
Route-Over Forwarding Techniques

in a 6LoWPAN

Andreas Weigel1, Martin Ringwelski1, Volker Turau1, and Andreas Timm-Giel2

1 Institute of Telematics
2 Institute of Communication Networks

Hamburg University of Technology, Hamburg, Germany
{andreas.weigel,martin.ringwelski,turau,timm-giel}@tuhh.de

Abstract. 6LoWPAN plays a major role within the protocol stack for
the future Internet of Things. Its fragmentation mechanism enables trans-
port of IPv6 datagrams with the required minimum MTU of 1280 bytes
over 802.15.4-based wireless sensor networks. With the envisioned goal of
a fully standardized WSN protocol stack currently necessitating a route-
over approach, i.e. routing at the IP-layer, there are two main choices for
any 6LoWPAN implementation with regard to datagram fragmentation:
Hop-by-hop assembly or a cross-layered direct mode, which forwards in-
dividual 6LoWPAN fragments before the whole datagram has arrived. In
addition to these two straightforward approaches, we propose enhance-
ments based on adaptive rate-restriction for the direct forwarding and
a retry control for both modes to reduce the number of losses of larger
datagrams. Our evaluation of the basic and enhanced forwarding modes
within simulations and a hardware testbed indicate that the proposed en-
hancements can considerably improve packet reception rate and latency
within 6LoWPAN networks.

Keywords: 6LoWPAN, fragmentation, 802.15.4, CometOS, forward-
ing, route-over, wireless sensor networks.

1 Introduction

Wireless sensor networks (WSNs) have a broad field of possible applications,
starting from smart homes via monitoring of industrial plants, agricultural fields
and personal health through to smart metering. WSNs are typically character-
ized by nodes with only constrained resources in terms of memory, computation
power and available energy and by wireless links which often exhibit lossy and
transient behavior. Until recently, these networks usually employed proprietary
protocols and therefore off-the-shelf solutions were either not available or not
interoperable.

The vision of the “Internet of Things” aims at providing each and every sen-
sor with its own IPv6 address to make it accessible via proven and established
standard protocols. This idea has given rise to the development of a standardized
protocol, Transmission of IPv6 Packets over IEEE 802.15.4 Networks (RFC 4944

D. Pesch et al. (Eds.): MONAMI 2013, LNICST 125, pp. 122–135, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013



Route-Over Forwarding Techniques in a 6LoWPAN 123

[1]; 6LoWPAN), which enables the use of IPv6 with the link layer protocol IEEE
802.15.4 [2]. The routing protocol for low power and lossy networks (RPL [3])
and its recent acceptance as a proposed standard as well as the constrained appli-
cation protocol (CoAP [4]) complement the development towards a completely
standardized IPv6 protocol stack for wireless sensor networks.

The 802.15.4 standard offers physical- and MAC-layers for low power wireless
personal area networks (LoWPAN). While the MAC-frame size of those networks
is only 127 bytes, IPv6 depends on a maximum transmission unit (MTU) of at
least 1280 bytes.

6LoWPAN offers an intermediate layer between the IP- and the data link
layer to overcome this issue. It defines compression algorithms for IPv6 headers
and a fragmentation mechanism for larger IPv6 datagrams to be transportable
within 802.15.4 MAC frames. Concerning the routing within a multi-hop wire-
less network, 6LoWPAN specifies two possibilities: mesh-under and route-over.
With mesh-under, routing decisions are made at the adaption layer by some not
specified routing protocol; the entire 6LoWPAN network appears to the IP layer
as a single hop network. Following an approach with completely standardized
protocols, we are only concerned with route-over, where routing decisions are
made by a routing protocol at the IP layer, e.g. RPL.

Applying strict separation of layers with route-over, a node then needs to
buffer incoming fragments in order to reassemble the complete datagram. If the
arriving packet is in transit to another node, it has to be reassembled, handed
to the IP layer for routing decisions and again has to be fragmented and sent to
the next node. During the whole process, buffer space has to be reserved for the
whole datagram. Considering the resource limitation of WSN hardware, where
a buffer is likely to be not much larger than the MTU, this may necessitate
dropping additional incoming datagrams for which no buffer space is left.

This is a known issue and the informational implementation guidelines [5] rec-
ommend the use of a virtual fragmentation buffer, which immediately forwards
fragments which are just in transit to the next hop and only stores information
necessary to identify and dispatch the following fragments. While such a direct
forwarding scheme may overcome the buffering issue and even decrease the la-
tency on longer paths by enabling pipelining of fragments, it is also likely to
cause more collisions on the channel due to the hidden terminal problem.

Considering that lost fragments will inevitably lead to lost datagrams, the
forwarding strategy has a tremendous impact on the performance within a
6LoWPAN-based wireless sensor network. Therefore, we evaluated the basic
schemes and additionally propose rate-restriction mechanisms to prevent per-
formance degradation using the direct mode and a retry-control mechanism to
prevent the loss of nearly completely transmitted datagrams. These different
modes are described in more detail in Section 3. An overview about past re-
search in concerning 6LoWPAN fragmentation strategies is given in Section 2.
Sections 4 and 5 provide information about the used simulation and testbed
scenarios and the results of the experiments, respectively. Section 6 concludes
this work.



124 A. Weigel et al.

2 Related Work

Different forwarding techniques for 6LoWPAN for IPv6 datagrams without and
with fragmentation were evaluated by Ludovici et al. [6]. They analyzed end-to-
end delay and loss-rate of a single sender for two route-over1 and two mesh-under
schemes within a line topology of up to five TelosB nodes, yielding a maximum
network diameter of 4. One main result of their studies was the dramatically
higher reliability of the route-over scheme compared to mesh-under and en-
hanced route-over, up to a datagram size at which maximum buffer capacity is
approached and datagrams have to be dropped due to the lack of buffer space.
On the other hand, end-to-end delay has been observed to be better for the three
non-reassembling schemes.

A similar approach was adopted by Bhunia et al. [7]. Within a similar setup,
they analyzed the end-to-end delay and loss rate for a single sender node within
a small testbed with a line topology. Their observations are in line with those
of [6].

In a draft of the IETF working group “Routing over low power and Lossy
networks”2, Thubert and Hui [8] describe an extension to RFC4944 which adds
negative acknowledgements and fragment recovery mechanisms to 6LoWPAN.
By means of recovery from individual fragment losses, the loss (and potentially
congestion-causing upper layer retransmission) of whole datagrams is meant to
be prevented. While certainly worth investigating, this can be seen as an or-
thogonal approach to the mechanisms proposed by us and will not be further
evaluated here.

Wang et al. [9] proposed a method for mesh-under routing in 6LoWPANs,
which reassembles packets at some intermediate nodes. Evaluating route-over,
mesh-under and their chained mesh-under routing (C-MUR) in a testbed consist-
ing of 6 nodes arranged in a line topology, they observed that C-MUR achieves
a latency between mesh-under and route-over and a better packet reception rate
than both for an increasing number of fragments.

An important issue when applying direct forwarding within a 6LoWPAN is
the possible self-interference of fragments of the same datagram along a multi-
hop path. Gnawali et al. acknowledged this problem of collisions with formerly
forwarded frames, though within the slightly different context of their routing
protocol for WSNs (CTP: Collection Tree Protocol [10]). To minimize the possi-
bility for such self-interference, a restriction is introduced to the rate with which
frames are forwarded by CTP. This technique is adopted by our rate-restricted
modes which are introduced in Section 3.

1 Route-over: the “classic” re-assembling mode; enhanced route-over: a virtual re-
assembling mode, which actually directly forwards individual fragments and thereby
corresponds to our “Direct Mode”

2 http://tools.ietf.org/wg/roll/

http://tools.ietf.org/wg/roll/


Route-Over Forwarding Techniques in a 6LoWPAN 125

3 Forwarding Techniques

In the following, we call the approach of treating fragments of IPv6 datagrams
corresponding to a strictly layered network stack Assembly Mode: Each data-
gram is completely reassembled at each intermediate IPv6 hop. In contrast, we
use the term Direct Mode for the mechanism which works according to the
implementation guidelines for 6LoWPAN [5]. Fragments of datagrams which are
not destined to the receiving node are directly forwarded by determining the
next hop from the IPv6 routing table. At arrival of the first fragment, a node
creates an entry in a so-called virtual reassembly buffer, which is used to identify
the following fragments and keep track of the status of in-transit datagrams.

3.1 Enhanced Direct Modes

When a node forwards an arrived fragment immediately to the next node it will
compete for the channel with the previous node trying to send the next fragment.
While this problem is solved by the CSMA/CA of the MAC Protocol, adding
another hop will in many cases cause a hidden terminal problem and drastically
increase the probability for collisions at the intermediate node. CTP (see Section
2) uses a rate restriction to decrease the impact of the hidden terminal problem
in high traffic scenarios, i.e. in case nodes have several frames stored in their send
queue: Every node, after having forwarded a frame, will delay the transmission
of consecutive frames.

We adopted this strategy in two different ways: First, we defined and im-
plemented a mode which is identical to the rate restriction proposed by the
collection tree protocol. We observed a mean transmission time for a 96 bytes
6LoWPAN fragment of ttx = 6ms, including backoffs and transmission time.
Under the assumption that a routing protocol will choose shortest paths, the
channel will be free again after waiting for the duration of two transmissions fol-
lowing the initial one3. Therefore, after each transmission, we randomly schedule
a delay td, with

1.5 · ttx ≤ td ≤ 2.5 · ttx (1)

We call this mode Direct Mode with Rate Restriction (Direct-RR).
This strategy, however, also has some obvious issues. First, the average trans-

mission time can be different for different nodes, depending on their position
within the network and the current traffic situation. Second, the transmission
time strongly depends on the configuration of the 802.15.4 link layer, e.g., chang-
ing the minimum backoff exponent will dramatically increase the average dura-
tion of a transmission. To mitigate the impact of these issues, we propose an
adaptation of the used transmission delays to the actual transmission time. We
call this mode Direct Mode with Adaptive Rate Restriction (Direct-
ARR). Instead of setting a fixed rate restriction, the 6LoWPAN layer contin-
uously measures the actual transmission time and calculates an exponentially

3 Consider A → B → C – when C has finished, the danger of a collision at B is greatly
reduced.



126 A. Weigel et al.

weighted moving average (EWMA) to estimate the average transmission time:
ttx = αttx+(1−α)ttx,curr. The actual delay is again determined by Equation (1).
Note that, as the number of link layer retries also influences the transmission
time, Direct-ARR mode essentially implements a local congestion avoidance.

3.2 Retry Control

Transmitting larger datagrams with several frames will increase the risk of one
fragment getting lost on the way. One lost fragment results in the loss of the
complete datagram. When such a loss occurs, all transmissions of fragments
before have been in vain and worthlessly produced network traffic. For this reason
and with IPv6 following a best-effort delivery, link layer retries are desperately
needed to prevent unacceptably high end-to-end loss rates. Therefore we set the
number of link layer retries to 7 in our experiments and simulations.

Additionally, we propose a retry control mode to decrease the probability of
unnecessary transmitted frames in the network. If a large part of a datagram
has already been transmitted successfully to the next hop, we put more effort on
transmitting the following parts. We call this method Progress-Based Retry
Control (PRC). The number of retries is calculated as follows, where s is the
size of the fragmented datagram and strans the already transmitted size:

NRetries = 7 + 8× strans
s

(2)

This results in a number of 7 to 15 MAC retries, with 15 being the maximum
number of retries provided by the hardware-supported automatic acknowledge-
ment mechanism of the transceiver used within our testbed.

4 Methodology

We integrated all forwarding techniques into our 6LoWPAN implementation for
CometOS4 [11]. CometOS enables the reuse of its C++ module implementations
for simulations within the OMNeT++ framework and for the testbed deploy-
ment. To avoid influence of any routing mechanism to the measurement result,
we applied a static routing scheme during all experiments. CometOS’ physical
channel model is based on the MiXiM framework5. For our simulation runs, we
used a channel model resembling a LogNormal Shadowing with a given fixed
average signal strength and a variance. Different from a standard propagation
model, we configured each link individually by means of a configuration file.

4.1 Scenarios

For simulations we considered four different network topologies as shown in
Figure 1. The chain-like network (Fig. 1a) was chosen because we expect that the

4 http://www.ti5.tuhh.de/research/projects/cometos/
5 http://mixim.sourceforge.net/index.html

http://www.ti5.tuhh.de/research/projects/cometos/
http://mixim.sourceforge.net/index.html


Route-Over Forwarding Techniques in a 6LoWPAN 127

� � � � � � � � 	 


(a) Chain Network

� � �

���

���

���

���

���

���

(b) Long-Y Network

� �

���

���

���

���

���

���

���

���

���

���

���

���

���

���

(c) Star Network

� ���� ����

����

����

����

����

���	

����

���


����

����

���

����

(d) RealSim

Fig. 1. Simulated networks. Edges represent static routes, the dark gray node is the
sink.

benefits of pipelining fragments are most clearly visible in this setup. In contrast,
the ”Star“ network (Fig. 1c) exhibits paths with a maximum of three hops and
therefore does not yield any potential for pipelining and clearly favors the assem-
blymodes in this regard.On the other hand, it contains enough nodes routing their
traffic over the central node to reveal potential bottlenecks concerning the avail-
able buffer space. The Y network (Fig. 1b) again provides tremendous potential
for pipelining while at the same time it contains a potential bottleneck.

The RealSim network (1d) was modeled after a real world network and thereby
represents a more typical WSN topology. It was created by collecting link data
(received signal strength indicator (RSSI) mean and variance, packet reception
rate (PRR)) from the testbed itself and installing the corresponding links into
our physical channel model. Static routes for this scenario were created by ex-
ecuting the Dijkstra algorithm on the collected link data, where the weight of
the edges was set as the product of the ETX values for incoming and outgoing
links. Although this approach does not capture the transient properties of links
within a real world deployment, where links may exhibit dramatic changes of
the experienced PRR, or the possible interference from other networks (IEEE
802.11), it enables the comparison of results from the testbed with those from a
equivalent simulated network topology.

Within the Chain and Star networks, the links were set to artificially achieve
a PRR of virtually 100% at the link layer, frame collisions on the other hand



128 A. Weigel et al.

inevitably lead to datagram losses for those setups. Within the Long-Y setup,
each link exhibits a frame error rate of 8.3% (before applying 802.15.4 retrans-
missions) for a 96 bytes 6LoWPAN fragment.

One dominant traffic pattern within wireless sensor networks is to collect data
from the sensors to a sink. We restricted our experiments to this traffic pattern
and let every node send UDP data packets towards the sink with different rates
λ and payloads. The interval i between two consecutive UDP packets has a
fixed and a random component according to i = I + 1

2λ , with I being uniformly
distributed within

[
0, 1

λ

]
.

4.2 Testbed

For the testbed, we deployed 13 ATmega128RFA1 radio modules in an office
environment. The ATmega128RFA1 is a single chip transceiver/mcu using an
802.15.4 physical layer and provides 16 kB of RAM and 128kB of program mem-
ory. The static routing tables for the testbed are based on the same link data
which are used to create the RealSim. To overcome the problem of transient link
behavior we used a lower transmission power for determining the routes than
for the actual experiment. While this measure in many cases caused routes to
be chosen too pessimistically and thereby artificially increased the diameter of
the resulting routing topology, it turned out that it was absolutely necessary to
guarantee that the network was connected most of the time.

To be able to determine the latencies of UDP packets within the testbed we
introduced a time synchronization mechanism which makes use of timestamps
within the transceiver driver. In order to keep the traffic overhead introduced by
this mechanism low, we reduced the rate at which new synchronization beacons
are sent to an average of once every 75 s.

The 6LoWPAN layer of our implementation has an assembly buffer of
2000bytes, which is also used for buffering enqueued fragments. In the assembly
mode it is possible to reassemble up to 10 datagrams (given that their combined
size fits into the buffer). In the direct modes, only 4 datagrams can be reassem-
bled; instead a tiny fragment buffer can forward up to 15 datagrams. With this
configuration both modes use exactly the same amount of RAM yielding a basis
for a fair comparison.

5 Evaluation

In this section we compare the different forwarding techniques in terms of packet
reception rate (PRR) and latency. Our RealSim network is used to verify the
comparability of the simulation results with the testbed network. In the simu-
lations we used five runs with each node sending 2 000 UDP packets each run.
In the testbed we send 48 000bytes in UDP packets of 100, 400 and 1200bytes
payload. This results in 40 packets of 1200bytes to 480 packets of 100 bytes per



Route-Over Forwarding Techniques in a 6LoWPAN 129

Table 1. Configuration of the underlying 802.15.4-based MAC layer

macMinBE macMaxBE macMaxCSMABackoffs macMaxFrameRetries

3 8 5 7

0 200 400 600 800 1,000 1,200
70

80

90

100

Payload [Byte]

P
R
R

[%
]

Assembly Direct Direct-RR Direct-ARR

Fig. 2. PRR of the Chain Network 37.5B/s

run in the testbed. Nine runs were executed per configuration. During all ex-
periments and simulations, the 802.15.4 MAC was set to use the configuration
shown in table 1.

For depicting the latencies, we use boxplots, depicting the minimum and max-
imum measurements by its whiskers, the 10th and 90th percentile by the box
and the median by the line in the middle.

5.1 Chain Network

In the Chain Network, the Direct-RR Mode achieves a better PRR and latency
than the Assembly Mode (Figure 2) while the Direct mode suffers from heavy
packet losses due to collisions caused by self-interference. Up to packet sizes
of 800 bytes, Direct-ARR has a PRR of almost 100%, which drops to 96.9%
at 1200bytes packet size. As expected, the Direct modes exhibited significantly
better latency for large fragmented datagrams (shown for 1200bytes in Figure 3),
although for a small percentage of datagrams the maximum values exceed those
of the assembly mode. For nodes farther away from the sink, the advantage of
pipelining datagrams by reusing the channel becomes obvious.

As the PRR is near optimum for the Chain Network, PRC has limited impact
on the results and is omitted here. Only the Direct Mode without any Rate
Restriction can profit from PRC with an increased PRR by 3%, but is 17%
worse than the Assembly Mode.



130 A. Weigel et al.

0

0.2

0.4

0.6

0.8

1

P
R

R

1 2 3 4 5 6 7 8 9

500

1,000

1,500

Hop

La
te

nc
y

[m
s]

(a) Assembly Mode

0

0.2

0.4

0.6

0.8

1

P
R

R

1 2 3 4 5 6 7 8 9

500

1,000

1,500

Hop

La
te

nc
y

[m
s]

(b) Direct Mode

0

0.2

0.4

0.6

0.8

1

P
R

R

1 2 3 4 5 6 7 8 9

500

1,000

1,500

Hop

La
te

nc
y

[m
s]

(c) Direct-RR Mode

0

0.2

0.4

0.6

0.8

1

P
R

R

1 2 3 4 5 6 7 8 9

500

1,000

1,500

Hop

La
te

nc
y

[m
s]

(d) Direct-ARR Mode

Fig. 3. Per hop latency and PRR in the Chain Network with 37.5 B/s and 1200 bytes
payload

0 200 400 600 800 1,000 1,200
80

85

90

95

Payload [Byte]

P
R
R

[%
]

Assembly Direct Direct-RR Direct-ARR

Assembly-PRC Direct-PRC Direct-RR-PRC Direct-ARR-PRC

Fig. 4. PRR of the Star Network 37.5B/s



Route-Over Forwarding Techniques in a 6LoWPAN 131

0 200 400 600 800 1,000 1,200

40

60

80

100

Payload [Byte]

P
R
R

[%
]

Assembly Direct Direct-RR Direct-ARR

Fig. 5. PRR of the Long-Y Network 37.5B/s

5.2 Star Network

Within the Star Network, no forwarding mode achieves a PRR of 100%
(Figure 4). Multiple opportunities for hidden-terminal-caused collisions exist
in every branch and at the centering node, whereas the possibilities for self-
interference (and pipelining) on the short way are rare. For these reasons, as-
sembly and direct modes perform similarly in terms of PRR and latency (which
we omitted). The comparatively steep drop in PRR of the assembly mode at
1200bytes is due an increased number of drops caused by lack of buffer space at
the central node. For the Star Network, the usage of retry control increases the
PRR by 2% to 4%.

5.3 Long-Y Network

In the Long-Y Network, the Direct-RR and Direct-ARR Mode show almost no
difference and perform comparably to the Assembly Mode regarding the PRR
(Figure 5). For payloads over 800bytes these modes exhibit an even better PRR
than the Assembly Mode. With PRR getting down to 60% and only up to less
than 90%, the classical Direct Mode performs impractically even with the PRC
enhancement.

In terms of average latency (see Fig. 6), the rate-restricted direct modes out-
perform the Assembly Mode significantly: For 1200bytes and at a distance of 15
hops, the median of the direct modes (RR: 395ms, ARR: 392ms) is less than a
third of that of the Assembly Mode (1311ms).

All of the PRR results show that the PRR with 100bytes is higher than with
50 bytes payload. This can be explained by the fact that 50 and 100bytes payload
both result in a datagram with two fragments (with the corresponding control
overhead), but the datagrams of 100 bytes payload are sent at only half the rate.



132 A. Weigel et al.

0

0.2

0.4

0.6

0.8

1

P
R

R

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

500

1,000

1,500

2,000

Hop

La
te

nc
y

[m
s]

(a) Assembly Mode

0

0.2

0.4

0.6

0.8

1

P
R

R

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

500

1,000

1,500

2,000

Hop

La
te

nc
y

[m
s]

(b) Direct Mode

0

0.2

0.4

0.6

0.8

1
P

R
R

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

500

1,000

1,500

2,000

Hop

La
te

nc
y

[m
s]

(c) Direct-RR Mode

0

0.2

0.4

0.6

0.8

1

P
R

R

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

500

1,000

1,500

2,000

Hop

La
te

nc
y

[m
s]

(d) Direct-ARR Mode

Fig. 6. Per hop latency and PRR in the Long-Y Network with 37.5B/s and 1200 bytes
payload

5.4 RealSim and Testbed

Figures 7a and 7b show the PRR of the RealSim and Testbed Network with a
byte rate of 37.5B/s. Note that payloads of 50, 200 and 800Bytes have not been
used in the testbed, but only within the simulation. Naturally, some differences
can be observed between simulation and experiments in the real network. The
overall PRR for all modes are lower and the confidence intervals of averages
from the testbed are more widespread. We explain these differences with the
nature of a real world environment. During the experiments, there were people
moving in the office building, which also contains various WiFi hotspots causing
additional interference. The mechanism for time synchronization additionally
puts a small load on the real network. Nevertheless, the results show similar
tendencies and confirm the simulation results as an accurate-enough estimation
of the real world.

As a first result we can see that the Direct Mode has the worst PRR of all
modes. Direct-ARR outperforms Direct and Direct-RR, but has still a worse
PRR than the Assembly Mode. This trend can be observed in the testbed even
stronger than in the RealSim.



Route-Over Forwarding Techniques in a 6LoWPAN 133

0 200 400 600 800 1,000 1,200

60

80

100

Payload [Byte]

P
R
R

[%
]

Assembly Direct Direct-RR Direct-ARR

(a) RealSim PRR

0 200 400 600 800 1,000 1,200
20

40

60

80

100

Payload [Byte]

P
R
R

[%
]

(b) Testbed PRR with 95% confidence intervals

Fig. 7. Comparing the packet reception rates of the RealSim and the Testbed Network
with a byte rate of 37.5B/s. Note the different scaling of the y-axes.

Figures 8a, 8b, 8c and 8d show the latency results for the RealSim Network
with the Assembly, Direct, Direct-RR and Direct-ARR Mode. We can see that
the Direct Mode has no significant difference in latency, but the PRR drops
dramatically for further hops. The rate restriction of the Direct-ARR mode
achieves similar latencies, while achieving a higher PRR, though the latency is
more widespread. It has to be noted that the static routes chosen for RealSim and
testbed did not reflect the actual transmission range of the nodes (see 4.2), and
the “real” network diameter most of the time was rather 4 instead of 7. Therefore,
the direct modes could not benefit from pipelining and exhibit latencies not
better than the Assembly Mode.



134 A. Weigel et al.

0

0.2

0.4

0.6

0.8

1

P
R

R

1 2 3 4 5 6 7

500

1,000

1,500

2,000

2,500

Hop

La
te

nc
y

[m
s]

(a) Assembly Mode

0

0.2

0.4

0.6

0.8

1

P
R

R

1 2 3 4 5 6 7

500

1,000

1,500

2,000

2,500

Hop

La
te

nc
y

[m
s]

(b) Direct Mode

0

0.2

0.4

0.6

0.8

1
P

R
R

1 2 3 4 5 6 7

500

1,000

1,500

2,000

2,500

Hop

La
te

nc
y

[m
s]

(c) Direct-RR Mode

0

0.2

0.4

0.6

0.8

1

P
R

R

1 2 3 4 5 6 7

500

1,000

1,500

2,000

2,500

Hop

La
te

nc
y

[m
s]

(d) Direct-ARR Mode

Fig. 8. Per hop latency and PRR in the RealSim Network with 37.5 B/s and 1200 Byte
payload

6 Conclusion and Outlook

6LoWPAN enables wireless sensor nodes to use IPv6, but also needs a lot of
RAM to be able to forward packets. Directly forwarding incoming frames solves
that problem, while suffering from a significantly lower PRR.

We introduced three advanced forwarding techniques that are compliant with
the 6LoWPAN standard. These can increase the PRR of the direct mode to
almost the same level as the Assembly Mode. In scenarios with many hops
tailored for pipelining these direct modes with a rate restriction exhibited a
significantly lower latency than the Assembly Mode while at the same time
having a better or similar PPR. On the other hand, the assembly mode beats
all direct modes in the testbed configuration.

Of the two enhanced direct modes, Direct-ARR yielded the better results
regarding PRR and latency within all simulations and the testbed. The PRR of
all modes could be slightly increased by the introduced retry control, although
the impact is not as large as hoped.

In the future work the selective retry control will have to prove itself against
a flat increase of retries. While the latter may even further increase the PRR



Route-Over Forwarding Techniques in a 6LoWPAN 135

in many situations, we want to explore the behavior in high traffic situations,
where it may also cause additional congestion.

To further increase the performance of 6LoWPAN implementations, we plan
to implement a fragment recovery mechanism (see Section 2) and combine it
with the (adaptive) rate restriction and/or retry control.

So far, we used only a single and rather aggressive configuration of the 802.15.4
MAC for our experiments. We are going to explore the influence of different
parameter sets in the future.

References

1. Montenegro, G., Kushalnagar, N., Hui, J., Culler, D.: Transmission of IPv6 Packets
over IEEE 802.15.4 Networks. RFC 4944 (Proposed Standard) (September 2007)

2. IEEE Standard for Local and Metropolitan Area Networks— Part 15.4: Low-Rate
Wireless Personal Area Networks (2011)

3. Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K.,
Struik, R., Vasseur, J., Alexander, R.: RPL: IPv6 Routing Protocol for Low-Power
and Lossy Networks. RFC 6550 (Proposed Standard) (March 2012)

4. Shelby, Z., Hartke, K., Bormann, C.: Constrained Application Protocol (CoAP)
(May 2013), http://tools.ietf.org/pdf/draft-ietf-core-coap-17.pdf (ac-
cessed: June 11 2013)

5. Bormann, C.: 6LoWPAN Roadmap and Implementation Guide (draft) (April
2013), http://tools.ietf.org/pdf/draft-bormann-6lowpan-roadmap-04.pdf

(accessed: May 30, 2013)
6. Ludovici, A., Calveras, A., Casademont, J.: Forwarding Techniques for IP Frag-

mented Packets in a Real 6LoWPAN Network. Sensors (Basel) 11(1), 992–1008
(2011)

7. Bhunia, S.S., Sikder, D.K., Roy, S., Mukherjee, N.: A comparative study on rout-
ing schemes of IP based wireless sensor network. In: 2012 Ninth International
Conference on Wireless and Optical Communications Networks (WOCN), pp. 1–5
(September 2012)

8. Thubert, P., Hui, J.: LLN Fragment Forwarding and Recovery (draft) (February
2013),http://tools.ietf.org/html/draft-thubert-roll-forwarding-frags-01
(accessed: June 11, 2013)

9. Zhu, Y.-H., Chen, G., Chi, K., Li, Y.: The Chained Mesh-Under Routing
(C-MUR) for Improving IPv6 Packet Arrival Rate over Wireless Sensor Networks.
In: Wang, R., Xiao, F. (eds.) CWSN 2012. CCIS, vol. 334, pp. 734–743. Springer,
Heidelberg (2013)

10. Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., Levis, P.: Collection tree proto-
col. In: Proceedings of the 7th ACM Conference on Embedded Networked Sensor
Systems, SenSys 2009, pp. 1–14. ACM, New York (2009)

11. Unterschütz, S., Weigel, A., Turau, V.: Cross-Platform Protocol Development
Based on OMNeT++. In: Proceedings of the 5th International Workshop on OM-
NeT++ (OMNeT++ 2012) (March 2012)

http://tools.ietf.org/pdf/draft-ietf-core-coap-17.pdf
http://tools.ietf.org/pdf/draft-bormann-6lowpan-roadmap-04.pdf
http://tools.ietf.org/html/draft-thubert-roll-forwarding-frags-01

	Route-Over Forwarding Techniquesin a 6LoWPAN
	1 Introduction
	2 Related Work
	3 Forwarding Techniques
	3.1 Enhanced Direct Modes
	3.2 Retry Control

	4 Methodology
	4.1 Scenarios
	4.2 Testbed

	5 Evaluation
	5.1 Chain Network
	5.2 Star Network
	5.3 Long-Y Network
	5.4 RealSim and Testbed

	6 Conclusion and Outlook
	References




