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Abstract. Traffic in communication networks is not constant but fluc-
tuates heavily, which makes the network planning task very challenging.
Overestimating the traffic volume results in an expensive solution, while
underestimating it leads to a poor Quality of Service (QoS) in the net-
work.

In this paper, we propose a new approach to address the network
planning problem under stochastic traffic demands. We first formulate
the problem as a chance-constrained programming problem, in which the
capacity constraints need to be satisfied in probabilistic sense. Since we
do not assume a normal distribution for the traffic demands, the problem
does not have deterministic equivalent and hence cannot be solved by the
well-known techniques. A heuristic approach based on genetic algorithm
is therefore proposed. The experiment results show that the proposed
approach can significantly reduce the network costs compared to the
peak-load-based approach, while still maintaining the robustness of the
solution. This approach can be applied to different network types with
different QoS requirements.

Keywords: Network planning, stochastic traffic demands, chance
constrained programming, genetic algorithm.

1 Introduction

Network planning is an old but never outdated research topic in telecommuni-
cation networks. It is a very complex task because it has to resolve the conflict
of interest between the network service provider, who wants to minimize the
expenditure and the services users, who expect a good QoS. Accurate network
planning is one of the crutial factors that ensure a business success for the net-
work operators.

The classical network planning problem, assuming static traffic demands given
by single trafic matrix, has been studied extensively for decades [1]. Different
studies focused on different network technologies with different QoS require-
ments. But the general objective is to find a network with minimum cost, which
can accomodate the given traffic demand. The common approach to solve this
problem is to model it as Linear Programming (LP) problem and use some well-
known optimization tools, e.g. CPLEX [2] to solve it. Besides, many researchers
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have also proposed heuristic algorithms such as genetic algorithm, simulated
annealing, local search, and etc, to solve the problem for large networks whose
solution cannot be obtained from CPLEX within a reasonable time. Even though
the above problem is already very complex, its solution can be inefficient. This is
because the traffic is not deterministic but fluctuates heavily over time, as shown
in Fig.1. If the traffic demand matrix covers the peak rate of the traffic demands,
the network will be very costly due to the overestimated traffic volume. If the
traffic demand matrix represents the mean rate, the resulted network may not
be able to guarantee a certain QoS. Therefore, the traffic demands must be rep-
resented by so-called effective rates, which are between the peak rates and the
mean rates. However, there is so far no effective way to determine these rates
that can result in the most efficient network.

Fig. 1. Traffic fluctuation - Data was taken from GEANT project [3]

Assuming static traffic demandsmay be acceptable when the traffic characteris-
tic is unknown to the operator. However, for a better network planning, one should
carefully study the potential traffic behaviour and has some assumption on the
stochastic traffic model. Moreover, once the network is already under operation
and the traffic volume can be easily captured by measurement, re-optimizing (re-
planning) the network should definitely take into account the stochastic behavior
of the traffic. Nowadays, when the traditional networking infrastructure tends to
migrate to the cloud networking, in which the network resourses can be easily ac-
commodated on demand, the re-planning should be done frequently to optimize
the expenditure as well as the network QoS. This motivates us to study the net-
work planning problem for stochastic traffic demands.

2 Related Work

The network design problem under traffic uncertainty has attracted many
researchers. Many methods have been proposed to handle the data uncertainty.
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The first approach is to use Stochastic Programming [4]. In this approach, traffic
uncertainty is captured by a finite number of matrice, each of which is assumed to
occur with a certain probability. This is then modelled by a deterministic equiva-
lent linear programming problem. Even though it is one of the earliest techniques
to deal with uncertainty data, it is not very popular in telecommunications.

The second approach, a well-known method in communication network design,
is Robust Optimization introduced by Soyster in 1973 [5]. Using this approach,
no information of the probabilistic distribution of the traffic uncertainty is re-
quired. Instead, a solution is robust if it is feasible for all traffic volumes in the
given uncertainty set. Robust Optimization can be applied differently in net-
work design. In multi-hour network planning, the traffic fluctuation is modelled
by multiple traffic matrice [6, 7]. The network is designed so that each traffic
matrix can be accommodated non-simultaneously in installed capacities. This
problem can be formulated as an LP problem in a similar way to the classical
network planning, but it is much more complex due to a larger ammount of con-
straints. Another realization of Robust Optimization is to use the hose model [8].
The model defines upper bounds on the sum of the incoming and outgoing traffic
flows for all network nodes while allowing each traffic flow to vary. This model
has attracted a lot of attention recently [9–11]. In 2004, Bertsimas and Sim in-
troduced the Γ -model as an extention of Robust Optimization [12]. In realistic
scenarios, it is unlikely that all traffic demands are at their peak rate at the same
time. Hence, in the Γ -model, a (small) non-negative value Γ is introduced to
restrict the number of simultaneous peaks. Changing Γ relates to adjusting the
robustness and the level of conservatism of the solutions and therefore provides
additional flexibility. The Γ -model was used for robust network design in [13–16].
The weakness of this model is that its complexity increases exponentially with Γ
due to a large combination of simultaneous peaks. Additionally, the choice of Γ
is rather vague because it does not say much about the robustness of a solution
although they are related.

The third approach is to use Chance-Constrained Programming (CCP) intro-
duced by Charnes and Cooper in 1959 [17]. In CCP, the constraints must be
maintained at a prescribed level of probability. In communication network plan-
ning, these are usually capacity constraints guaranteed at a certain probability,
which is actually the overload probability of the links. Using the CCP, we must
assume that the probability distribution of traffic demands is known. This is
usually not the case of greenfield network planning. However, when a network
already exists and re-optimizing is required, this information can be obtained
from traffic measurement data. If the traffic follows a normal distribution, the
CCP problem has a deterministic equivalent, and hence becomes an LP prob-
lem, which can be solved by optimization tools. If the traffic follows a log-normal
distribution, the CCP problem can be approximated by a deterministic equiv-
alent, which turns into an LP problem as well. In other cases, the problem is
very hard. Our contribution in this work is a genetic algorithm to solve the net-
work planning problem for stochastic traffic demands with arbitrary probability
distribution modelled by Chance-Constrained Programming.
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The rest of the paper is organized as follows. Section 3 presents the mathemat-
ical model of the problem using CCP. Section 4 introduces our proposed genetic
algorithm. Section 5 discusses the performance of the algorithm and Section 6
concludes our work.

3 Problem Formulation

We consider the following network design problem. An undirected connected
graph G = (V,E) representing a potential network topology is given. On each
link, capacity can be installed with a certain cost. The installed capacity is
bounded by the available physical capacity of the link. A traffic demand between
any two nodes is stochastic and is given by a (discrete) probability distribution
function. Traffic demands are assumed to be statistically independent from each
other. A coefficient ε is introduced as the QoS parameter. The task is to find a
network with the minimal cost, in which the overload probability of each link is
bounded by ε.

The problem can be mathematically presented using the following notations:

– k ∈ K denotes a commodity representing a traffic demand.

– l denotes a link in the potential topology.
– r ∈ R denotes a route conneting the source and destination nodes. A set of
possible routes R connecting any two nodes is pre-computed.

Given Parameters

– Tk: traffic demand of the commodity k. Since the traffic demands are stochas-
tic, Tk is a probability density function (PDF).

– Cl: available physical capacity of link l.
– cl: cost of a bandwidth unit on link l.

Decision Variables

– Bandwidth assignment bl: a positive real variable denoting the bandwidth
allocated on link l

– Routing variable: fk
r = 1 if the traffic of the commodity k is routed through

route r. Otherwise, fk
r = 0. We assume a single-path routing, hence fk

r is a
binary variable.

Constraints

– Routing constraint: ∑

r∈R

fk
r = 1 ∀k (1)
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Equation (1) ensures that every flow is routed through one of the pre-computed
paths.

Assuming N(N ≤ K) traffic flows going through link l and Tk being the PDF
of each traffic demand, the PDF of the aggregated traffic on link l, T l, is the
convolution of all flows and given as:

T l = T1 ⊗ T2 ⊗ ...⊗ TN (2)

– Link overload probability constraint:

∫ bl

0

T l(x) dx ≥ 1− ε ∀l (3)

Equation (3) guarantees that the traffic load on link l is smaller than or equal
to its installed capacity bl with the probability of 1 − ε. This equals to link
overload probability smaller than ε. Equation (3) is equivalent to:

∏

k,fk
l
=1

∫ bl

0

Tk(x) dx ≥ 1− ε ∀l (4)

– Physical capacity constraint:

bl ≤ Cl ∀l (5)

Objective

min
∑

l

cl · bl (6)

The objective is simply to minimize the total network cost.

4 Genetic Algorithm

The mathematical model presented in the previous section is a non-linear opti-
mization problem. In this section, we introduce a heuristic approach based on
the genetic algorithm to solve it. Genetic algorithm uses the concepts of popu-
lation genetics and evolution theory to optimize the fitness of a population of
individuals through mutation and crossover of their genes. The advantage of the
genetic algorithm is that it is able to explore a large solution space and hence
to avoid local optima.

4.1 Encoding

A chromosome is encoded by a set of numbers {r1, r2, ..., rk, ...rK} where rp is a
positive integer representing a route of commodity p. Each position k is related
to a certain commodity and the corresponding traffic demand. A chromosome
thus represents the routing solution for all demands on the network.
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4.2 Forming a New Population

A new population is evolved by a mechanism to select and to form new individ-
uals using genetic operators called crossover and mutation. Crossover produces
new individuals that inherit genes from their parents while mutation enables
offsprings to have different genes from their parents. Both of these genetic oper-
ators aim to produce some (hopefully) better individuals for the next generation
(iteration). The bad performing individuals (according to the fitness parameter)
from the previous iteration will be naturally removed and substituted by the
new ones. In this work, each population is composed of 20 individuals. At each
iteration, 20 new individuals will be generated.

4.3 Calculating the Solution Cost and Fitness Evaluation

The cost of a solution is the the total cost of capacities installed on all links to
accommodate traffic using the routing solution represented by an encoded chro-
mosome. From the chromosome, one knows which flows are going through each
link. The PDFs of all traffic flows are convoluted to get the PDF of the aggre-
gated traffic flow. After that, we can calculate the bandwidth needed on the link
so that the overload probability is bounded by a given parameter ε. In this work,
we assume a discrete PDF, which is represented by a finite vector, for the ease
of the computation. If the PDFs of the traffic demands are given as continuous
functions, they should be discretized for the convolution computation.

Fitness evaluation is to decide which chromosomes meet the expectation and
can be carried to the next iteration. In this work, the fitness is reflected by
the total cost of a solution. The current five best solutions (with lowest cost)
are always chosen to the next step. The other solutions including the invalid
solutions, are chosen with a certain probability. The reason to choose some bad
solutions is to avoid the local optima.

4.4 Algorithm Framework

The algorithm is represented in details by the flowchart in Fig. 2 The algo-
rithm starts with 20 initial individuals encoded into chromosomes as described
in section IV.A. From this initial population, 20 child solutions are generated by
crossover or mutation of random genes. The cost of these solutions (including
the parent solutions) are calculated and evaluated. 20 solutions which qualify the
fitness evaluation will be carried to the next iteration. The process is repeated
until a termination condition is reached. The condition can be for example a
pre-determined number of iterations or a certain number of iterations during
which no better solution is found.

5 Performance Evaluation

To evaluate the performance of the proposed network planning algorithm, we
carried out two experiments on a small 6-node network and the German 16-
node network, shown in Fig.3. The genetic algorithm was implemented in C++.
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Fig. 2. Genetic algorithm framework

The traffic demands for the 6-node network are taken from GEANT project
[3], while the traffic demands for the German network are taken from the DFN
network provided at [18]. The traffic data was firstly extracted and its discrete
PDF was constructed. We assumed that the cost of a bandwidth unit on each
link is 1, so that the total cost is simply the sumation of the bandwidths. For
the German network, 5 shortest paths were pre-calculated while for the 6-node
network, all possible routes were considered.

5.1 Performance of Genetic Algorithm

In this work, the number of iterations in the genetic algorithm is set to 500 for
the small network and 1000 for the big network. In practice, one can terminate
the algorithm based on the quality of the solution, e.g. the objective function
reaches a certain value or the best solution does not change over a certain number
of iterations. Fig.4 and 5 show the evolution of the genetic algorithm over time
(iterations) in two experiments. The red curve represents the best solution at
each iteration while the blue one represents the average of the whole population.
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Fig. 3. Network topologies: a) 6-node network, b) German 16-node
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Fig. 4. Performance of genetic algorithm - 6-node network

The best solution always gets better or at least stays the same after each
iteration, while the average solution can get worse. This is due to the fact that a
bad solution can still be selected to the next iteration with a certain probability.
This helps to avoid the local optima. As can be seen from the figures, the larger
the network is, the more iterations are required to obtain a good solution. For
the small network, from the iteration 250, the solution is improved very slowly
and not much. For the German network, the solution still has potential to be
improved at the iteration 1000. Therefore, it is difficult in practice to determine
the number of iterations before terminating the algorithm. It is recommended
to terminate the algorithm when the best solution does not change for a certain
time.



224 P. Nga Tran, B. Dwi Cahyanto, and A. Timm-Giel

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

Number of iterations

N
o
rm

a
liz

e
d
 c

o
s
t

 

 

Average solution

Best solution

Fig. 5. Performance of genetic algorithm - German network

5.2 Network Cost

The resulting network cost under different link overload probability is shown in
the Fig.6 and 7. The higher the acceptable link overload probability is, the lower
is the network cost. Especially, the network cost in case of a small link violation
probability can decrease significantly compared to the one when no link overload
is tolerated at all. The cost decreases slowlier when the link overload probability
is high. Therefore, it makes sense to accept a small link violation probability to
reduce the cost while not sacrifying much the QoS.

In the small network, if 5% link overload proability is accepted, we can save
about 45% of the cost. However, for the large network, at 5% link violation
probability, we save only about 25% network cost. This is because in a large
network, there are many more flows going through a link. The traffic loads on
links tend to be averaged out, rather than heavily fluctuate. This avoids some
extreme peak and hence the cost saving from a small violation probability is also
reduced. This can be seen in the Fig.8 and 9.

Table 1. Comparison of statistical network planning with other approaches

Peak-based ε = 0% Mean-based ε = 5%

Normalized cost 1.24 1 0.45 0.53

Link overload prob. 0% 0% 18% - 25% 5%

Table 1 shows the comparison of the proposed statistical network planing
method with mean-load-based and peak-load-based approach for the 6-node net-
work. The solution for the mean-load-based and peak-load-based approaches are
found by linear programming (CPLEX). Using the peak-load-based approach,
the normalized network cost is 1.24 while using the proposed statistical planning
method, the normalized cost is 1. In both cases, the link violation probability is
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Fig. 6. Network cost vs. link overload probability - 6-node network
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Fig. 7. Network cost vs. link overload probability - German network

0%. Using the mean-load-based approach, the cost is low (only 0.42) but the QoS
is also very poor. The link overload probability ranges from 18%-25%. Accepting
5% of link overload probability results in a good compromise.

Another advantage of this proposed approach is that for different networks
with different QoS requirements, one can simply adjust the link violation prob-
ability accordingly.

5.3 Aggregated Traffic on Links

Fig.8 and 9 shows the traffic load on a link in the 6-node network and the Ger-
man network, respectively. In each figure, the red line indicates the bandwidth
allocated on the link. As can be seen from the figure, the link overload probability
is bounded by the predefined parameter ε = 5%. We can see that by accepting a
small violation probability, the capacity needed on the link is reduced, especially
for the small network.
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Fig. 8. Traffic load on the link (1-2) - ≤ 5% violation probability
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Fig. 9. Traffic load on the link (1-2) - ≤ 5% violation probability

6 Conclusion

In this paper, we have proposed a new approach to solve the network plan-
ning problem under stochastic traffic demands using the genetic algorithm. The
proposed method guarantees the network to carry stochastic traffic under a pre-
defined link overload probability. The experiments showed that by accepting a
small link overload probability, the network cost can be reduced significantly.
Compared to the peak-load-based approach, the proposed method applied for
ε = 0% results in a clearly lower cost. Even though the algorithm cannot guar-
antee the optimal solution (due to the nature of the heuristic), it provides a
relatively good solution. The limitation of this approach is that it guarantees
the overload probability for each link only. In the future, we will develop an
algorithm that can guarantee the overload probability for the end-to-end flows.
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