
Enabling Cloud Connectivity

Using SDN and NFV Technologies

Fariborz Derakhshan, Heidrun Grob-Lipski, Horst Roessler, Peter Schefczik,
and Michael Soellner

Bell Labs Germany
Alcatel-Lucent

Abstract. Cloud environments play an important role for network and
service providers. Cloud network providers require ubiquitous, broad-
band and minimum-delay connectivity from network providers. There
are different realizations of cloud connectivity based on the Software De-
fined Networking (SDN) and the Network Function Virtualization (NFV)
paradigm. In this paper we introduce a new concept based on the OConS
architecture developed within the SAIL FP7 project. Our advanced con-
nectivity concept focuses on interdomain connectivity.

Keywords: Interdomain path computation, cloud resource
management, SDN, NFV, open connectivity, SAIL.

1 Introduction

Provisioning cloud services based on a platform of distributed data centers was
the emerging approach of the past years (Amazon EC2 [1], Google Cloud Plat-
form [2]). By means of virtualization of storage and processing resources, and
more and more also network resources, the distributed cloud is able to pro-
vide infrastructure as a service for a wide range of applications. Two concepts
support service-oriented (virtual) connectivity in the cloud: Software Defined
Networking (SDN) and Network Function Virtualization (NFV). Based on these
concepts we show how cloud connectivity can be realized in a multi-domain
network of distributed clouds. The interdomain resource allocation described in
this paper provides an open connectivity service to cope with the complexity
of multi-domain networks, especially with regard to control, management and
algorithmic elasticity.

This paper is organized as follows: In section 2 we give an overview on
the current developments and problems concerning open connectivity concepts.
In section 3 we handle the provisioning of resources for cloud connectivity. In
section 4 we study the hierarchical and flat interdomain connection management.
Section 5 concludes the paper and gives a short outlook to future work.

2 Current Developments and Problems

The concept of Software-defined Networking (SDN) was formally defined in 2009
by Martin Casado but originated as far back as 2007 on work from him, Nick

D. Pesch et al. (Eds.): MONAMI 2013, LNICST 125, pp. 245–258, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013



246 F. Derakhshan et al.

McKeown and Scott Shenker. In 2011 SDN was taken up by IETF [3] and is
nowadays brought forward by the Software-defined Networking Research Group
(SDNRG) [4]. The second trend that is gaining more and more ground is called
Network Function Virtualization (NFV) and is promoted by ETSI [5]. In the
following we take a closer look at both technologies and clarify the relation
between them and the current developments and the concerning problems.

SDN was originally conceived for a campus network usage and was later ap-
plied in data centers and is used today also between them. The SDN model is
based on the split between the forwarding plane and the control plane. One goal
of SDN is to allow applications to request services from the network which can
automatically be deployed and monitored. Thus SDN is about bridging the gap
between application and network.

In the past applications assumed bandwidth as free and abundant, but in to-
days networks bandwidth is a scarce resource and must be managed accordingly.
Applications also could not impact the delay, availability and dynamicity of the
network. SDN was conceived to allow applications to inform the network about
their preferences such that it can configure the connectivity accordingly. On
the other hand the network can also inform the applications about the changes
of topology, bandwidth, delay etc. If the application is implemented to behave
appropriately, an improved service is the result.

A prominent implementation that facilitates SDN is OpenFlow which was
originally developed by the Stanford University. Today OpenFlow is being taken
care of by the Open Networking Foundation [6]. However OpenFlow is not the
only representative of an SDN implementation. With ForCES [7], General Switch
Management Protocol (GSMP) [8], NetConf [9], and even the well known SNMP
[10] there are more standard control technologies and interfaces that are able to
configure the forwarding plane at least inside a single network node.

Another approach is the virtualization of network functions so that they can
run on more or less general purpose hardware instead of dedicated hardware ap-
plied in telecommunication networks today. With the NFV approach operators
have the possibility to implement their needed functions anywhere in the net-
work. These functions include switching elements and routers, mobile network
nodes, security equipment like firewalls and deep packet inspection appliances, as
well as application layer solutions like session controllers, load balancers, content
distribution networks, etc. Thereby NFV seeks to reuse existing virtualization
mechanisms and is standardizing the interfaces between network elements. NFV
is brought forward today by an ETSI ISG (Industry Specification Group).

It is to note that single network functions can also be virtualized and deployed
without SDN. An SDN can also exist without NFV-based services. Thus, SDN
and NFV are orthogonal technologies.

Network operators are not only interested to save equipment costs by apply-
ing NFV-based services on industry standard high volume servers, switches and
storages, but also in the possibility to scale them arbitrarily. Furthermore opera-
tors need a management system that can orchestrate all the virtualized functions
to offer optimized services. This latter goal was addressed in the Scalable and



Enabling Cloud Connectivity Using SDN and NFV Technologies 247

Adaptive Internet Solutions (SAIL) Project [11] in the Open Connectivity Ser-
vices (OConS) framework conceived to cope with the challenges posed by the
Future Internet. OConS relieves the instantiation, launch and interconnection
of functions by use of a specified orchestration procedure. With this OConS can
even support challenging flash crowd situations as well as cloud networking and
network of information scenarios [12].

SDN and NVF were conceived to enable an easy integration of new services
and applications into the cloud. However there are some caveats with both tech-
nologies. The problem of SDN is that centralized SDN controllers are a bottle-
neck and represent a single point of failure. Moreover the performance of the
software switch is an issue of concern, for example when it has to carry out com-
plex rules or extensive header rewrites. The latter raises the need for expensive
hardware counteracting the wish for a simple switch equipment. And, last but
not least, for some applications where the rules in the switch are not preconfig-
urable additional delay must be taken into account when a logically central and
physically distributed set of central controllers must be consulted for packets
that a switch cannot handle on its own.

The problem with the NFV partly lies in the fact that the NFV software
is more complex to build and harder to maintain due to its distribution onto
several machines. Also the reliability of the service is not easily accomplished
and depends on interconnectivity, link throughput and delay.

3 Provisioning Connectivity in the Cloud

In the age of social communities, web-based applications connect many social
groups with many users via their shared and linked multi-media content like
pictures, audio or video. New services built from combinations of such content
sources can become popular in a very short time and need a dynamic and power-
ful infrastructure to be processed. In order to decouple the service growth from
the available physical hardware basis, a cloud provider may be used to manage
the virtual infrastructure.

The SAIL [11] project developed a model how a cloud provider that owns or
contracts several distributed data centers can offer a system for service creation
and deployment in a heterogeneous environment, i.e. dealing with several local
cloud management systems, and interconnecting the local cloud domains [13].

Figure 1 gives a simplified view of the proposed interworking of cloud and
network domains. At the cloud level the cloud provider will set up a distributed
cloud manager to create and configure the storage and processing resources to
be deployed as virtual machines (VMs, not shown in Figure 1) in the distributed
data centers DCn.

Thinking about real implementations, the OpenStack [14] collection of open
source technologies delivers a scalable cloud operating system. Initially the Open-
Stack project was announced in 2010 by Rackspace and NASA but today many
players build on the OpenStack open source software initiative for building clouds.
Over 150 companies gathered in the OpenStack collaboration and provide archi-
tectural input, contribute code, and/or integrate it into their business offerings.



248 F. Derakhshan et al.

Fig. 1. Interworking of cloud and network domain functions

The OpenStack cloud operating system is able to control large pools of com-
puting, storage, and networking resources. All these resources are managed
through a so called dashboard which runs in a browser in a RESTful man-
ner. The dashboard gives administrators and users the control needed to setup
and monitor a complete service consisting of computing, storage and networking
instances.

In order to set up an application network between the created VMs in the
data centers, three steps are necessary as described in the approach of SAIL
[15,16]:

– The first step is to transfer an application graph into a virtual network of
communicating VMs.

– The second step is to connect the virtual VMs with the physical interfaces in
the data centers which is typically done by support of a hypervisor respective
the management tools that come with it (e.g. based on libvirt in an open
source environment). This has to be managed in each data center by the
local Cloud Controller (CC) in a coordinated way. To enhance this task, the
SAIL project proposes to use the OCCI-based description technique OCNI
[17], and provides the corresponding tools via the libNetVirt library [18,19].

– The third step is to connect the distributed data centers with dedicated
managed networking resources, also across different network domains that
guarantees a certain degree of end-to-end (i.e. DC to DC) QoS as required
by the application network.

Typically the connectivity view between the distributed data centers at the
cloud level is based on a ”single router abstraction” for the network. The dis-
tributed cloud manager delegates the task of network and path deployment to
the contracted network provider which first translates the single router net-
work descriptions into potential subtasks to related network domains (and their



Enabling Cloud Connectivity Using SDN and NFV Technologies 249

providers) and then orchestrates the appropriate managed network services. At
the attachment points between data center and network as well as between
network domains, the corresponding dynamic protocol parameters have to be
exchanged through a link negotiation protocol [13].

Within this approach, the current paper discusses a proposal for the architec-
ture, protocols and algorithms for resource and path management across multiple
network domains offering interconnectivity services to cloud providers.

4 Interdomain Connection Management

The effort for connection management can significantly increase due to the dy-
namics of the network resources, and due to the universality of users’ (cloud
providers’, end-users’, applications’, etc.) resource demands and preferences. To
relieve the intradomain network controller in our architecture the management
of domain-external resources is delegated to an entity called interdomain DCU
(Domain Control Unit). The interdomain DCU treats each connected domain as
a single resource with specific attributes.

In [20] we introduced a network architecture with a DCU in each domain sep-
arating the data plane from the control plane and comprising most of the control
plane mechanisms (i.e. path computing) into one single entity. The DCU clients
in each network element deliver topological and resource information to the lo-
cal DCU which then abstracts from the details of domain-internal topology and
resource information to a global information, e.g. domain load state, such that
detailed domain-specific topology and resource information is hidden towards
the interdomain DCU. Detailed information about topology (e.g. addresses of
the network entities) and resources remains in the local DCU.

There are already diverse path computation mechanisms that can be applied
for the interdomain resource allocation. In this paper we describe enhanced con-
cepts that utilize additional resource information to improve the efficiency of the
interdomain connectivity management.

Generally, the connection management can be divided into three parts: The
first part comprises the gathering of current network topology and resource infor-
mation. We focus on delivering abstract resource information from each domain
to the interdomain DCU and storing them in its Traffic Engineering Database
(TED) together with a timestamp. This TED also stores network topology, op-
erator policies and predefined interdomain paths. In section 4.4 we introduce
a novel mechanism called PSCEH (Publish Subscribe with Configurable Event
Handling) to increase the efficiency and quality of the information exchange.
Resource information can be for example the load of computational resources,
current storage capacity, link bandwidth, and network topology. The second part
consists of path computation and connectivity configuration performed by the
interdomain DCU based on the available topology and resource information.
In the third part controllers’ decisions are enforced on the respective network
entities in order to realize the connectivity.

Some aspects of information retrieval and path calculation follow the ideas
of interdomain PCE (Path Computation Entity) procedures, e.g. [21]. Based on



250 F. Derakhshan et al.

the PCE concept the mechanisms described in this paper in sections 4.3 and 4.4
utilize additional resource information and interact tightly with the TED which
further includes operator policies to improve the efficiency of the interdomain
connectivity management.

4.1 Hierarchical Interdomain Connection Management

For hierarchical interdomain connection management the DCU of each domain
registers at an interdomain DCU during network startup. The DCUs send a
registration request to potential interdomain DCUs and receive an ACK from
the responsible instance. Since the network structure is supposed to be quite
static the mapping of the DCUs to the responsible interdomain DCU can be
predefined by the network provider in order to reduce the discovery effort. During
registration the operators deliver their policies to the interdomain DCU, which
stores them in the TED together with the respective topology information.

Figure 2 shows the hierarchical interdomain connection management per-
formed by the interdomain DCU to set up a path between the source domain S
and the destination domain D.

Fig. 2. Interdomain connection management by the interdomain DCU between a source
domain S and a destination domain D via intermediate domains 1 and 2

When a request arrives at a local DCU, the DCU first checks whether the
destination address of the request can be found in the topology information of
the local TED. If the DCU cannot resolve the request, it forwards the request
to its interdomain DCU. The interdomain DCU first sends a request to all of its
DCUs in order to identify the domain containing the destination address. The
DCUs then check whether the requested destination address is stored in their
TEDs. The DCU which keeps the requested address in its TED responds to the
interdomain DCU with an ACK. The information the local DCUs submit to the
interdomain DCU is kept at minimum possible level to encapsulate the data only
within elements where they are needed.



Enabling Cloud Connectivity Using SDN and NFV Technologies 251

After the destination domain is identified, the interdomain DCU first retrieves
the resource information from its TED to compute candidate paths from source
to destination with respect to the constraints defined in the request. Constraints
can be for example a minimum bandwidth, an application class like HD video,
real-time video conferencing, user class, security level, etc.

If the resource information of some DCUs in the candidate paths is not up-
to-date, i.e. the corresponding time stamp is too old, the interdomain DCU
sends an explicit request to all concerned DCUs to retrieve the current resource
state. Triggered by this request the respective DCUs perform a path computa-
tion within their domain to determine the current resource information. After
receiving the resource state updates the interdomain DCU selects the optimum
final solution among the candidate paths and informs the source DCU.

The hierarchical architecture however has two disadvantages. If the processing
capacity of the interdomain DCU and the links towards the interdomain DCU are
not dimensioned sufficiently (which can be very expensive) an overload situation
might occur which in worst case can lead to an outage of the interdomain DCU
and consequently of the complete interdomain connection management, if no
duplicate interdomain DCU is available.

4.2 Peer-to-Peer Interdomain Connection Management

In order to cope with the disadvantages of the hierarchical interdomain connec-
tion management we define a flat architecture by transferring the interdomain
DCU functionality into the DCUs. In this case unresolved resource requests are
forwarded by the source DCU to all neighboring peer DCUs. For avoiding the
flooding of the entire DCU network, it can be organized according to a spanning
tree.

Like in the hierarchical architecture each DCU checks whether the requested
destination address is stored in its TED. The DCU which keeps the destination
address in its TED responds to the requesting DCU with an ACK. After the des-
tination domain has been identified, the source DCU first retrieves the resource
information from its TED to compute the candidate paths to the destination
with respect to the constraints defined in the request.

If current resource information is needed, the source DCU triggers all DCUs
of the candidate path to deliver current resource state updates. The source DCU
then determines the optimum final solution. Figure 3 shows the flat peer-to-peer
interconnection management architecture. In this example a path set up between
a source domain S and a destination domain D is triggered by the DCU S.

In order to speed up the path computation process the source DCU can pro-
voke each DCU on the candidate path to compute a local path and perform local
flow establishment during the time when the source DCU itself does the same.
This preconfiguration of the involved domains allows for immediate forwarding
of the packets of the request.

The advantage of a flat architecture is the lack of a single point of failure,
however its disadvantage is an increase of interdomain communication and more
delay in responding to requests due to the absence of a central supervisor and



252 F. Derakhshan et al.

Fig. 3. Peer-to-peer interdomain connection management between a source domain S
and a destination domain D via intermediate domains 1 and 2

database. Further, the transfer of the interdomain DCU intelligence into the
DCUs makes the latter more complex and more expensive.

4.3 Multi-criteria Resource Management

For a rapid and adaptive path computation and for responding elastically to the
requests of clients we introduce an algorithm for multi-criteria path computation
to be applied by the interdomain DCU in a hierarchical architecture or by the
source DCU in a flat architecture.

To cope with the complexity of the path computation the interdomain or
the source DCU first considers the priorities of performance indicators (e.g.
bandwidth, delay, etc.) as defined by the client through weights assigned to
them. Given a set of n performance indicators with priorities p1, p2, · · ·, pn the
DCU successively computes the paths satisfying the defined optimization criteria
with respect to the corresponding indicators in decreasing order of importance.
After sorting the indicators in descending order of their priorities the algorithm
starts the computation of the optimum solutions {S1} with respect to the first
indicator and a predefined default solution tolerance t1,0. In case that no solution
is found, the algorithm checks whether the acceptable tolerance limit is already
reached or not. If not, it increases the tolerance and restarts the computation
of solutions. Otherwise, if no more tolerance is acceptable, it returns an empty
solution set {∅}.

In case that a solution set {S1} is found, the algorithm continues the procedure
with the next parameter only if it exists and has a non-negligible priority (pi+1 ∼
pi) that justifies the computation effort. In this case the algorithm searches
the solutions {S2} within the previously found solution set {S1} that satisfied
the criteria concerning the first indicator. If no solution is found the algorithm
tries again to relax the solution constraints (increase the tolerance t2) first with
respect to the current less important indicator, and then successively, if still no
solution is found, with respect to the previous more important indicators. In case
that multiple solutions are found the final solution is randomly chosen among
them. Figure 4 depicts a schematic flow chart of the algorithm.



Enabling Cloud Connectivity Using SDN and NFV Technologies 253

start

order parameters

i = 1

ti = ti,0

i = 1
Y

N

find {Si}

find {Si} in {Si−1} {Si} = {∅}

Y

N
i = n

Y

N

ti ≤ ti,max

Y

N

i = 1
N

Y

increase ti,0

no solution

select best solution

solution

pi+1 � pi
Y

N

i = i+ 1

i = i− 1

Fig. 4. Multi-criteria path computation starts with the performance indicator with the
highest priority pi and with a predefined initial solution tolerance ti,0. It only proceeds
to the next indicator if its priority pi+1 is non-negligible. In case of an empty solution
set {∅} the algorithm tries to expand the tolerance interval of solutions and restarts
the optimization. The process stops when an exit event occurs.

The priorities of indicators are predefined by the clients according their needs.
The less the number of indicators and the larger the tolerances, the less the
computational effort, but also the lower the quality of solutions. To increase the
efficiency of the process, each solution can be tagged with a time stamp and
stored in the TED such that a new computation of solutions is only started if
the already available solution has become obsolete. The expiration conditions
can be dynamically defined by the controller. However, a re-computation can
also be triggered proactively to improve the quality of available solutions. The
new solution can then be offered to the requester without its explicit request.

The described mechanism can be enhanced to estimate the resource demand
of arriving requests in advance by applying statistical and probabilistic methods
on the current network resource state.



254 F. Derakhshan et al.

4.4 Publish/Subscribe with Configurable Event Handling (PSCEH)

The algorithms described in section 4 need support from efficient and adjustable
resource state reporting mechanisms. The manner of information exchange in
distributed systems has a significant impact on the resource management effi-
ciency. On the one hand, a low reporting frequency leads to a coarse knowledge
of the state of the concerning resources which reduces the resource management
performance. On the other hand, a high frequency of notifications leads to an in-
crease of signaling overhead which again reduces the management performance.

There are diverse kinds of publish/subscribe mechanisms based on polling,
pulling, pushing or advertising, e.g. [22]. For optimizing the information report-
ing we developed the PSCEHmechanism. It enhances the basic publish/subscribe
paradigm by introducing provider-tailored publishing and consumer-oriented
subscription, which represents the main advantage compared to already known
information reporting mechanisms.

The PSCEH method defines a generic and flexible generalization of pub-
lish/subscribe techniques and exploits the advantages of them. It enables the
involved resource management entities to customize their information exchange
in order to minimize the computation effort and the required signaling, and thus
enhances the resource management quality.

In the PSCEH process the subscribing DCU compiles a subscription profile
containing its identity, the resource parameters of interest (bandwidth, delay,
etc.) and the configuration parameters (events, event granularities, time hys-
tereses, event thresholds, notification frequencies, etc.) for reporting. By sending
this profile to the monitoring DCUs the subscribing DCU subscribes to the re-
ports of them. The parameters in the profile may be defined as optional or
mandatory. In case that an event as defined in the profile occurs, the concerning
DCUs send a notification to the subscribing DCU.

Figure 5 shows an example of the PSCEH in a hierarchical environment with
exchange of subscription and notification messages between interdomain DCU as
subscriber and DCUs as publishers. If the interdomain DCU needs the resource
information of the DCUs 1, 2 and D, it compiles a subscription profile as de-
scribed above and sends it to them. Thus, whenever an event of interest occurs,
the DCUs notify the subscribing interdomain DCU according to its subscription
profile.

Figure 6 shows an example of the PSCEH in a flat peer-to-peer environment
with exchange of subscription and notification messages between peer DCUs. In
this case, if the DCU S needs the resource state information of DCUs 1, 2 and D,
it compiles a subscription as above and sends it to them. The rest of the process
is the same as described above.



Enabling Cloud Connectivity Using SDN and NFV Technologies 255

Fig. 5. PSCEH supporting hierarchical interdomain connection management

Fig. 6. PSCEH supporting peer-to-peer interdomain connection management

The subscribing DCU has the possibility to redefine the parameters of the
reporting by updating the corresponding entries in the profile. This way, the
PSCEHmechanism allows the DCUs to adapt not only the notification frequency
but also the measurement parameters and the reporting events to their actual
needs and privacy requirements.

Further, the PSCEH allows for collecting resource information prior to the
arrival of resource requests such that the DCUs are relieved from time consuming
message exchange. This depicts a non-trivial advantage in time-critical stress
phases with short inter-arrival times of requests. By decoupling the information
exchange from the time-critical decision phase the PSCEH enables the DCUs
to apply more complex resource management and optimization algorithms with
sophisticated and customized preprocessing of resource information.

For relieving the DCUs in the central architecture from interdomain path com-
putation the interdomain DCU has to be protected by redundancy mechanisms
to prevent any inoperability.



256 F. Derakhshan et al.

5 Conclusion and Future Work

In this paper we showed how cloud connectivity can be realized in a multi-domain
network of distributed clouds. The SAIL open connectivity service (OConS) and
the resource management algorithm of the DCU described in this paper support
interdomain resource allocation that can deal with the complexity of forthcoming
multi-domain networks. The introduced concepts are promising for dynamic ser-
vice deployment in future cloud networks. Thereby OConS facilitates the instan-
tiation, initiatian and interconnection of functions by a specified orchestration
procedure.

A first proof-of-concept demonstration was shown at the FuNeMS 2012 in
Berlin [20] with focus on the principles of load-dependent resource allocation
between application, cloud management (CloNe) and network (OConS). Thereby
a web-based service and management interface was used to demonstrate the
control and management of the requested data paths. The DCU with its domain
controller was built as an OpenFlow controller and the connectivity was provided
using the OpenFlow protocol. To demonstrate elastic networking between cloud
nodes (data centers) and network domains we used a distributed video processing
application [23].

In the future we intend to take the NFV and ”networked cloud” paradigm
a step further by applying it to the mobility algorithms in a 4G mobile ac-
cess network. Virtualization activities for the wireless access system are already
studied, e.g. in the NGMN CRAN activities [24] or discussed in [25]. Addition-
ally, mechanisms described in this paper can be considered in order to allow
a better resource usage of processing resources in the wireless network. For a
centralized architecture a subscription mechanism for the information exchange
described in section 4.4 can be applied whereas for a decentralized architecture
an information retrieval triggered by broadcast messages is more advantageous.
Furthermore, it will enable a more efficient (physical processing) resource utiliza-
tion allowing for either energy saving gains or additional processing headroom
for next-generation features in wireless networks as already envisaged in the
LTE-Advanced specifications.

Acknowledgments. This work has been partially funded by the European
Commission under grant FP7-ICT-2009-5-257448-SAIL. We would like to thank
our colleagues in the SAIL project for the many fruitful discussions.



Enabling Cloud Connectivity Using SDN and NFV Technologies 257

Abbreviations

ACK Acknowledgement
D Destination
DC Data Center
DCU Domain Control Unit
I-DCU Interdomain DCU
NFV Network Function Virtualization
OCCI Open Cloud Computing Interface
OCNI Open Cloud Networking Interface
OConS Open Connectivity Services
PCE Path Computation Entity
PSCEH Publish Subscribe with Configurable Event Handling
S Source
SAIL Scalable and Adaptive Internet Solutions
SDN Software-Defined Networking
TED Traffic Engineering Database
VM Virtual Machine

References

1. Amazon Elastic Computer Cloud (Amazon EC2), aws.amazon.com/ec2
2. Google Cloud Platform, cloud.google.com
3. Bird of a feather session on Software-defined Networking (SDN), IETF-82, Taipei

(November 17, 2011), tools.ietf.org/agenda/82/sdn.html
4. Software-defined Networking Research Group (SDNRG) of the IRTF,

trac.tools.ietf.org/group/irtf/trac/wiki/sdnrg

5. Network Functions Virtualization Introductory White Paper. SDN and
OpenFlow World Congress, Darmstadt, Germany October 22-24 (2012),
portal.etsi.org/NFV/NFV_White_Paper.pdf

6. Open Networking Foundation, http://www.opennetworking.org
7. Doria, A., Hadi Salim, J., Haas, R., Khosravi, H., Wang, W., Dong, L., Gopal,

R., Halpern, J.: ”Forwarding and Control Element Separation (ForCES) Protocol
Specification”, IETF RFC 5810 (March 2010)

8. Doria, A., Hellstrand, F., Sundell, K., Worster, T.: General Switch Management
Protocol (GSMP). V3, IETF RFC 3292 (June 2002)

9. Enns, R., Bjorklund, M., Schoenwaelder, J., Bierman, A.: Network Configuration
Protocol (NETCONF). IETF RFC 6241 (June 2011)

10. Case, J., Harrington, D., Presuhn, R., Wijnen, B.: Message Processing and Dis-
patching for the Simple Network Management Protocol (SNMP). IETF RFC 3412
(December 2002)

11. The SAIL Consortium, http://www.sail-project.eu
12. Ferreira, L.S., et al.: Open Connectivity Services for the Future Internet. In: IEEE

Wireless Communications and Networking Conference (WCNC2013), Shanghai
(April 2013)

aws.amazon.com/ec2
cloud.google.com
tools.ietf.org/agenda/82/sdn.html
 trac.tools.ietf.org/group/irtf/trac/wiki/sdnrg
portal.etsi.org/NFV/NFV_White_Paper.pdf
http://www.opennetworking.org
http://www.sail-project.eu


258 F. Derakhshan et al.

13. SAIL, Refined CloNe Architecture, Deliverable FP7-ICT-2009-5-257448-
SAIL/D.D.3, SAIL project (October 2012), www.sail-project.eu

14. OpenStack Cloud Software, www.openstack.org
15. SAIL, Applications for Connectivity Services and Evaluation, Deliverable FP7-

ICT-2009-5-257448-SAIL/D.C.4, SAIL project (February 2013),
http://www.sail-project.eu

16. Puthalath, H., Soares, J., Melander, B., Sefidcon, A., Carapinha, J., Melo, M.:
Negotiating On-demand Connectivity Between Clouds and Wide Area Networks.
In: IEEE CloudNet 2012, Paris, France (November 2012)

17. PyONCI, github.com/danieltt/PyOCNI
18. libNetVirt, github.com/danieltt/libnetvirt
19. Turull, D., Hidell, M., Sjdin, P.: Using libNetVirt to Control the Virtual Network.

IEEE CloudNet 2012, Paris, France (November 2012)
20. Derakhshan, F., Grob-Lipski, H., Roessler, H., Schefczik, P., Soellner, M.: On Con-

verged Multi-domain Management of Connectivity in Heterogeneous Networks. In:
Future Networks & Mobile Summit 2012 Berlin, Germany, July 04-06 (2012)

21. Vasseur, J.P., Zhang, R., Bitar, N., Le Roux, J.L.: Backward-recursive PCE-
based Computation of Shortest Constrained Inter-domain Traffic Engineering La-
bel Switched Paths. IETF RFC 5441 (April 2009)

22. Esposito, C.: A Tutorial on Reliability in Publish/Subscribe Services. In: DEBS
2012, Berlin, Germany (2012)

23. SAIL, Demonstrator for Connectivity Services. Deliverable FP7-ICT-2009-5-
257448-SAIL/D.C.5, SAIL project (February 2013),
http://www.sail-project.eu

24. NGMN Alliance, Projects, www.ngmn.org/de/workprogramme/wpoverview.html
25. Haberland, B., Derakhshan, F., Grob-Lipski, H., Klotsche, R., Rehm, W.,

Schefczik, P., Soellner, M.: Radio Base Stations in the Cloud. Bell Labs Technical
Journal 18(1), 129–152 (2013)

www.sail-project.eu
www.openstack.org
http://www.sail-project.eu
github.com/danieltt/PyOCNI
github.com/danieltt/libnetvirt
http://www.sail-project.eu
www.ngmn.org/de/workprogramme/wpoverview.html

	Enabling Cloud Connectivity
Using SDN and NFV Technologies

	1 Introduction
	2 Current Developments and Problems
	3 Provisioning Connectivity in the Cloud
	4 Interdomain Connection Management
	4.1 Hierarchical Interdomain Connection Management
	4.2 Peer-to-Peer Interdomain Connection Management
	4.3 Multi-criteria Resource Management
	4.4 Publish/Subscribe with Configurable Event Handling (PSCEH)

	5 Conclusion and Future Work
	References




