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Abstract. Content Centric Networking (CCN) is a paradigm shift from
the way how networks of today work. The focus of networking in CCN is
on the content and not on the hosts that are involved in a communication.
One of the key cornerstones of today’s communication model is the use
of flow and congestion control to pipeline data and take appropriate
action when congestion is perceived to exist in a network. TCP of the
Internet protocol suite has shown us how application performance is
enhanced in different communication situations. An interesting area of
research is how TCP-like flow and congestion control can be adapted
for CCN. The work presented here adapts the most widely used TCP
flavours of NewReno, Compound and Cubic to operate in CCN. Due
to the architectural differences that CCN has over IP based networks,
this work identifies a number of additional algorithms to cater to the
issues associated with these differences. Finally, the performance of these
adapted TCP flavours and the algorithms are evaluated in an OPNET
based simulator.

Keywords: Future Internet, Content Centric Networking, Flow and
Congestion Control, Simulations.

1 Introduction

Network use has evolved to be dominated by content distribution and retrieval,
while networking technology still speaks only of connections between hosts. Ac-
cessing content and services requires mapping from the “what” that users care
about to the network’s “where”. Content Centric Networking (CCN) is a new
paradigm in networking which treats content as a primitive - decoupling loca-
tion from identity, security and access, and retrieving content by name. Using
new approaches to routing named content, derived heavily from TCP/IP, CCN
achieves simultaneous scalability, security and performance [1,2].

CCN retrieves content using interests that propagate all throughout the net-
work. This is unlike networks of today, which are mainly based on TCP/IP. These
networks have made TCP as the main transport protocol to communicate data
between producers and consumers of content. One of the key advantages of TCP
is its algorithms to handle reliable delivery of data, end-to-end. CCN on the other
hand has a hop-by-hop content delivery mechanism and a receiver oriented com-
munication architecture where delivery of content cannot be guaranteed by the
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sender. Flow and Congestion Control (FC-CC) algorithms in TCP have worked
well in current networks. There are a number of different TCP flavours in use to-
day. The most widely used flavours are NewReno, Compound and Cubic [3,4,5].
These flavours which are based on the original TCP [6], attempt at addressing
the issues associated with different network conditions. The work presented in [1]
explains that the architecture of CCN has FC-CC built into it, mainly through
the concept of flow balance, i.e., one Interest packet retrieves at most only one
Data packet. It further states that the segment numbers in Interest packets act
as the sequence number of TCP, CCN Interest packets acts as the TCP ACK
[6] that acknowledges receipt of data and that TCP SACK is intrinsic due to
Interest packets being re-sent for unreceived data.

There is research being done currently to introduce TCP-like FC-CC for CCN
[7,8,9]. All of these efforts focus on developing new algorithms to perform FC-CC
in CCN. One area that has lacked concentration is how the algorithms that cur-
rently exist in TCP would operate in CCN when they are adapted to operate in
CCN. The work presented here adapts the algorithms of the 3 most widely used
TCP flavours (NewReno, Compound and Cubic) to operate in CCN. Since there
are a number of architectural differences that CCN has, compared to TCP/IP
based networks, a couple of new algorithms have been identified to operate to-
gether with these adaptations. The rest of this paper describes our work as
follows. The Section 2 details similar work done by others in the area of FC-CC
together with a comparison of the work done by us. The Section 3 provides a
description of the adaptation and the new algorithms we have identified for the
selected TCP flavours to operate in CCN. The Section 4 details the OPNET
based simulator we have built to evaluate our work, the performance results and
the analysis of the results. Finally, Section 5 provides a summary of the work,
conclusions and future work to be considered.

2 Related Work

Flow and Congestion Control (FC-CC) has been a topic of interest in CCN since
the seminal work presented in [1]. The way in which FC-CC can be operated in
CCN is fundamentally different from the way it is operated in current TCP/IP
based networks. Therefore, a number of aspects must be addressed in order to
make FC-CC possible in CCN. These aspects fall into 4 categories.

End-System Congestion Control Algorithm - There are multiple ways
to manage the FC-CC congestion window (referred to as window hereafter) used
to decide the amount of Interest packets that have to be sent at any given time.
This window may be increased in size for successful receipts of Data packets or
decreased when perceived packet losses or congestion is detected in the network.

Packet Loss Detection - FC-CC requires the knowledge of whether a re-
quested Interest packet has been replied to with the corresponding Data packet.
If a packet is lost or a Data packet arrives out-of-order, this is an indication of
losses or congestion in the network.

Fairness Realisation - The architecture of CCN does not posses the end-to-
end notion as in current TCP/IP based networks. This means that packets travel
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hop-by-hop and each hop determines how the CCN packets are forwarded. Since
each hop has limited resources, there is a necessity to adopt specific fairness
controls at each hop to give a faire share to each of the content flows that travel
through that hop.

Flow Identification - As indicated above, fairness requires the identification
of content flows to provide fair sharing of resources. In CCN, requests for content
may originate from many different sources and a hop in the middle is unaware
of the originator of the requests. Therefore, a flow identification method has to
be adopted to assign resources fairly for the competing flows.

The authors of [7] investigates the performance of FC-CC using algorithms
based on Additive Increase/Muliplicative Decrease (AIMD), constant and Con-
stant Bit Rate (CBR) based window management. They utilise the Retransmis-
sion Timeout (RTO) and 3 out-of-order Data packet receipts to detect packet
losses. Fairness is realised by maintaining per-flow queues in the internal buffer.
When a buffer overflows, the packets in the longest queue are dropped based on
Deficit Round Robin (DRR).

The authors of [8] based their window management using a CBR window.
Fairness is realised by introducing a hop-by-hop Interest shaping algorithm that
anticipates the drop of Data through buffer overflows. The Interest shaping rate
is calculated using the delay from the Interest to the corresponding Data, the
buffer size, the available bandwidth to send the Interest and Data packets, the
number of queued Data packets for each flow and the number of conversations
flowing through the same CCN node. In this work, the Interest shaping ensures
that the buffer is equally distributed to each conversation.

The authors of [9] utilise an AIMD and a CBR based window management
algorithm. The packet losses are detected using RTO. Fairness control is applied
to the Interest flows. Each bottlenecked Interest flow maintains a queue for fair
distribution of the buffer. The bandwidth distributed to the bottlenecked Interest
flows is considered as the fair rate.

Flow identification in all these works [7,8,9] are done using the content name.
In contrast to these works, the work done by us focus on utilising the window

management algorithms used in the most widely used TCP/IP flavours, viz.,
NewReno, Cubic and Compound. A further aspect considered is the handling
of out-of-order packets. In CCN, packets may be out-of-order, not only due to
losses or delays but also due to arrivals from different caches. Therefore, it is
important to distinguish this difference before making window adjustments to
avoid inappropriate adjustments that may result in performance degradations.
Therefore, we have considered this aspect as an important factor in FC-CC and
introduced an algorithm to handle this situation.

In all the above mentioned works [7,8,9], the focus has been on fairness controls
that consider the flow of Interest packets. Our work too, considers fairness in
the same manner, but goes beyond by also considering the Data packet flow, in
addition to the Interest packets. In CCN, the payload of each data segment is
carried in the Data packets. Since Interest packets do not carry this information,
assigning a fair share of bandwidth must also consider the Data packets.
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In CCN, the same content can be requested by multiple CCN nodes and due
to the nature of CCN, intermediate nodes are unable to distinguish between
different flows. Since the identification of a flow is quite important to handle fair
sharing, we identify a flow by not only the Content Name and segment number
(as in the other works [7,8,9]) but also by introducing a random nonce at the
originator of Interests for every independent flow.

3 Adaptations

The architecture of CCN essentially uses a multicast or broadcast based mecha-
nism to propagate Interest packets for content and the content (i.e., Data pack-
ets) flow over the paths that were created due to the propagation of the Interest
packets. It is somewhat of a new way of communicating for mainstream commu-
nications of today, considering that unicast is the norm of current networks. The
draft CCN specifications [1,10] discuss how CCN is architecturally close to TCP
(flow balance, SACK, etc.). But when considered from a TCP point of view,
we see that there are a number of issues that make FC-CC for CCN different
from TCP FC-CC. Therefore, adaptation of the NewReno, Compound and Cubic
flavours of TCP require considering the following aspects.

Control/Communication Orientation - In TCP, the sender of data in a
communication session is in control of the session rather than the receiver. This
means that the sender continually sends data to the receiver based on the senders
view on how the network performs. On the other hand, no data will traverse the
network unless the data has been requested for in CCN and therefore, in CCN,
the receiver is in control. This means that the receiver is in charge of the data
flow by controlling how Interest packets are sent.

Data Acknowledgment - In TCP, data are acknowledged by a message that
travels in the opposite direction, to the sender. This acknowledgement (ACK)
system is one of the fundamental pillars of TCP, used by the sender to make a
number of decisions on how the rest of the data must be transmitted. But in
CCN, there is no concept of content ACKs. Therefore, the receipt of Dataitself
is considered as the acknowledgement in CCN.

Congestion Window Management - One of the key aspects of TCP is the
use of congestion windows to control the flow of data between the sender and the
receiver. In TCP, this is maintained at the sender due to the sender orientation
of TCP. On the other hand, since CCN is receiver oriented and the Interest
sending is considered as the means by which the flow of data is controlled, the
congestion windows must be maintained at the receiver.

Congestion (Packet Loss) Detection - TCP uses the RTO and the receipt
of 3 duplicate ACKs as the basis for considering congestion in the network [6]. In
the case of CCN, the RTO can be built in the same way as in TCP by consid-
ering the RTT associated with the Interest -Data cycle. But, CCN does not have
the concept of 3 duplicate ACKs and further, unlike TCP, CCN has the additional
problem of determining whether any out-of-orderData receipts are due to conges-
tion (or packet loss) in the network or due to Data arriving from multiple sources.
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Therefore, the work presented here identifies an algorithm called Pre-Recovery
that addresses the issue associated with multi-source arrivals.

Recovery Algorithm - TCP uses the Fast Recovery and Fast Retransmit
algorithms to resend data which are considered to be lost. Since CCN does not
have the concept of duplicate ACKs, the work presented here identifies a CCN
based Fast Recovery algorithm and Selective Fast Retransmit algorithm
to handle the resending of Interest packets.

Resource Sharing Fairness - Due to the reasons explained in Section 2 on
Fairness Realisation, the work presented here identifies aHop-by-hop Fairness
Control algorithm to provide fairness in sharing bandwidth.

The following sections describe the TCP flavour adaptations and the new
algorithms identified for these adaptations to operate successfully.

3.1 Flow and Congestion Control Adaptation

The TCP flavours considered in the work presented here utilise the same al-
gorithm during the slow start phase after establishing a connection or when an
RTO occurs, i.e., it starts with cwnd = 1 and performs a cwnd = cwnd+1 for ev-
ery non-duplicate ACK received until slow start threshold (ssthresh) is reached.
In the case of CCN, the same operation is performed but considering the Data
receipt as the ACK of a successful delivery of data for the corresponding Interest
sent previously.

The differences of these flavours occur in the congestion avoidance phase of
operation. They are as follows,

NewReno [3] - The increase of cwnd is performed using cwnd = cwnd +
1/cwnd on each non-duplicate ACK arrival.

Compound [4] - Compound uses a congestion window that is computed based
on combining the loss based window (cwnd) similar to New Reno and the delay
based window (dwnd) that is updated at the end of every RTT. If no early
congestion is detected, dwnd is increased and if early congestion is detected, the
dwnd is decreased.

Cubic [5] - Cubic uses a congestion window based on real time unlike the
RTT used in NewReno and updates the current window based on W (t) = C · (t−
K)3 · +Wmax where t is the elapsed time since the last window reduction time,

K = 3

√
Wmaxβ

C · , Wmax is the window size before the last reduction and β = 0.2.

We adopt the same differences in our adaptations (including the variables)
considering Data receipt as the ACK, RTT computation from the Interest -Data
cycle and 3 out-of-order Data packets as the rigger for the recovery process
(described in Section 3.2). We term these adapted flavours as CCN-NewReno,
CCN-Compound and CCN-Cubic.

3.2 Pre-Recovery Algorithm

TCP/IP always assumes a point-to-point communication basis where data ar-
rives from one source. In CCN, on the other hand, requests for content may be
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served from multiple sources due to caches. Therefore, out-of-order Data receipts
may be due to a (a) loss or a delay of Interest or Data, or (b) due to arrivals
from multiple sources that could also be multi-path transmissions.

An algorithm is identified in this work (called the Pre-Recovery algorithm) to
detect whether out-of-order Data receipts are due to (a) or (b). A summery of
the operation of this algorithm is presented in the Table 1.

Table 1. Operation Summary of the Pre-Recovery Algorithm

Pre-Recovery Operation
Entry 3 out-of-order Data receipts

(3 is the FRT value used in TCP)
During Congestion Window updated based

on FC-CC flavour used
Exit A loss detection and Fast Recovery entry or,

total number of out-of-order Data < FRT , when FRT = 3 or,
the occurrence of RTO

The fundamental idea behind this algorithm is to prevent the unnecessary
changes that is made to the congestion window when a false packet loss is de-
tected (disregarding the multi-source arrival issue). Figure 1 shows how multi-
source arrivals or Data loss detections are made, respectively.

This algorithm utilises 3 variables in its process (Figure 1(a)). The FRT
(similar as in TCP), maintains the amount of out-of-order Data packets that are
considered for the algorithm to commence operation. Pre FRT initially starts
with the same FRT and is continuously checked to see if the contiguous receipts
of out-of-orderData packets exceed the FRT+Pre FRT . As soon as an in-order
Data packet arrives, the Pre FRT is set to the max(cnt, Pre FRT ). A receipt
of an in-order Data packet at this instance indicates a multi-source arrival and
hence this algorithm will prevent the FC-CC moving into Fast Recovery and
Selective Fast Retransmit. Thereby, Pre-Recovery prevents the ping-pong effect
that the congestion window may display due to multi-source arrivals.

If the number of contiguous out-of-order Data receipts continue to grow be-
yond FRT + Pre FRT , FC-CC is moved into Fast Recovery and Selective Fast
Retransmit (Figure 1(b)).

3.3 Selective Fast Retransmit Algorithm

Once the Pre-Recovery (Section 3.2) algorithm determines that a packet loss has
occurred (cnt = FRT +Pre FRT ), FC-CC moves into Fast Recovery. The Fast
Recovery algorithm operates in a similar manner to TCP but with adaptations
to operate in a CCN context.

On entry into Fast Recovery, the cwnd is reduced to ssthresh+n. In TCP, n
is the 3 duplicate ACKs received. But in CCN, since the Pre-Recovery process
would have received a number of out-of-order Data packets, n refers to these
out-of-order packets. During the Fast Recovery, a receipt of an out-of-order Data
packet results in the cwnd being increased in the same manner as TCP would
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Fig. 1. Detection of Multi-source Arrivals and Lost Data in Pre-Recovery

perform in the case of a receipt of a duplicate ACK. Further, cwnd is decreased
during this period when an in-order Data packet is received. This is done due to
the consideration that Interest packets sent before the Fast Recovery for Data
are not yet received. TCP has a similar behaviour (i.e., decrease of cwnd) when
a partial ACK (i.e., an ACK that does not acknowledge all previous data) is
received.

The recovery during Fast Recovery is performed by requesting for the missing
data. TCP uses the Fast Retransmit algorithm. For CCN, we identify the Se-
lective Fast Retransmit algorithm (also called ”hole filling” in CCN in [1]) that
requests for the missing Data packets. In TCP, even though there could be a
number of missing data packets, the ACKs will only be sent for the last received
in-order data until the next in-order data is received. CCN, on the other hand
is in a better position as CCN is able to specifically request for the missing
Data packets by resending the corresponding Interest packets. This process is
identified asSelective Fast Retransmit in our work.
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The exit from Fast Recovery occurs when the missing Data packets are re-
ceived for the Interest packets sent before the Fast Recovery commenced. If an
RTO occurs during this period, that too will result in the exit of Fast Recovery.
Once Fast Recovery is exited, the cwnd is set to the ssthresh.

3.4 Hop-by-Hop Fairness Control Algorithm

Every router in CCN forwards the Interest packets received, in the direction of
the content (when cannot be served from own cache). Therefore, at any given
time, there are many different content flows (Interest and Data) traversing a
CCN router. Since the router has limited resources, an aggressive content flow
may make it impossible for other flows to receive a fair share of the resources of
the router. This becomes acute in situations where CCN applications use FC-CC
to retrieve content as the congestion window may increase rapidly.

Therefore, to overcome the unfair utilisation of resources by aggressive content
flows, we use a resource allocation algorithm in CCN routers based on max-min
fairness [11]. The aim of fair sharing with max-min fairness in our work is to
assign a fair share of the use of a face for outgoing Interest and Data packets.

The max-min fairness assigns a fair share of the available bandwidth of a face
(i.e., the resource) equally to all the content flows that use that face. The process
of assigning the maximum bandwidth is done in an iterative basis. The first
iteration equally divides the available bandwidth to all the active flows and the
subsequent iterations reassigns the surplus allocations to the deficit allocations.
The allocations and the operation is performed in the following manner.

∗ Assuming that a content flow has an incoming data rate of X and the fair
share is F then the outgoing rate X ′ should be,

• X ′ = X if X < F ;
• X ′ = F if X ≥ F

∗ The data rate X is computed by X = chunksize/Δt where chunksize is the
size of the payload in the Data packet and Δt is the time interval between
2 sequentially arriving packets (Interest or Data)

∗ Fairness is applied to both Interest and Data flows associated with each
content flow

∗ Since, only the Data packets carry a payload, information of the payload
size (i.e., chunksize) is used to also determine the fair sharing for the cor-
responding Interest flows

∗ Flows that have Interest or Data arrivals above the assigned fair share (ag-
gressive flows) are delayed based on the allocated bandwidth

∗ A flow is identified using the content name, sequence number and a nonce
that is generated and assigned to the Interests a flow by the originator of
those Interests

∗ The fairness assignment is considered for,

• Interest packets that are forwarded after consulting the Forwarding In-
formation Base (FIB)
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• Data packets that are forwarded after consuming the corresponding
Pending Interest Table (PIT) entry

• Data packets that are originated from the router itself due to the avail-
ability in the Content Store (CS)

4 Performance Results and Analysis

The validation of the adapted TCP flavours and the new algorithms is done us-
ing a packet level CCN simulator built in OPNET. The node model consists of
3 protocol layers (Figure 2(a)). The Application Layer implements the 3 FC-CC
enabled applications (CCN-NewReno, CCN-Compound and CCN-Cubic) that
perform Interest generation and Data consumption functionality. These appli-
cations also implement the Pre-Recovery and the Selective Fast Retransmit algo-
rithms. The CCN Layer implements the forwarding mechanisms and the related
management functionalities of CCN including the Hop-by-hop Fairness Control
algorithm. In this simulator, CCN is made to operate over TCP/IP. Therefore,
the lowest layer, which we term as the Underlay Layer consist of the 4 sub-layers;
Adaptation Layer, Transport Layer, Network Layer and the the underlying Link
Layer. The simulator uses UDP and Ethernet, and the Adaptation Layer handles
the conversions between UDP and CCN.

APP layer 

-------------- 
Underlay 
layer

-------------- 
CCN layer 

(a)

Client 
1

Client 
2

Client 
3

Router 
1

Router 
2

Server 
1

Server 
2

1 Gbps
5 ms

10 Mbps
25 ms

1 Gbps
5 ms

(b)

Fig. 2. CCN Node Architecture and Considered Network Topology in the Simulator

There are a number of other capabilities that are built into the simulator.
Some of the relevant capabilities are explained below.

CS Policies - There are different Cache Replacement policies that can be
used by a CS. Among them, Least Recently Used (LRU) is most commonly used
in the context of CCN [12,13] and therefore, we have implemented the LRU
Cache Replacement policy.

PIT Expiration Policy - The PIT registers the Interests with a timeout
[1]. Since the Interest expiration in applications (with FC-CC) may clash with
the PIT expirations (e.g., Interest packets re-sent by application may not be for-
warded by CCN Layer due to unexpired PIT entry), we use a 2-level (soft-hard)
timeout mechanism for PIT. An Interest packet received before soft timeout
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results in that Interest being only registered in PIT while any Interest after,
results in it being forwarded as well. A hard timeout is considered as in [1].

Forwarding Strategies - [1] proposes 2 forwarding strategies. The standard
strategy broadcasts received Interest packets to all the faces while the best-face
strategy selects a face based on previous experiences and uses this face to send
Interest packets out.

The evaluation considers a number of FC-CC enabled application versions that
are configured with differing combinations (Table 2) of the algorithms discussed
in Section 3 (settings). Therefore, in the following sections, when a reference is
made to a performance graph such as CCN-NewReno-Smart, it indicates that
the graph shows the performance of the CCN-NewReno implementation together
with the Fast Recovery, Selective Fast Retransmit and Pre-Recovery enabled.

Table 2. Algorithms and Features enabled in Different Settings

Version Simple1 Simple2 Simple3 Smart
Slow Start

√ √ √ √
Congestion Avoidance

√ √ √ √
Fast Recovery

√ √ √
Selective Fast Retransmit

√ √
Pre-Recovery

√

To evaluate these different FC-CC versions, a network topology is identified
that consist of multiple CCN clients, CCN servers and CCN routers (Fig. 2(b)).
In each of the following performance evaluations, a scenario is identified using
parts of this topology to evaluate a particular version (Table 2) with a particular
flavour (e.g., CCN-NewReno-Simple1 ).

4.1 Fast Recovery Algorithm

The “Client 1” in Fig. 2(b) requests a Content with a size of 20 MB, which resides
on the “Server 1”. The “Router 2” drops only one packet at random intervals at
different rates. Therefore, there is no continuous packet drops in this setup and
the effect of Selective Fast Retransmit is not highlighted. And also, out-of-order
packets do not occur due to CCN Data packets coming from multiple sources
since both routers are configured not to cache. CCN Data come only from the
“Server 1” and thus the effect of Pre-Recovery is also not highlighted. These
settings are used only to evaluate the effect of Fast Recovery. The 3 variants of
CCN-NewReno, CCN-Cubic and CCN-Compound without Fast Recovery, i.e.,
“Simple1” and with Fast Recovery, i.e., “Smart” is analysed in this section.

Fig. 3 shows cwnd variations of CCN-NewReno, CCN-Cubic and CCN-
Compound, respectively. Without Fast Recovery (i.e., “Simple1”), the receiver
(“Client 1”) enters Slow Start when detecting a packet loss through a retrans-
mission timeout. When using Fast Recovery (i.e., “Smart”), a receiver reacts to a
packet loss first with Pre-Recovery and then enters Fast Recovery. As explained
in Section 3.3, it continues to increase cwnd until the Pre-Recovery threshold
(Pre FRT + FRT ) is reached and then enters Fast Recovery, in which cwnd
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Fig. 3. cwnd variations : CCN-NewReno, CCN-Cubic and CCN-Compound with “Sim-
ple1” and “Smart” Settings

increases exponentially for receipts of each out-of-order Data packet (refers to
the spikes between two consecutive Congestion Avoidance phases in Fig. 3 with
“Smart” version) until it receives an in-order Data packet.

The difference between the three adapted variations are how cwnd updates
during the Congestion Avoidance phase. The CCN-NewReno cwnd increases
linearly during the Congestion Avoidance (Fig. 3(a)). CCN-Cubic increases in
a linear manner immediately after entering the Congestion Avoidance, because
CCN-Cubic emulates regular TCP cwnd when it is in the TCP-friendly region
[5] (Fig. 3(b)). Fast Recovery reduces the download time (Fig. 4) for both CCN-
NewReno and CCN-Cubic. CCN-Cubic shows a higher gain with Fast Recovery
with the increase of the packet loss rates, compared to CCN-NewReno.

In contrast to the performance of CCN-NewReno and CCN-Cubic, CCN-
Compound shows better performance without Fast Recovery (Fig. 3(c). This
is due to the consideration of the delay-based window (dwnd) in addition to
the win as determined by CCN-NewReno. The dwnd of CCN-Compound with
“Simple1” grows more aggressively than CCN-Compound with “Smart”. dwnd
is only effective during the Congestion Avoidance. When a packet loss is de-
tected, dwnd is set to 0 and CCN-Compound goes to Slow Start in “Simple1”.
In contrast, “Smart” version enters Fast Recovery which increases the sending
of packets resulting in a higher RTT and the decrease of dwnd. Therefore, the
overall win in CCN-Compound grows slower with the “Smart” version and this
effect is more with the increase of the packet loss rate.

Fig. 4, which shows a comparison of download times of “Simple1” (without
Fast Recovery) and “Smart” (with Fast Recovery) versions when using CCN-
NewReno, CCN-Compound and CCN-Cubic under loss rates of 0.1%, 0.2% and
0.5%, confirms the better performance of CCN-Compound.
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4.2 Selective Fast Retransmit Algorithm

The evaluation of Selective Fast Retransmit is done using similar versions as in
4.1, but letting “Router 2” in Fig. 2(b) drop multiple Data packets continuously
at a specified time in order to highlight the effect of Selective Fast Retransmit.
Here, the comparison is done with “Simple2” and “Smart” versions. In “Sim-
ple2”, TCP-like Fast Retransmit is enabled, while “Smart” is enabled with Fast
Recovery, Selective Fast Retransmit and Pre-Recovery. Note that, Pre-Recovery
is not triggered in this scenario since there are no out-of-order Data packets due
to the use of a single server in this scenario.

We have compared the recovery time in Fig. 5, which shows the average time
that a CCN application stays in Fast Recovery when packet losses occur. In case
of one packet loss, both “Simple2” and “Smart” shows exactly the same time
in Fast Recovery for all 3 variants (CCN-NewReno, CCN-Compound and CCN-
Cubic). But, recovery time increases drastically with the increase of multiple
packet drops for “Simple2”, while “Smart” stays almost the same as the single
packet drop case.
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Fig. 5. Recovery time of CCN-NewReno, CCN-Compound and CCN-Cubic w.r.t. num-
ber of continuous packet losses

Fig. 6 compares how cwnd varies when dropping packets, 1 packet at 305 s,
2 packets at 310 s, 3 packets at 315 s and 4 packets at 320 s. Fig. 6(a) shows
that cwnd of Fast Recovery increases rapidly when the number of packets lost
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increases continuously, when the Selective Fast Retransmit is not used (“Sim-
ple2”). In contrast, when Selective Fast Retransmit is used (“Smart”), Fig. 6(b)
shows that the variations of cwnd is not dependant on the number of packet
losses. As explained in Section 3.3, this is due to Selective Fast Retransmit of
CCN continuously sending Interest packets of the missing Data packets. This
is not the case with TCP-like Fast Retransmit that waits for in-order data to
arrive for the next ACK to be sent.
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Fig. 6. cwnd variations without (“Simple2”) and with (“Smart”) Selective Fast Re-
transmit

4.3 Pre-Recovery Algorithm

The setup shown in Fig. 2(b) is used to evaluate the performance of Pre-Recovery
by distributing Data packets among multiple sources. At the beginning, “Client
1” starts downloading contents while “Router 1” is set to cache segments using
LRU caching strategy. “Client 2” is made to start downloading the same content
a little later and when “Client 2” starts downloading, “Router 1” has full or part
of Data packets depending on pre-configured cache sizes. All the results shown
here are taken at “Client 2”, which gets out-of-order packets due to Data packets
coming from the “Server 1” as well as from the “Router 1”. The results are taken
for 3 cases, viz., where all Data packets are cached at “Router 1” (full caching),
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where all Data packets are at “Server 1” (no caching) and where the latter part
of Data packets are cached at “Router 1” (partial caching).

The comparison is done with “Simple3” version, in which Pre-Recovery is
disabled and “Smart” with Pre-Recovery enabled. In this scenario, the effects of
packet drops are not emulated.

With TCP-like Fast Recovery, even without packet drops, “Simple3” detects
a false packet loss through out-of-order Data receipts (Fig. 7(a)) and enters
Fast Recovery immediately, when using partial caching. Fig. 7(b) shows that
the Fast Recovery is not triggered immediately when Pre-Recovery is enabled.
When Data packets arrive from a closer source (i.e., “Router 1”), Pre-Recovery
makes sure that Fast Recovery is not triggered until it reaches the Pre-Recovery
threshold (Section 3.2). Therefore, cwnd follows the same upward climb as in
full caching at “Router 1” when Data packets are received from a closer source.
At the beginning, cwnd variation of partial caching follows a similar trend as in
no caching (due to the initial Data packets coming from the “Server 1”) until it
detects the receipt of out-of-order Data packets.
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Fig. 7. cwnd of CCN-cubic without (“Simple3”) and with (“Smart”) Pre-Recovery

4.4 Hop-by-Hop Flow Fairness Algorithm

The performance of Hop-by-hop Flow Fairness is evaluated using a scenario
based on the topology in Fig. 2(b). In this scenario, both “Client 1” and “Client
2” download the same content from “Server 1”, but with “Client 1” starting ini-
tially and “Client 2” a little later. LRU based caching is enabled in the “Router
1” and therefore, the download done by “Client 2” initially obtains the content
from the cache at “Router 1”. The results are compared with and without us-
ing the Hop-by-hop Flow Fairness algorithm, when using CCN-NewReno with
different levels of Background Traffic Loads (BTL) in the network. The BTL is
created as a percentage of the link capacity.

Table 3 shows the performance comparison of without Hop-by-hop Flow Fair-
ness (Case 1) and with Hop-by-hop Flow Fairness (Case 2), for the different

Table 3. Hop-by-hop Fairness Performance Comparison

Client 1 Client 2
No BTL 80% BTL No BTL 80% BTL

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2
Download time, sec 24.19 24.19 230.13 180.5 23.43 23.43 208.44 209.44
Throughput, Kbps 826.8 826.8 86.9 110.8 853.4 853.4 95.9 95.5
Packet losses 0 0 26 0 0 0 0 0
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clients under no BTL and with an 80% of BTL. Due to the cached content in
“Router 1”, the FC-CC application in “Client 2” becomes aggressive as the con-
tent can be retrieved faster, initially. During this initial period, since the RTT is
smaller, the cwnd grows rapidly, thereby becoming aggressive. But, after a while,
when the cache is exhausted, “Client 2” also starts fetching the content from the
“Server 1”. In this way, “Client 1” is disadvantaged. But when Hop-by-hop Flow
Fairness operates at the “Router 1”, the aggressive flow is slowed down by lim-
iting the bandwidth it is able to use. Thereby, both content flows are given a
fair share of the bandwidth. This is evident from the better performance (lower
download time, better throughput and no packet losses) experienced by “Client
1” for 80% BTL. One other observation made was that the benefits of Hop-by-
hop Flow Fairness becomes more evident when the amount of BTL increases
which is the usually expected when networks are congested (higher BTL).

5 Conclusion

The work presented here discussed about the adoption of FC-CC in CCN based
networks. Our contribution focussed on adapting the most widely used TCP
flavours of CCN-NewReno, CCN-Cubic and CCN-Compound. We have discussed
a number of aspects that need to be considered when adapting TCP due to the
architectural differences in CCN compared to TCP/IP, the adaptation of these 3
flavours and the additional algorithms (Pre-Recovery, Selective Fast Retransmit
and Hop-by-hop Flow Fairness) identified to address some of the issues relevant
to CCN. The Pre-Recovery algorithm was identified to avoid the false detection
of packet losses in CCN when content arrives from multiple sources. The Selec-
tive Fast Retransmit algorithm was identified to perform selective resending of
Interest packets during the loss recovery period. The Hop-by-hop Flow Fairness
algorithm that considers both Interest and Data flows was identified to provide
fair sharing of bandwidth for competing content flows. The flavour adaptations
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and the identified algorithms were implemented in an OPNET based simulator
and the performance was evaluated. Fig. 8 shows the operation of the different
algorithms discussed in our work.

The analysis of the results obtained show that Fast Recovery makes CCN-
NewReno and CCN-Cubic more efficient in downloading content under stable
loss rates. However, CCN-Compound has a larger throughput when losses are
only detected from a retransmission timeout. The Selective Fast Retransmit al-
gorithm in CCN has a better recovery efficiency than TCP-like Fast Retransmit.
The Pre-Recovery shows the advantages of detecting whether out-of-order Data
packets are as a result of multiple sources or packet losses. Hop-by-hop Flow
Fairness enhances the performance of less aggressive flows in terms of goodput
and download efficiency by providing a fair share of the use of faces.

We intend to further improve the performance of our work by evaluating these
scenarios in large scale network topologies.
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