
D. Pesch et al. (Eds.): MONAMI 2013, LNICST 125, pp. 259–272, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Information Model for Managing Autonomic Functions
in Future Networks

Makis Stamatelatos1, Imen Grida Ben Yahia2, Pierre Peloso3, Beatriz Fuentes4,
Kostas Tsagkaris5, and Alex Kaloxylos1

1 National and Kapodistrian University of Athens, Panepistimiopolis, Ilissia, 15784, Athens
{makiss,agk}@di.uoa.gr

2 France Telecom, 78 Olivier de Serres, 75015, Paris
imen.gridabenyahia@orange.com

3 Alcatel-Lucent Bell Labs, Site de Villarceaux, 91620, Nozay (France)
pierre.peloso@alcatel-lucent.com

4 Telefónica I+D, Distrito C, Ronda de la Comunicación s/n, 28050 Madrid
fuentes@tid.es

5 University of Piraeus, 80 Karaoli & Dimitriou, 18532, Piraeus
ktsagk@unipi.gr

Abstract. Future Internet (FI), a dynamic and complex environment, imposes
management requirements, complexity and volume of data which can hardly be
handled by traditional management schemes. Autonomic network and service
management can be a powerful vision; a promising solution paving the way
towards fully autonomic systems provides a three-level management approach
and develops Information Modelling extensions for semantic continuity. This
paper aims at proposing an Information Model for abstracting autonomic
mechanisms for network management tasks and convincing on the relevance of
using/extending standardized information models for system specification.

Keywords: Information Model, Autonomic Communications, Network
Management, Future Networks.

1 Introduction

Operators today are facing large scale issues: they serve hundreds of millions of
customers and mass of customization; they rely on thousands of different network
elements with proprietary implementations; they spend M-euros for the adaptation
and integration of Network Elements (NEs), Element Management Systems (EMSs)
and Network Management Systems (NMSs); they need to handle thousands of alarms
per day in each medium-size Network Operating Centre. In this sense, Operators are
seeking for advanced management solutions implementing self-* functions to handle
complexity, alleviating integration issues, reducing both CAPEX and OPEX and
minimising Time-to-Market of new services.

Autonomic network management is expected to solve these issues, but this
adoption is yet far from being generalized. That is why in UniverSelf project [1],

260 M. Stamatelatos et al.

which has the goal to foster the conditions for such an adoption, the paradigm shifted
from autonomic network management to management of autonomic functions which
are themselves managing the network. To achieve such a result, a novel Unified
Management Framework (UMF) has been specified. Hence, the UMF revolve around
autonomic functions which embody intelligence into network entities (physical or
virtualized). The set of specifications imposed to these autonomic functions define
what is hereafter named Network Empowering Mechanisms (NEMs). UMF also
defines a set of core functions, operations and mechanisms for the proper governance,
coordination and knowledge exchange among the NEMs.

The design of an Information Model able to support the management operations of
thousands of vendor-specific NEMs, becomes of utmost importance. This Information
Model needs to support the seamless integration with existing management systems.

The aim of this paper is to propose subsets of Information Model for autonomic
functions (NEMs) based on the TM Forum's Information Framework (SID) [2]. The
extensions of the SID model were designed to achieve the specification of UMF
interfaces and cover the NEMs structure and lifecycle of NEMs, actions and
information manipulated by NEMs, as well as the policies driving the NEM
behaviour. The rest of the paper is organized as follows. Section 2 presents the UMF
and essential information flows. Section 3 presents the information modelling within
the UMF framework whilst Section 4 details the UMF Information Model following
SID patterns. Section 5 presents the usage of the UMF Information Model in deriving
object-level information items utilised during the NEMs lifecycle.

2 UMF-Framework for Autonomic Mechanisms

UMF has been designed based on FI autonomic networks requirements and
encompasses a set of functionalities resolving manifold networking problems. UMF
primal objective is to enable trustworthy integration (plug-and-play) and interworking
of NEMs within the operator's management ecosystem. The successful deployment of
NEMs necessitates their governance/administration, their orchestration/coordination
and corresponding information and knowledge sharing. These demands steered to
introduction of the concept of UMF core (Fig. 1), which consists of three functional
blocks: Governance (GOV), Knowledge (KNOW) and Coordination (COORD). UMF
follows a three level approach; UMF manages NEMs which, in turn, manage and
optimise network resources and services (Fig. 1).

NEMs specifications details that a NEM is designed as a piece of software
implementing an algorithm forming a control loop that can be deployed in a (part of
a) network to enhance/simplify its control and management (e.g. take over some
operations). An intrinsic capability of a NEM is to be deployable and interoperable in
an UMF context (e.g. an UMF compliant network).

The GOV block provides interfaces and functions for the Operators to deploy,
pilot, control and track progress of NEMs in a unified way, including fusion of
business goals and respective translation to NEM-policies thus realising the policy-
continuum [3]; the COORD block provides tools for identifying and avoiding
conflicts among autonomic functions (as realized by NEMs) and ensure stability and
performance when several NEMs are concurrently working; the KNOW provides

 Information Model for Managing Autonomic Functions in Future Networks 261

tools to make NEMs find, formulate and share relevant information and knowledge
towards enabling or improving their operation.

Fig. 1 illustrates also the key information flows among UMF blocks as well as
between the UMF and the NEMs. Operator’s business goals and services description
form the key input for GOV block which provides policies to the other UMF blocks.
COORD sends the “Call-for-GOV” notification, in cases a problem needs direct
invocation of GOV mechanisms; KNOW provides (i) COORD with information
enabling NEM coordination, (e.g. NEM objective, type, etc) as well as network-level
knowledge, and (ii) GOV with aggregated knowledge and performance measurements
targeting policy evaluation (i.e. whether and in what extent the policies communicated
by GOV have achieved the intended improvement on the network performance).
Moreover, UMF supports certain interactions with NEMs, such as NEMs registration
to the UMF core blocks; GOV communicates the NEM mandate (a “turn-on”
command); COORD communicates the NEM Control Policy whilst KNOW
communicates Information Exchange Policy (for knowledge production and sharing).

Fig. 1. UMF: 3-level management and information flows.

The need for an Information Model to formalize the interactions between NEMs
and the UMF core and address interoperability among different NEM developers is
apparent. Information Model enables semantic interoperability among management
systems (e.g. EMS, NMS, etc.) which are being managed in a unified way by the
UMF and in turn manage network and service resources through NEMs’ deployment.

262 M. Stamatelatos et al.

3 Information Modelling

An Information Model provides a system conceptualisation; several definitions have
been provided by standardization fora and initiatives. According to IETF, an
Information Model is “an abstraction and representation of the entities in a managed
environment including definition of their properties, operations and relationships. It
is independent of any specific type of repository, software usage, platform, or access
protocol.” [4]. TMF states that “an Information Model is a representation of business
concepts, their characteristics and relationships, described in an implementation
independent manner” [2]. In 3GPP “Information Model denotes an abstract, formal
representation of entity types, including their properties and relationships, the
operations that can be performed on them, and related rules and constrains.” [5].

The presented (and other) definitions conclude on conceptualisation and formality.
Within UMF, Information Model is considered as an enabler for
convergence/unification of management systems. It is applicable to legacy and
emerging management systems, in particular those featuring autonomic capabilities
[6]. Moreover, an Information Model is also used to define management system
interfaces, communication interfaces between application and upper management
layers as well as repository data models. From a software engineering point of view,
Information Model is an enabler for software development, ontology development
and conceptual reasoning as well as model transformation (e.g. Model-Driven
Architecture (MDA), Model-Driven Engineering (MDE)).

The following sections present the UMF Information Model Approach, the SID as
the model basis and the identified extensions.

3.1 UMF Information Model Selection

The set up of an Information Model can be of – at least – two types; (i) defining from
scratch to fill gaps within a domain; or (ii) selecting and extending an existing
Information Model. When it comes to the selection of a model for UMF, the second
approach has been applied. Particularly, various Information Models have been
established and are in use in Telco’s domain, covering service, resource, customer and
device management: TMF Information Framework (SID) [2], the DMTF Common
Information Model (CIM) [7] and the Directory Enabled Network next generation
(DEN-ng) [8][9]; therefore, the second approach has been applied. Table 1 compares
the above mentioned Information Models. A key criterion for selecting a reference
Information Model for UMF is standardisation.

Typically, Operators are involved within the TM Forum Frameworx in general and
specifically for the definition of the SID in use within the Operator Information
System (Operations Support System, OSS and Business Support Systems, BSS).
Moreover, SID covers various management domains (e.g. customer, resources,
services, and partnerships) whilst it also defines a set of common business entities,
specifically policy domain modelling including policy architecture, policy
specification, and policy management. These are key elements to UMF objectives in
particular managing autonomic functions through the GOV block, and the reasons to
take SID as a basis for the UMF Information Model.

 Information Model for Managing Autonomic Functions in Future Networks 263

Table 1. Information Model Comparison

Comparison Features CIM SID DEN-ng

Software patterns No Some Many
Compatibility to OMG [14] No1 Yes Yes

Standardized No Yes No
Link with business Not clear Yes2 Yes3
Context model No No Yes4
Finite state machine/dynamic diagrams No No Yes5

3.2 UMF Information Model Basis and Extensions

The approach for establishing the UMF Information Model and extending the SID starts
with the identification of concepts defining and characterising the exchanged information
items within UMF and between the UMF core blocks and the NEMs. A mapping was
made to SID equivalent concepts followed by either semantic alignment to SID concepts
or elaborating on extensions following the “SID usage Guide” and the “SID patterns” [2].
Iterations ensured consistency within the identified concepts.

Market / Sales Market Strategy & Plan

Market Segment

Marketing Campaign

Competitor

Contact/Lead/Prospect

Sales Statistic Sales Channel

Product Product

Product Specification

Strategic Product Portfolio Plan

Product Offering

Product Performance

Product Usage

Customer Customer

Customer Identification

Customer Order

Customer Statistic

Customer Problem

Customer SLA Customer Bill Inquiry

Customer Bill CollectionApplied Customer Billing Rate

Customer Bill

Service Service

Service Specification

Service Strategy & Plan

Service Configuration

Service Performance

Service Usage Service TestService Problem

NEM NEM StructureNEM ActionNEM Information NEM ContextNEM SpecificationNEM

Resource Resource

Resource Specification

Resource Topology

Resource Configuration

Resource Performance

Resource Usage Resource Test
Resource Strategy & Plan

Resource Trouble

Supplier / Partner Supplier/Partner
S/P Plan

S/P Interaction

S/P Product

S/P Order

S/P SLA

S/P Problem

S/P Statistic

S/P Performance

S/P Bill

S/P Bill Inquiry

S/P Payment

Common Business Entities
Root Business Interaction

Agreement Usage Project

Time

Performance

Base Types Party Location Policy Problem

Enterprise
Revenue Assurance

NEM
PolicyEnterprise Security

Workforce

Fig. 2. Proposed NEM layer in SID ABEs

The resulted SID extensions are mainly related to the NEM concept. For example,
for service and resource performance, service class or service profile we reuse
existing concepts from the SID. With the deployment of UMF and NEM, there is a
need to model the NEM data and information that Operators need to be aware of for

1 It has its own Meta-Object Facility (MOF).
2 Part of global Business Process Framework (ETOM), Application Framework (TAM) and

Information Framework (IF).
3 Policy continuum for translating business goals to low-level configuration actions.
4 To apply policies with respect to the context of resource, service and customer.
5 To describe the state/behaviour of a managed entity.

264 M. Stamatelatos et al.

communication with these NEMs, switch them on/off, customize their actions and
configurations, etc. The NEM is a new managed entity that Operators need to handle;
in this sense, we propose extending the SID layers with new NEM layer (Fig. 2)
containing specific ABEs (Aggregation Business Entities, a group of entities
belonging to a common domain).

Apart from basing the UMF Information Model on the SID, we also adopted the
DEN-ng context diagram [10] and then tried to reuse it as we considered it mandatory
for managing autonomic entities. In fact, from the literature one can see the potential
and adequacy of DEN-ng to manage autonomic mechanisms; albeit the fact that
DEN-ng has not been standardised or even open sourced so far, is still a crucial issue.

4 UMF Information Model

The proposed Information Model components aim at conceptualising NEMs as
autonomic functions and potentially incorporating them within SID framework.
Following initial modelling attempt [13] UML diagrams have been elaborated
following SID modelling approach for proposing the main concepts: the NEM
Structure, NEM Policy, NEM Action, and NEM Information. Concepts in NEM
Structure abstract NEM as provided functionality, software package, and manager of
specific network resources. NEM Policy provides specification related to policies for
governing the NEM’s behaviour. NEM Action diagram specifies the possible NEM
actions (linked to management actions). Finally, NEM Information specifies the
information items managed by NEMs and their relation to specification of
management information.

4.1 Extensions to SID

In the SID root diagram (Fig. 3) the RootEntity class defines the attributes common to
define/select SID entities related to service, resources and policies. The commonName
attribute enables SID users to refer to a specific object using terminology as defined
by application-specific needs. The description attribute (optional) enables SID users
to customize the description of a SID object. The objectID attribute provides a unique
identity to each entity. The abstract class Entity extends the RootEntity class and
represents those entities playing a business function .

An abstract class NEM extends the class Entity (Fig. 3). NEM captures
functionality related to management of network resources and services which is part
of the Operator’s mission. This is captured by the “manages” association showing the
link to the set of Managed Entity (i.e. a resource or a service) managed by a given
NEM. The NEMpolicy defines the policies applicable to a given NEM and extends the
SID policy class, whilst the NEMStates capture the state of a NEM (section 5.2).

Following the SID specification pattern, NEMSpecification and NEMPolicy
Specification classes have been defined for the NEM and NEMPolicy classes
respectively. The specification classes describe the invariant part/information of the
entity, which enables the construction of an entity.

 Information Model for Managing Autonomic Functions in Future Networks 265

 c la s s e ts iN E M S ID

R oot B u sin e ss
En t it ie s A B E::

En t ity

+ ve rs io n : str in g

Root B u sin e ss En t it ie s
A B E::R ootEn tity

+ co mm o n Na me : s tr in g
+ d e sc r ip tio n : s tr in g
+ o b je c tID : s tr in g

Root B u sin e ss
En tit ie s AB E: :
Spe c ific a t ion

R oot Bu sin e ss En tit ie s AB E: :
Ma n a ge dEn t ity

+ ma n a g e m e n tM e th o d C u r re n t: in t
+ ma n a g e m e n tM e th o d Su p p o rte d : in t

R e sou r c e A BE: :
R e sou r c e

+ u sa g e S ta te : in t

NEM

+ lo o p Imp a ct: M a p <UMF In fo rm a tio n Sp e cif ica tio n , L ist<NEMImp a c t>>
+ m a n a g e d R e so u rce : L is t< UR I>
+ re g im e : R e g ime
+ s ta te : NEM Sta te s
+ u r l: UR L

N EM Sp e c if ic a t io n

+ a to micL o o p : Bo o le a n
+ id : NEMSp e c ID
+ isC o mp o s ite : Bo o le a n
+ m a n a g e a b le En tit ie s : L is t<M a n a g e d En titySp e cif ica tio n >
+ p o ssib le Ho st: L ist< O S>
+ re le a se D a te : D a te

*

m a n a g e s

1 ..*

1

sp e c i f i e d B y

1 ..*

Fig. 3. NEM linked to TMF-SID root diagram

 class NEMStructure

NEMSpecCharacteristic

+ defaultValue
+ description: String
+ hosting:: List<OS>
+ isMandatory: Boolean
+ name: String
+ type: Enum

NEMSpecification

+ atomicLoop: Boolean
+ id: NEMSpecID
+ isComposite: Boolean
+ manageableEntities: List<ManagedEntitySpecification>
+ possibleHost: List<OS>
+ releaseDate: Date

NEM

+ loopImpact: Map<UMFInformationSpecification, List<NEMImpact>>
+ managedResource: List<URI>
+ regime: Regime
+ state: NEMStates
+ url: URL

«enumeration»
NEMStates

 operational
 voidInstantiated
 ready

NEMComposite

+ mainComponent: NEMMainComponent
+ slaveComponent: List<NEMMainComponent>

NEMAtomic

NEMComponent

+ host: Host
+ URL: iURI

NEMMainComponent kowledgeexchangeInterfaceManagementInterface

NEMSpecID

+ name: String
+ provider: String
+ version: int

*

has

11..

identifiedBy

1

1

specifiedBy
1..*

1

defines

1

1expose
1

1

1
*

0..1
has

Fig. 4. NEM Structure

4.2 NEM Structure

Fig. 4 represents the structure of NEM which is specified by attributes grouped in a
NEMSpecification which is identifiedBy the NEMSpecID allowing a unique
identification of the “NEM class” in the catalogue. The NEMSpecID regroups three
(3) attributes, namely, name, provider and version. A NEM exposes a management
interface enabling UMF control over NEM.

A NEM can be either NEMAtomic or NEMComposite. An atomic NEM has
centralized software running on a single machine, while a composite NEM has
distributed software running on multiple machines. This is slightly different from the
SID pattern as the NEMComposite is not composed of multiple NEMs but of multiple
NEMComponents, and a NEMAtomic is composed of a single NEMComponent which
may expose a KnowledgeExchangeInterface. The NEMMainComponent handles the

266 M. Stamatelatos et al.

NEM control tasks manages the relation with UMF core for ensuring that the NEM
instance is behaving accordingly to UMF instructions.

4.3 NEM Policy

Quite extended argumentation exists on the importance of Policies in autonomic
management of networks [11]. UMF framework provides a Human-to-Network
interface enabling Operator to fuse own business goals which will be translated to
business, service and NEM policies [12] following the Policy Continuum [3]. NEM-
level policies are targeting NEM management.

 class ###NEMPolicy

NEMPolicySpecification

RegimePolicySpec

+ default: String
+ defaultType: String
+ rangeInterval: String
+ unitOfMeasure: string
+ validFor: String
+ valueFrom: String
+ valueTo: String

GenericNEMpolicySpec

SpecificNEMpolicySpec

NEMpolicy

ReportingPolicySpec

ActionConstrainingPolicySpec

InformationExchangePolicySpec

NEM

+ loopImpact: Map<UMFInformationSpecification, List<NEMImpact>>
+ managedResource: List<URI>
+ regime: Regime
+ state: NEMStates
+ url: URL

NEMSpecification

+ atomicLoop: Boolean
+ id: NEMSpecID
+ isComposite: Boolean
+ manageableEntities: List<ManagedEntitySpecification>
+ possibleHost: List<OS>
+ releaseDate: Date

ManagementAction

NEMAction

+ actionValue
+ executionStatus: String/Enum
+ executionTime: Date
+ method: ManagementMethodEntity

UMFInformation

+ content: ManagementInfo
+ isAggregated: boolean
+ isAggregationNeeded: boolean
+ monitoringFrequency: int
+ typeOfMonitoringInformation: String

appl ies

1

speci fiedBy

1..*

1..*

executes

1..*

uses/provides

1..

advertises

1..*

1..*

isTriggeredBy

1..*

Fig. 5. NEM Policy

Fig. 5 depicts the inheritance of different policy types within the NEMs scope
following the inheritance of SID PolicySpecification . Different policy types have
been specified applicable to NEMs inheriting from NEMPolicy class.
GenericNEMpolicySpec specifies the GenericNEMPolicy abstract class representing
policy types applicable to any NEM; the format is defined by the UMF specification.

RegimePolicySpec specifies the RegimePolicy communicated to NEMs by
COORD for setting the frequency and the modalities at which the NEM autonomic
loop is invoked (e.g. “run once every 10 min”, “run continuously”, “run now only
once”, “run when such X condition is true”, etc.).

ActionConstrainingPolicies (specified by the ActionConstrainingPolicySpec)
are issued by COORD to constraint a NEM instance possible actions, aiming
for example, at avoiding conflicts among NEM instances and can either disable
specific NEM actions, or suspend the enforcement of the planned action to a
validation by COORD or constrain the range in which a parameter can be
set. InformationExchangePolicies (specified by InformationExchangePolicySpec)
are issued by KNOW for organizing the information exchange, as for example,

 Information Model for Managing Autonomic Functions in Future Networks 267

when a NEM share information needed by another NEM; KNOW is to organize
a subscription between these NEMs. ReportingPolicies are specific
InformationExchangePolicies issued by GOV to set the rules of information reporting
from the NEM to GOV. SpecificNEMPolicies (specified by SpecificNEMPolicySpec)
are tailored to NEM behaviour and objectives. In traffic engineering, for example,
such policy sets whether NEM targets energy saving or congestion avoidance.

4.4 NEM Action

NEM actions include management, configuration and optimization actions to be
applied by a NEM instance to network resources or services, driven by respective
policies, as presented in section 4.3. Fig. 6 depicts the inheritance of Actions:
NEMActions are executed by NEMs onto ManagedEntities (i.e. resources or services).

 class NEMAction

NEMSpecification

+ atomicLoop: Boolean
+ id: NEMSpecID
+ isComposite: Boolean
+ manageableEntities: List<ManagedEntitySpecification>
+ possibleHost: List<OS>
+ releaseDate: Date

NEM

+ loopImpact: Map<UMFInformationSpecification, List<NEMImpact>>
+ managedResource: List<URI>
+ regime: Regime
+ state: NEMStates
+ url: URL

ManagementInfoSpecification

- contentType: Class
- descriptor: String
- genericImpacts: List<Impact>
- informationUsage: InformationUsage
- type: InfoType

ManagementActionSpecification

+ contentType: Class
+ controlFlexibility: Enum
+ descriptor: String
+ genericImpact: Impact

ManagementAction

NEMActionSpecification

- controlStatus: Enum
+ impact: SystemImpact
- target: Context

NEMAction

+ actionValue
+ executionStatus: String/Enum
+ executionTime: Date
+ method: ManagementMethodEntity

NEMSpecCharacteristic

+ defaultValue
+ description: String
+ hosting:: List<OS>
+ isMandatory: Boolean
+ name: String
+ type: Enum

specifiedBy

advertises

*

has

1

1 specifiedBy

1..*

1..*

executes

1..*

*

advertises

*

specifies

advertises

Fig. 6. NEM Action

Three levels of NEM actions specifications are depicted. ManagementAction
Specification corresponds to the nature of the action, e.g. “switch on/off a router’s
port” and is used to build catalogues of actions e.g. the list of the nature of all the
actions performed by a given NEM, which corresponds to the Possible_Actions field
of the NEM Manifest (section 5.1,Fig. 8). A NEM-agnostic catalogue should be also
used to complete an ontology describing the relations among the network elements.
This ontology could describe, for example, that “switching on/off a port” is changing
“link capacity” if “port” is “composing” the “link”.

NEMActionSpecification designates the action, e.g. “Switch on/off the port 12 of
router 1.1.1.1” and is used to build catalogues such as the indexation in COORD of
NEMs actions for conflict identification. NEMActionSpecification extends the
ManagementActionSpecification with the context attribute (in the above example the
designation of the port 12 of the router 1.1.1.1) taken from DEN-ng [10].

NEMAction represents the action actually performed by the NEM and contains
the actionValue, which in the above example can be either “On” or “Off”. The

268 M. Stamatelatos et al.

NEMActionSpecification describes (with its controlStatus attribute) the allowed
control of the action, while the ManagementActionSpecification describes (with its
controlFlexibility attribute) the allowed control of this kind of action (this property
only depends on the flexibility offered by the NEM designer at implementation time).

4.5 NEM Information

Fig. 7 depicts the inheritance of NEM Information. UMFInformation objects are
exchanged among UMF blocks as well as between UMF blocks and NEMs. Fig.
7depicts three levels regarding information.

ManagementInfoSpecification correspond to the nature of the information, e.g.
“link load” and is used to build information catalogues. Such class can capture the
information types acquired by a given NEM class which can be “optional” or
“mandatory” (as reflected by the Acquired_Inputs, Optional_External_Input and
Mandatory_External_Input of the NEM Manifest, Fig. 8 in section 5.1) as well as the
NEM outputs (captured by the Available_Outputs within the Manifest). The
mentioned ontology could describe that “link load” is related to “link capacity” which
is the “sum” of “ports capacity” “composing” the “link” whilst it would be further
used to assist COORD identifying conflicts among NEMs.

 class NEMInformation

UMFInformation

+ content: ManagementInfo
+ isAggregated: boolean
+ isAggregationNeeded: boolean
+ monitoringFrequency: int
+ typeOfMonitoringInformation: String

UMFInformationSpecification

+ context: Context
+ impacts: List<Impact>

ManagementInfoSpecification

- contentType: Class
- descriptor: String
- genericImpacts: List<Impact>
- type: InfoType
valueType: Class

NEMinformationSpecification

- ID: int

NEMSpecification

+ atomicLoop: Boolean
+ id: NEMSpecID
+ isComposite: Boolean
+ manageableEntities: List<ManagedEntitySpecification>
+ possibleHost: List<OS>
+ releaseDate: Date

«enumeration»
InfoType

 knowledge
 rawData

SpecifiesNEMInformation
has

advertises

Fig. 7. NEM Information

UMFInformationSpecification designates the information, e.g. “The link load
between router 1.1.1.1 and router 2.2.2.2” for building catalogues, e.g. the indexation
in KNOW of all NEMs’ available outputs for the identifying knowledge source
when organizing knowledge exchange with other UMF entities, and the
indexation in COORD of NEMs’ inputs for identifying NEM conflicts.
UMFInformationSpecification extends the ManagementInfoSpecification with the
context attribute (in the above example the designation of the link: router 1.1.1.1 to
2.2.2.2), taken from DEN-ng extensions.

UMFInformation represents the information actually exchanged through
a Knowledge Exchange. To this aim, KNOW takes in charge its organization, which
will be materialized by an InformationExchangePolicy (Fig. 5). UMFInformation

 Information Model for Managing Autonomic Functions in Future Networks 269

inherits from ManagementInformation (from SID) specified by an UMFInformation
Specification and enriched with a context (in order to know that the “load” which is
“70%” is actually referring to the “link” between “router 1.1.1.1” and “router
2.2.2.2”.). The actual value is of any sub-class of ManagementInformation (in SID).
The ManagementInformationSpecification and the contentType which sub-class
ManagementInfo will be used to describe the value of the UMFInformation.

5 Information Model in Action

In the following paragraphs a case for the utilisation of the UMF Information Model
is presented. Initially, the derivation of object level information is provided; in turn,
the usage of those objects in the NEM lifecycle is described.

NEMSpecID

+ name: String
+ provider: String
+ version: int

NEMSpecification

+ atomicLoop: Boolean
+ id: NEMSpecID
+ isComposite: Boolean
+ manageableEntities: List<ManagedEntitySpecification>
+ possibleHost: List<OS>
+ releaseDate: Date

ManagementInterface

ManagementInfoSpecification

+ contentType: Class
+ descriptor: String
+ genericImpacts: List<Impact>
+ imformationUsage: InformationUsage
+ type: InfoType

ManagementActionSpecification

+ contentType: Class
+ controlFlexibility: Enum
+ descriptor: String
+ genericImpact: Impact

SpecificNEMPolicySpec

NEM Mandate

GOV@

COORD@

KNOW@

Managed Entities

Configuration Options

NEM Instance Description

Class ID

Instance ID

Management@

Acquired Inputs

Optional External Inputs

Mandatory External Inputs

Available Outputs

Possible Actions

NEM Manifest

ID

oName

oProvider ID

oVersion

Release Date

Features

User Guide URL

Technology

Network Segment

Possible Hosts

Manageable Entities

Functionality Family

Is Composite

Is Atomic Loop

Acquired Inputs

Optional External Inputs

Mandatory External Inputs

Available Outputs

Possible Actions

Configuration Options

Specific NEM Policy Spec

oName

oDescription

oEvent

oConditions

Condition Variable

Operator

Default Value

Fig. 8. Derivation of NEM Manifest, NEM Mandate and NEM Instance Description

5.1 Derivation of Object-Level Entities

A NEM class is described by a machine-readable Manifest, providing object-level
information (e.g. managed network elements, NEM class identification, etc.) for the

270 M. Stamatelatos et al.

Operator to deploy the NEM in its infrastructure. A NEM Mandate is issued by GOV
to a NEM instance as a set of instructions identifying the NEM instance settings and
the network elements, resources, and services assigned to this NEM instance. NEM
Mandate provides the needed information for exchanges with all UMF blocks. A
NEM Instance Description is issued by the NEM during its registration to the UMF
system and details information monitored and actions taken by the NEM instance.
Fig. 8 presents the derivation of the NEM Manifest, the NEM Mandate and the NEM
Instance Description from the UMF Information Model.

5.2 Information Model in NEM Lifecycle

This section presents the NEM lifecycle and the interactions between a NEM and the
UMF using the derived objects (i.e. Manifest, Mandate, and Instance Description).
The NEM lifecycle can be traced as illustrated in Fig. 9.

Fig. 9. NEM Lifecycle

The Operator deploys the NEM at the network according to the NEM Manifest,
setting the NEM to the Instantiating state. Once the NEM instance has been created, it
reaches the Void Instantiated state, and it is ready for receiving a NEM Mandate from
GOV. The Mandate determines the network resources that will be managed by this
instance and its configuration options, and its delivery completes the deployment of
the NEM instance (which passes to the Deploying state). The NEM then proceeds to
the Registering state by providing the NEM Instance Description to the UMF core
blocks; NEM reaches then the Ready state and, providing no conflicts have been
identified by COORD, will move to the Operational state following a Setup command
from GOV . In this state the NEM instance is operational and works under the control
of COORD block. The Updating trans-state is reached every time an updated NEM
Mandate is received from GOV, which forces the NEM instance to get back to

 Information Model for Managing Autonomic Functions in Future Networks 271

Deploying. On reception of a revokeNEM message from GOV, the NEM instance
reaches the Void Instantiated through the Un-registering and Un-Deploying states
whilst on reception of a Delete message from GOV the NEM instance will disappear
from the UMF system.

6 Conclusions

Autonomic mechanisms are cornerstones of the next generation of Telco’s
management approaches. However, to reach large deployment and efficient
management of those mechanisms, Operators need specific key enablers. UMF
Information Model for autonomic functions abstracts and represents what Operators
need to know in order to deploy, configure and activate efficiently autonomic
mechanisms.

In UniverSelf project we consider autonomic mechanisms as managed entities and
define the main data and information that enable Operators govern, coordinate and
develop knowledge about them. Deploying autonomic mechanisms without
Information Model will lead to “vendor-specific” and proprietary implementations
which will increase the integration issues and prevent adoption. Operators are
investing in information model set up in TMForum or in 3GPP, as well as the
harmonization between both efforts. It is mandatory that the data exchange, interfaces
of Autonomic mechanisms follow these standards bodies. In this paper we selected
the Information Framework (SID) in order to be compliant to Operators choices and
to reduce integration costs and we proposed a set of classes and concepts towards
defining the needed concepts for the management of autonomic functions.

The proposed models have been developed following SID patterns; this means that
related semantics can be incorporated in the models in an automated way. This way,
as reported in [15] a set of benefits can be gained, regarding implementation
challenges as tools can work with the patterns through the transformation, ultimately
pulling implementation code from a library written by experts and inserting it into the
final application and/or system.

Acknowledgment. The research leading to these results has been performed within
the UniverSelf project [1] and received funding from the European Community's
Seventh Framework Programme FP7/2007‐2013) under grant agreement n° 257513.

References

1. The UniverSelf Project, http://www.univerself-project.eu
2. The TMForum Information Framework (SID), GB922_SID_Rel_13-0_Addenda_Files,

http://www.tmforum.org/InformationFramework/1684/home.html
3. Davy, S., Jennings, B., Strassner, J.: The policy continuum—Policy authoring and conflict

analysis. Computer Communications 31, 2981–2995 (2008)
4. The Internet Engineering Task Force, IETF, RFC 3198, Terminology for Policy-Based

Management

272 M. Stamatelatos et al.

5. 3GPP, TS 32.181, User Data Convergence (UDC), Framework for Model Handling and
Management

6. Wong, A.K.Y., Ray, P., Parameswaran, N., Strassner, J.: Ontology mapping for the
interoperability problem in network management. Journal on Selected Areas in
Communications 23(10), 2058–2068 (2005)

7. The Common Information Model (CIM) Specification,
http://www.dmtf.org/standards/cim/cim_spec_v22

8. Strassner, J.: DEN-ng: achieving business-driven network management In: IEEE Network
Operations and Management Symposium (NOMS), pp. 753–766 (2002)

9. Strassner, J., Hong, J.W.-K., Kyo, K.: A framework for modelling and reasoning about
network management resources and services to support information reuse. In: IEEE
International Conference on Information Reuse & Integration (IRI 2009), pp. 85–90 (2009)

10. Strassner, J., et al.: The Design of a New Context-Aware Policy Model for Autonomic
Networking. In: International Conference on Autonomic Computing, ICAC (2008)

11. Strassner, J.: Policy-based Network Management: Solutions for the Next Generation.
Morgan-Kaufman Publishers (2003) ISBN 1-55-859-1

12. Galani, A., Tsagkaris, K., Demestichas, P., Nguengang, G., Grida Ben Yahia, I.,
Stamatelatos, M., Kosmatos, E., Kaloxylos, A., Ciavaglia, L.: Core functional and network
empower mechanisms of an operator-driven framework for unifying autonomic network
and service management. In: 17th IEEE International Workshop on Computer-Aided
Modeling Analysis and Design of Communication Links and Networks, CAMAD (2012)

13. Ben Yahia, I.G., et al.: Which Information Model for Autonomic Mechanisms Framework.
Presentation at 3rd ETSI Workshop on Future Network Technologies (2013)

14. Object Management Group, http://www.omg.org
15. Strassner, J., et al.: The Design of a New Policy Model to Support Ontology-Driven

Reasoning for Autonomic Networking. In: Latin American Network Operations and
Management Symposium, LANOMS (2007)

	Information Model for Managing Autonomic Functionsin Future Networks
	1 Introduction
	2 UMF-Framework for Autonomic Mechanisms
	3 Information Modelling
	3.1 UMF Information Model Selection
	3.2 UMF Information Model Basis and Extensions

	4 UMF Information Model
	4.1 Extensions to SID
	4.2 NEM Structure
	4.3 NEM Policy
	4.4 NEM Action
	4.5 NEM Information

	5 Information Model in Action
	5.1 Derivation of Object-Level Entities
	5.2 Information Model in NEM Lifecycle

	6 Conclusions
	References

