing a distributed system. In our architecture we 
introduce 2 rule governing nodes; Complex Event Processing (CEP) and Distributed 
Governance (DG). We have streams of events entering the system which are being 
processed by CEP to generate complex events, essentially identifying patterns within 
the events. These complex events are then fed into DG for analysis and decisive 
action. The communication links between these components is provided by the 
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messaging system. There are topic exchanges (channels and queues) between 
components which provide forwarding with selective filtering capability. 

In our previous paper, we focused on the evaluation of performance of the products 
RabbitMQ and Drools by running several tests with events ranging from 10 to 1 
million. In effect we are measuring the performance of rules and publishing of 
complex events. The wait state, introduced due to dependency of a node on 
processing time of previous node, is also considered. 

In this paper we extended our work for evaluating the performance and take to 
closer to the real world alarm events. We introduced Maps as events with several 
parameters stored inside one event. Then we critically analyzed the performance of 
the system and compared the results with our previous work with Strings as events. 

Part of the future work planned is to deploy multiple CEP and DG nodes/engines 
on multiple machines that can work simultaneously to distribute the load at required 
times. We also have planned to increase the complexity of the governing rules in CEP 
and DG to test the highly complex patterns matching. A higher performance is the 
main objective of our work, currently we have all our nodes tested under constrained 
environment, working on a single machine (Intel i5, dual core) with Windows 7. 
Running our nodes across distributed servers in a cloud-based deployment should see 
the approach scale to a level appropriate for a high throughput, telecommunication 
grade management process. 
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