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Abstract. Today, the number of versatile real-time mobile applications
is vast, each requiring different data rate, Quality of Service (QoS) and
connection availability requirements. There have been strong demands
for pervasive communication with advances in wireless technologies.
Real-time applications experience significant performance bottlenecks in
heterogeneous networks. A critical time for a real-time application is
when a vertical handover is done between different radio access tech-
nologies. It requires a lot of signalling causing unwanted interruptions to
real-time applications. This work presents a utilization of learning algo-
rithms to give time for applications to prepare itself for vertical handovers
in the heterogeneous network environment. A testbed has been imple-
mented, which collects PHY (Physical layer), application level QoS and
users context information from a terminal and combines these Key Per-
formance Indicators (KPI) with network planning information in order
to anticipate vertical handovers by taking into account the preparation
time required by a specific real-time application.

Keywords: Vertical Handover, Heterogeneous Network, Key Perfor-
mance Indicator, Machine Learning, Quality of Experience.

1 Introduction

Next generation communication systems provide a wide range of services and aim
to provide sufficient QoE (Quality of Experience) to users anywhere and any-
time. This involves using heterogeneous networks to provide services effectively
and efficiently. It is very challenging for mobile operators to balance the load
in networks of multiple radio access technologies, for example LTE, UMTS and
GSM. On the other hand, with the advent of smart mobile terminals supporting
multiple network technologies, mobile applications also have options to select
the most appropriate network to support their own requirements. This leads to
the requirement of transition from one access network to another seamlessly pro-
viding better quality options for users. These challenges are dealt with emerging
IEEE 802.21 specification, which supports handovers between IEEE 802 and
non-IEEE 802 (3GPP) access technologies to enable seamless mobility in next
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generation heterogeneous wireless network [1]. To facilitate better management
of multi-access networks for operators and to assist users in making suitable net-
work selection, automation through cognitive management mechanisms is seen
as a potential solution for optimal utilization of multiple access networks. Our
motivation was to implement a platform to evaluate different learning based al-
gorithms to be utilized in the vertical handover decision-making. The objective
was to fuse real-time monitored KPIs and predicted location and speed depen-
dent KPIs in order to enable foresight decision-making, and thus give mobile
applications enough time to prepare themselves for vertical handovers.

Network performance can be estimated based on three orthogonal dimensions:
coverage, capacity and QoS [2]. Better user experience requires better QoS and
large capacity while network operators are more focused on coverage and ca-
pacity. The current trend seems to be moving towards a QoE centric approach,
as device intelligence is increasing. However, the operators viewpoint cannot be
overlooked as they are providing the network services. Our motivation is to find
configurations that satisfy both viewpoints and hence maximize mutual benefits.
However, it requires real-time information from both terminal and network sides
to find correct configurations. Cross-layer communications and network moni-
toring play a key role in providing real-time context information.

To investigate the topic, we used the testbed called HET-Q. HET-Q is de-
signed to collect location, real-time PHY/MAC (Medium Access Control) and
application level QoS information from a user in all available networks. Intelligent
elements observe current network conditions, learn from their earlier decisions,
and adapt their operations accordingly. For implementing an intelligent han-
dover mechanism, different machine learning algorithms can be applied, such as
Self-Organized Map or a Normal Bayesian Classifier [3] [4]. Both terminal and
network sides are designed to have cognitive functionalities. Foresighted selection
of the best network requires utilization of the users location and network plan-
ning information. Furthermore, along with multi-radio access network aspects,
multi-operator aspects with different service classes need to be considered.

In this paper, we will present the architecture of our testbed that supports cog-
nitive handovers.We also present cognitive concepts to assist in making proactive
handovers among available networks. The test cases illustrate the ability of the
testbed to make use of machine learning algorithms for selecting an appropri-
ate network and to allow time for a mobile application to prepare for a vertical
handover.

2 HET-Q Architecture

The architecture of the HET-Q testbed is depicted in Fig. 1. The testbed in-
cludes a server side application, HET-Q server and a client side application called
HET-Q client. Communication between the applications is done over UDP or
TCP/IP connections. The mobile HET-Q client collects MAC/PHY level KPIs,
application level QoS KPIs, and location information. Location information is
retrieved from a GPS device while outdoors. While indoors, location information
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is retrieved from an indoor positioning system. The QoS parameters are collected
with the measurement tool QoSMeT [5] [6] which is installed on the HET-Q client
and server. The QoSMeT server is monitoring a large set of application level QoS
KPIs over a point-to-point connection. The PHY/MAC layer information is ob-
tained from wireless modules locked on specific radio access technologies. The
PHY/MAC data is retrieved using low level interface queries, such as Hayes
command set, also called AT commands. The testbed enables both real-time
as well as offline measurements. A commercially available network monitoring
tool (Nemo Outdoor) was used to provide offline measurements for validation
purposes. The server combines the incoming information with network planning
information, and gives the aggregated data to a decision-making algorithm. The
algorithm makes a proactive decision beforehand whether the terminal using spe-
cific service class (web browsing, video streaming or FTP downloading) should
make a vertical handover to another available network or not. The decision is
sent as a forced-HO or proposed-HO command to the terminal. In the latter
case, the terminal decides whether it obeys the proposal or not. The handovers
are executed either using an Intelligent Vertical Handover (IVHO) controller [7]
or by directly commanding wireless modules through internal interfaces.

Fig. 1. HET-Q testbed with main components and interfaces

The HET-Q server is run on a server computer. Its GUI is shown in Fig. 2.
It shows detailed information about the defined network layouts and a view of
a 3D propagation environment including terrain height, clutter and building
information. The real time measurement can be controlled by the HET-Q server.
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Fig. 2. HET-Q User Interface with main components and interfaces

An auxiliary Monitoring Tool is typically used for visualizing measured and
computed MAC/PHY and application level QoS KPIs. Furthermore, QoSMeTs
GUI is also used for visualizing application level QoS KPIs. The QoSMeTs real-
time point-to-point monitoring views are presented in Fig. 3.

Fig. 3. QoSMeT GUI for monitoring QoS KPIs
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3 Utilization of Cognitive Concepts

Cognitive functionality is utilized in the HET-Q testbed in three ways:

– Machine learning algorithms
– Network planning information
– Cognitive radio parameters

3.1 Utilization of Machine Learning Algorithms

Machine learning algorithms were experimented to assist vertical handovers in
heterogeneous networks. Experimented algorithms were K-Nearest Neighbors
(KNN), Support Vector Machine (SVM), Normal Bayesian Classifier (BAYES),
Expectation-Maximization (EM), Multi-Layer Perceptron (MLP), Boosting al-
gorithm (BOOST), Decision Tree (DTREE) and Random Tree (RTREE). We
used the OpenCV library implementations of these algorithms [8]. The algo-
rithms were implemented in the HET-Q servers decision-making module. The
data flow of the decision-making process is shown in Fig. 4.

Learning algorithms are taught to select the most appropriate radio access
technology for a user based on the used service type, measured and predicted
KPIs, and location. Training data consists of aggregated information from real-
time measurements, network planning data, and users location. Classifying the
training samples is done by using prior knowledge of human experts by contin-
uous scrutiny of PHY and MAC parameters. Classifying means that we select
the most suitable radio access technology for the application being used. The
classified data provides the most suitable network for each measurement sample.
Learning algorithms construct their knowledge according to training data. The

Fig. 4. Data flow of the decision-making process
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reliability of the trained algorithm is validated with test data. An algorithm hav-
ing the highest percentage of correctly classified samples (reliability) is selected
for operational use.

3.2 Utilization of Network Planning Information

The HET-Q server uses network planning information in order to give a termi-
nal enough time to prepare for a vertical handover which is critical for real-time
streaming applications. Coverage, interference, and data rate prediction results
are computed beforehand for the test scenario area using a network scenario and
appropriate propagation model. These predictions are fine-tuned and validated
with field measurements. Predicted KPIs are calculated at a presumed location
of a user using the users current location, heading, and speed. The foresighted
decision whether to make a handover relies on the accuracy of network planning
information, e.g. coverage, and a users predicted location.

Coverage, interference, and data rate predictions depend on a base stations
radio parameters and the modelling precision of the propagation environment.
Measurements from dedicated measurement tools e.g. HET-Q client, Nemo Out-
door can be used for fine-tuning prediction models in order to get better equiv-
alence between measured and predicted values.

The availability of digital map information has significantly increased in recent
years. Moreover, the 3D virtual modelling and similar tools have matured enough
to enable the creation of realistic 3D propagation environments, which include
terrain, vegetation, and building information. The used 3D propagation environ-
mentmodels were obtained fromNational Land Survey of Finland. Unfortunately,
most propagation models (called 2.5D models) take neither vegetation nor build-
ing shapes into account. Therefore, additional clutter parameters were added to
those propagationmodels to improve prediction accuracy. The clutter parameters

Fig. 5. Predicted coverage of a base station (background) calculated with a propagation
model and then optimized (top) with the help of field measurements and location
information
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are optimized using fieldmeasurements.The tuning of a propagationmodel is illus-
trated in Fig. 5. The first picture shows a base stations coverage computed with a
coverage prediction model, the second one after the clutter parameter tuning, and
the last one after a so-called sanity-check. The last step ensures that clutter types
attenuation factors are obeying laws of physics e.g. a forest type cannot amplify the
signal. During the sanity-check, coverage areas are typically optimized to be a bit
pessimistic in order to provide sufficient margins e.g. for fast fading.

3.3 Utilization of Cognitive Radio Parameters

Channel utilization level of WLAN APs is obtained from a CORAL platform
which is designed for research purposes to experiment with Cognitive Radio Net-
working features [9]. The platform reports, which reports the occupancy level of
each WLAN channel. The information is used to avoid unnecessary handovers to
WLAN if WLAN channels are highly congested. Performance indicators given
by CORAL can be considered as cognitive radio parameters. The CORAL plat-
form plays an important role in the HET-Q testbed when a WLAN network is
included in the scenario. The monitored PHY/MAC and QoS parameters can-
not give adequate indication of what is the load level in the target access point
(AP) when a vertical handover is about to occur. Moreover, the end to end QoS
measurement tool QoSMeT is limited to measure QoS KPIs only in the active
network (network the terminal is currently connected to). If the target AP has
a high load, then the terminal is likely to be forced to return to the original net-
work or to re-select another AP. The drawback is that much control signalling
is required in the case of a vertical handover, and re-selection will degrade the
users experienced QoS. The CORAL framework is used to tackle this problem.
The AP is storing information about the channels utilization levels, which can be
translated into load percentage. This information can be queried from a CORAL
database before making a vertical handover, and thus unnecessary handovers can
be prevented. HET-Q server queries data from the CORAL database and uses
channel utilization information in decision-making.

4 Experimental Results

An experimental drive test was performed in Otaniemi, Espoo, Finland. The
trial included experimentation with real-time vertical handover decision-making.
The platform is designed to be real-time so that changes in network performance
after a VHO decision can be assessed and the selected decision-making algorithm
can be adjusted accordingly. The training of a decision-making algorithm was
done with offline measurements, because outliers and other deficiencies can be
removed before decision-making. VHO decision-making mechanisms were based
on the following factors.
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Fig. 6. Interference level for different WLAN channels as shown by CORAL

– Reference, Radio Access technology is selected automatically by the con-
nected wireless module

– Signal Strength, Vertical handover is based on measured signal strength and
coverage prediction results.

– Proactive, Vertical handover is done using a machine learning algorithm as-
sisted with network planning and location information. (see chapter III A
and B)

The driving route and relevant landmarks are depicted in Fig. 7. The drive
test started from Digitalo building, went around it, passed the water tower, and
continued down a small hill towards Micronova building. At the lowest location,
the car was turned around and driven the same route back to Digitalo. The aim
was to test whether WLAN APs in Digitalo as well as the AP installed on top
of the water tower connected to CORAL were accessible from a moving car. The
route was driven back and forth in order to study whether there are differences
in entering and leaving cell boundaries. The turning at the lowest location was
selected so that a NLOS condition occurred at the closest base station. In this
experiment, we used DNAs (commercial network operator) UMTS and GSM
networks, and our own WLAN access point installed at the water tower. The
signal strength is indicated with colors. Warm color indicates high received signal
level and cold color a low one. In the picture, blue color is indicating areas
where surrounding buildings and terrain are shadowing the connection between
a base station and the car. From the measurement, we observed that a measured
signal strength value depends on the drive direction and serving cell boundaries.
The network tends to keep a user connected to a serving base station as long
as possible (even if not feasible). Therefore, we also measured signal strengths
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Fig. 7. Measurement route with signal strength colours

of neighbouring cells. Similar drive tests were also carried out using another
operators network (Sonera) in order to study multi-operator aspects.

When a wireless module was making VHO decisions (reference case), the ter-
minal stayed the throughout whole measurement in the UMTS network even
though the used traffic load (QoSMeT control traffic) could have been serviced
by the other available networks. This case is shown in Fig. 8 A. In order to study
the use of learning algorithms in VHO, we used service type specific constraints
to classify the training and testing data. A classifier assigns the most suitable
network for each measurement sample. The reference with 100 % reliability is
shown in Fig. 8 B. The color indicates the active network - green color is UMTS,
blue WLAN, and red GSM. When the measurement car turned around Digitalo,
the velocity was so low that connection to Digitalos WLAN APs was possible.
In areas where the communication link from car to a GSM base station was
shadowed, the terminal switched to UMTS.

The classified training data (see chapter III A.) was used to train all six se-
lected machine learning algorithms. The outcome of training was validated with
test data obtained from the drive test and the reliability percentages were com-
puted. The latter one indicates how many correct decisions were made by the
trained algorithm. In addition, Self-Organized Map (SOM) classification algo-
rithm was also tested. The achieved reliability percentage was 88 % with the
same training and testing data.

In this trial measurement, the best algorithm (SVM) reached 95.6 % reliabil-
ity. Although this seems good, the algorithm did make tens of wrong decisions.
The sequence of wrong decisions was often bursty indicating that the decision-
making algorithm was hesitating between two or more alternatives. This hesita-
tion caused unnecessary ping-pong effects. To alleviate this problem, a minimum
threshold time was added to the decision-making logic.
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Fig. 8. Performance of learning algorithms in decision making
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Based on the trial, we learned that the problem is not purely in the decision-
making algorithms. It is more in the data we give them. If the data does not contain
clear and systematic indicators to guide the algorithm, then it is possible for the
algorithm to make too many incorrect decisions. In the worst cases, the reliabil-
ity dropped even under 50 %. The measurement data collected from operational
networks contain more outliers and deficiencies, which need to be removed before
the training. The training in a laboratory environment is easier, because external
interference can be isolated and network loads can be controlled in a step-by-step
manner. It appeared that in operational networks, more sophisticated learning
algorithms, like MLP, have more problems with incorrect training data than the
simpler ones. The simple SVM algorithm gave the best results, which indicated
that it was more robust and immune to unusual deviations in data.

5 Future Work

In the future, we are planning to test learning algorithms with a mobile terminal
running several types of applications. So far, we have focused on a single applica-
tion (web browsing, video streaming, data downloading with UDP or TCP/IP).
The objective is also to integrate adaptive video coding to the HET-Q testbed
in order to give video streaming applications opportunity to choose between a
vertical handover and an adaptation of video streaming quality. In addition,
the aim is to extend the testbeds applicability to support M2M (machine-to-
machine) communication for indoor applications. Moreover, we found out that
the same learning algorithms used for vertical handovers can also be utilized
to automate network coverage tuning with steerable antenna solutions [2] and
real-time measurements.

6 Conclusions

This paper describes the implemented testbed and the preliminary results ob-
tained from using learning algorithms for the proactive handover decision-making
in heterogeneous networks. The decision-making utilizes real-time PHY/MAC
information, application level QoS, network planning information, users move-
ments as well as cognitive radio parameters. The testbed utilizes several learning
algorithms.

It was found out that the idea of utilizing learning based decision-making
algorithms is plausible for terminal to select the suitable network based on net-
works load conditions. However, training of learning algorithms turned out to be
challenging. Lack of clear patterns as well as outliers and deficiencies in the data
tend to decrease the performance of the learning algorithms. Hence, the train-
ing of the algorithm is crucial and needs to be done with caution. The results
obtained from the field trials confirm that learning algorithms are potential es-
pecially for real-time streaming applications in heterogeneous network benefiting
from foresighted VHO decisions.
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