
Enabling High-Level Application Development

in the Internet of Things

Pankesh Patel1, Animesh Pathak1, Damien Cassou2, and Valérie Issarny1

1 Inria Paris-Rocquencourt, France
2 Inria Lille-Nord Europe, France
firstname.lastname@inria.fr

Abstract. The sensor networking field is evolving into the Internet of
Things (IoT), owing in large part to the increased availability of con-
sumer sensing devices, including modern smart phones. However, appli-
cation development in the IoT still remains challenging, since it involves
dealing with several related issues, such as lack of proper identification
of roles of various stakeholders, as well as lack of suitable (high-level)
abstractions to address the large scale and heterogeneity in IoT systems.

Although the software engineering community has proposed several
approaches to address the above in the general case, existing approaches
for IoT application development only cover limited subsets of above
mentioned challenges. In this paper, we propose a multi-stage model-
driven approach for IoT application development based on a precise
definition of the role to be played by each stakeholder involved in the
process – domain expert, application designer, application developer,
device developer, and network manager. The abstractions provided to
each stakeholder are further customized using the inputs provided in the
earlier stages by other stakeholders. We have also implemented code-
generation and task-mapping techniques to support our approach. Our
initial evaluation based on two realistic scenarios shows that the use of
our techniques/framework succeeds in improving productivity in the IoT
application development process.

Keywords: Internet of Things, Sensor networks, High-level program-
ming, Application development, Computing abstractions.

1 Introduction

With the increased availability of consumer sensing devices including modern
smart phones, the domain of networked sensing has evolved into the Internet
of Things (IoT) [2], where applications exhibit traditional Wireless Sensor and
Actuator Network (WSAN) features such as large number of sensing and actu-
ation devices, coupled with increased device heterogeneity and integration with
database servers, etc. [1]. To illustrate the characteristics of IoT applications, we
consider the following office environment management application.

M. Zuniga and G. Dini (Eds): S-Cube 2013, LNICST 122, pp. 111–126, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013



112 P. Patel et al.

(1)
(1)

(1) (1)

(1)

(1)

(2)

(3)

(1)

(1)

Floor#N

Monitor

(1)

(1)

(1)

(1)

(1)Room#1

Room#2

Room#3

(2)

(2)

DataStore

Floor#(N-1)

Floor#1

B
ui
ld
in
g(4)

(5)

(6)

Fig. 1. Multi-floored building with deployed devices with (1) Temperature sensor,
(2) Heater, (3) Badge reader, (4) Badge, (5) Monitor, and (6) DataStore

1.1 Illustrative Application: Office Environment Management

An office might consist of several buildings, with each building in turn con-
sisting of one or more floors, each with several rooms, each instrumented with
a large number of heterogeneous devices with attached sensors, actuators, and
data storage devices (Figure 1). The system aims to regulate appropriate tem-
perature for worker productivity and comfort, and provides general information
such as average temperature of the building.

The temperature in each room of the building is regulated by a sense-compute-
actuate loop executing among the temperature sensors and heaters of the room to
maintain an appropriate room temperature. Additionally, average temperature
values are computed at floor and building levels to be displayed on monitors at
the building entrance and control station. When a user enters or leaves a room,
a badge reader detects this event, and queries a central employee database for
the user’s preferences. Based on the response, the threshold used by the room’s
devices is updated.

1.2 Challenges and Contributions

An important challenge that remains to be addressed in the IoT is the ease
of application development. There is a growing awareness of this problem in
the research community, and several approaches have been proposed for both



High-Level Application Development in IoT 113

WSANs [12, 17, 21] and pervasive computing systems [4, 7, 8]. While the main
challenge in WSANs is the extremely large scale of the systems (hundreds to
thousands of largely similar nodes), the primary concern in the pervasive com-
puting field has been the heterogeneity of devices. Since IoT applications include
both these aspects, application development in such a system raises the following
research challenges:

– Lack of Division of Roles. Most application development approaches
proposed for IoT assume only one role—the developer/programmer—to be
played by the individuals developing the IoT application. This is in clear
conflict with the varied set of skills required during the IoT application devel-
opment process including domain expertise, distributed system knowledge,
and low-level hardware knowledge, and therefore hinders rapid application
development, a challenge recognized by recent works such as [5].

– Inadequately Customized Abstractions. While there are some
approaches based on domain-specific languages [20,23] for such applications,
domain-specific development approaches consider all IoT applications to be-
long to the same domain. We believe, however, that further customization
of abstractions is needed at the level of the application domain, and thus the
one-language-to-program-them-all approach needs to be revisited.

– Heterogeneity of Target Devices. IoT systems are heterogeneous both in
terms of the implementations of the sensors/actuators to be used, as well as
in terms of interaction modes (e.g., command, request-response, and publish-
subscribe). It should not be the developer’s responsibility to handle this
heterogeneity, since ideally the same application should execute on entirely
different deployments (e.g., the same smart building application on different
offices with different devices).

– Scale. Applications in the IoT may execute on systems consisting of hun-
dreds to thousands of devices. Requiring the ability of reasoning at such levels
of scale is impractical in general. Consequently, there is a need for adequate
abstractions to allow the stakeholders involved to express their requirements
in a compact manner regardless of the scale of the final systems.

Existing software engineering approaches for IoT application development [4,
7,17,21–23] only cover a limited subset of the above-mentioned challenges. This
paper, on the contrary, proposes an integrated approach for all these challenges
and provides a comprehensive coverage of the IoT application development pro-
cess. Our work aims to address the above challenges by making the following
contributions:

– Identification of Roles in the Development Process. Leveraging the
conceptual model of the IoT from our previous work [19], we identify the pre-
cise role of each stakeholder involved in the development of IoT applications,
thus promoting a suitable division of labor among them.

– A Multi-stage Model-driven Approach for IoT Application Devel-
opment. In order to support the different stages of application development,
we propose a multi-stage model-driven approach that links the actions of



114 P. Patel et al.

each stakeholders. Our approach (discussed in Section 2) defines a precise
sequence of steps to follow, thus smoothening the IoT application develop-
ment process.

– Modeling Languages. Our multi-stage process is complemented by a set of
parametrized languages, (detailed in Section 3) for each type of stakeholder.
Their grammars are generated based on the inputs from other stakeholders
from earlier in the process, and include abstractions to hide the scale- and
heterogeneity-related complexity.

– Code Generation and Task-mapping. Our multi-stage model-driven ap-
proach is supported by code generation and task-mapping techniques. The
two techniques together provide automation in the application development
process, which significantly reduces development effort (Section 4). While the
former aids in specifying the logic of the software components in the IoT ap-
plication, the latter supports the application deployment phase by producing
device-specific code to result in a distributed software system collaboratively
hosted by individual devices.

We present the related work in Section 5. We summarize our contribution so far
and discuss our future work in Section 6.

2 Multi-stage Model-driven Approach for IoT
Application Development

As stated above, traditional WSAN/IoT application development assumes that
the individuals involved in application development have similar skills. While
this may be true for simple/small applications for single-use deployments, as the
IoT gains wide acceptance, the need for sound software engineering approaches
to adequately manage the development of complex applications arises. Taking
inspiration from the 4+1 view model of software architecture [14], collaboration
model for smart spaces [5], and tool-based methodology for pervasive comput-
ing [4], we propose to divide the responsibilities of the stakeholders in the IoT
application development process into five distinct roles —domain expert, soft-
ware designer, application developer, device developer, and network manager—
whose skills and responsibilities are stated in Table 1. Note that although these
roles have been discussed in the Software Engineering literature in general, e.g.,
domain expert and software designer in [24], and application developer, device
developer and network manager in [4], their clear identification for IoT applica-
tion is largely missing.

Based on the roles defined in Table 1, we propose the following multi-stage
model-driven development process (detailed in Figure 2) that consists of the
following steps:

Domain Vocabulary Specification. Since several IoT applications might be
developed for the same application domain, the first step of our approach consists
of the specification of the domain vocabulary by the domain expert stakeholder
(step 1 in Figure 2). The vocabulary includes the specification of entities (i.e.,



High-Level Application Development in IoT 115

Table 1. Roles in the IoT Application Development Process

Role Skills Responsibilities

Domain Expert Understands domain con-
cepts, including the data
types produced by the sensors
and consumed by actuators,
as well as how the system is
divided into regions.

Specify the vocabulary to be
used by all applications in the
domain.

Software Designer Software architecture con-
cepts, including the proper
use of interaction pattern
such as publish-subscribe and
request-response for use in
the application.

Define the structure of the
IoT application by specifying
the software components and
their producer/consumer rela-
tionships.

Application Devel-
oper

Skilled in algorithm design
and use of programming lan-
guages.

Develop the internal code for
the computational services,
and controllers in the applica-
tion.

Device Developer Deep understanding of the in-
puts/outputs, and protocols of
the individual devices.

Write drivers for the sensors
and actuators used in the do-
main.

Network Manager Deep understanding of the
specific target area where the
application is to be deployed.

Install the application on the
system at hand; this process
may involve the generation of
binaries or bytecode, and con-
figuring middleware.

sensor, actuator, and storage service) that are responsible for interacting with
the physical world. The entities are specified in high-level manner to abstract
their different implementations, thus abstracting heterogeneity. It also includes
the definition of partitions that the system is divided into to support scalable
operations within the IoT system.

Application Architecture Specification. Using the concepts defined in the
vocabulary, the software designer specifies the architecture of an application
(step 2 in Figure 2), consisting of the details of the computational and con-
troller component, as well as how they interact with other software components
using different interaction paradigms. To address scalable operations within IoT
system, our language offers scope constructs to identify the particular region
whose data a software component is interested in.

Application Logic Implementation. Our approach leverages both vocab-
ulary and architecture specification to support the application developer. To
describe the application logic of each software component, the application devel-
oper is provided a customized programming framework, pre-configured according



116 P. Patel et al.

Domain 
Expert

Application
Designer

Application
Developer

Device
Developer

Architecture 
specification

Framework 
generator

Deployment 
description

Vocabulary 
specification

Network 
Manager

Architecture 
Framework

Device 
drivers

Application 
Logic

Mapper

Devices

System 
linker

mapping 
files

Specify

Input

Output

Reference

1 2

4

5

6

8

3

7

Legend

Fig. 2. IoT Application Development using Our Approach

to the architecture specification of an application, an approach similar to the one
discussed in [3] (step 3 in Figure 2). The programming framework contains ab-
stract classes1 for each software component that hide low-level communication
details such as the communication paradigm used, and allow the developer to
focus only on the code that implements the logic of that software component
(step 4 in Figure 2).

Target Deployment Specification. The same IoT application should be de-
ployable on different target networks (e.g., the same inventory tracking appli-
cation can be deployed in different warehouses). In our approach, for each new
target network where the application is to be deployed, the respective network
manager specifies (step 5 in Figure 2) the details of the devices in his system,
using the concepts defined previously in the vocabulary.

Deployment Code Generation. To generate the final code to be deployed on
each device, this stage consists of two core sub-stages: Mapping and Linking.

– Mapping. The mapper produces a mapping from the set of instantiated
software components to the set of devices (step 6 in Figure 2). It takes as

1 We assume that the developer uses an object-oriented language.



High-Level Application Development in IoT 117

input the set of instantiation rules of software components from architecture
specification and the set of devices defined in the deployment description.
The mapper decides the specific device where each software component will
be deployed.

– Linking. The linker combines the information generated by the various
stages of the compilation into the actual code to be deployed on the real
devices. It merges the generated code, the code provided by the application
developer, the mappings produced in the mapping stage, and device specific
drivers provided by device developer (step 7 in Figure 2). The output of this
stage is a final executable code for each device in the deployment (step 8
in Figure 2).

Note that our approach currently does not provide support for testing and
debugging, which is part of our future work. Support for iterative development
methodologies is implicit in our work since, for example, the domain expert can
release a new version of the vocabulary that can then be used to minimally
change the architecture.

3 Detail of Our Approach

Based on our analysis of the roles played by the various stakeholders in the stages
described above, we have designed a set of customizable languages, each named
after Srijan, the Sanskrit word for “creation”. In this section, we provide the
details of above mentioned stages with the set of languages using the application
introduced in Section 1. Details such as the grammars of the languages can be
found in [18].

3.1 Domain Vocabulary Specification

The Srijan Vocabulary Language (SVL) is designed to enable the domain ex-
pert to describe the vocabulary of a domain. The language offers the following
constructs to specify the following concepts that interact with physical world:

– regions: These define the various labels that can be used to specify the (log-
ical) locations of the devices and scopes from which the software compo-
nents will produce/consume data. For example, HVAC2 applications reason
in terms of room and floors, while smart city applications can be best ex-
pressed in terms of city blocks. This construct is declared using the regions
keyword (Listing 1.1, lines 1-4).

– data structures: Each entity is characterized by the types of information
it generates and consumes. This information is defined using the struct

keyword (Listing 1.1, lines 5-11).

2 Heating, Ventilation, Air-Conditioning.



118 P. Patel et al.

– abilities: These define the abilities of each node that might be attached to
various types of sensors, actuators, or storages along with the inputs/output
data type. Each sensor and its ability is declared using the sensors and
generate keywords respectively (Listing 1.1, lines 13-15). An actuator and
its actions are declared using the actuators and action keywords respec-
tively. An action of the actuator may take one or more inputs, specified as
parameters of an action (Listing 1.1, lines 16-18). A storage is declared using
storages keyword (Listing 1.1, lines 19-21). Retrieval of data from storage
service requires a parameter. Such a parameter is specified by accessed-by

keyword.

1 regions :

2 Building : integer ;

3 Floor : integer ;

4 Room : integer ;

5 structs :

6 BadgeDetectedStruct

7 badgeID : string;

8 timeStamp : long ;

9 TempStruct

10 tempValue : double;

11 unitOfMeasurement : string;

12 abilities :

13 sensors:

14 BadgeReader

15 generate badgeDetected :BadgeDetectedStruct ;

16 actuators :

17 Heater

18 action SetTemp(setTemp:TempStruct );

19 storages :

20 ProfileDB

21 generate profile : TempStruct accessed -by badgeID :

string;

Listing 1.1. Code snippet of office environment management vocabulary specification
using SVL. Keywords are printed in bold.

The region labels and data structures defined using SVL in the vocabulary are
used to parameterize the grammar of the Srijan Architecture Language (SAL),
and can be exploited by tools to provide support such as code completion to the
application designer, discussed next.

3.2 Application Architecture Specification

Based on the domain vocabulary, the grammar of SAL is parameterized to en-
able the application designer to design an application. Specifically, the sensors,
actuators, storage, and regions defined in the application domain’s vocabulary
become the possible set of values for certain attributes in the SAL (see under-
lined words in Listing 1.2). The resulting language offers constructs to specify
the following concepts:



High-Level Application Development in IoT 119

– software components: SAL provides abstractions for describing two classes
of software components that are relevant to the architecture of IoT appli-
cation. The computational service is fueled by sensor(s), storage, or other
computational services. It transforms data to be consumed by other soft-
ware components in accordance with the application needs. The controller
takes data from other software components as input and takes decisions that
are carried out by invoking actuators.

– interactions among components: SAL defines the following data-flow between
each type of software component.
• For each controller, the data types it consumes and the actuator to which
it issues commands is expressed using the consume and command key-
words respectively.

• For each computational service, the data types it consumes, produces
is expressed using consume and generate keyword respectively. The ac-
cesses from storage services is specfied using request keyword.

– instantiation rule and data interest of components: To address scalable op-
erations within IoT applications, SAL offers the scope construct. Inspired by
the work in [16], this serves to provide a logical grouping among the devices
in the deployment. The scope constructs in SAL affect (1) component place-
ment on the real devices (defines using in-region keyword), which is used
to govern the placement of software components on the real devices; and
(2) data exchange among software components (define using hops keyword),
which is used to annotate consume or command keyword with data interest
regardless of its physical location. Component placement and data interest
jointly define the scopes from which data should be gathered.

We illustrate SAL by examining a code snippet describing part of the ar-
chitecture of the office environment management application (similar to one
discussed in [4]) (Listing 1.2). This code snippet revolves around the actions
of the Proximity component (Listing 1.2, lines 3-7), which coordinates events
from the BadgeReader with the content of ProfileDB storage service. To do so,
Proximity composes information from two sources, one for badge events (i.e.,
badge detection), and one for requesting the user’s temperature profile from
ProfileDB that is expressed using the request keyword (Listing 1.2, line 6). In-
put data is declared using the consume keyword that takes source name and data
interest of component from logical region (Listing 1.2, line 5). The declaration
of hops:0:room indicates that the component is interested in consuming badge
events of the current room. The Proximity component is in charge of managing
badge events of room. Therefore, we need Proximity service to be partitioned
per room using in-region:room (Listing 1.2, line 7).

The output of the Proximity and RoomAvgTemp are consumed by the
RegulateTemp component, declared using the controller keyword (Listing 1.2,
lines 13-17). This component is responsible for taking decisions that are carried
out by invoking commands on the Heater, declared using the command keyword
(Listing 1.2, line 16).



120 P. Patel et al.

1 softwarecomponents :

2 computationalService :

3 Proximity

4 generate tempPref : UserTempPrefStruct ;

5 consume badgeDetected from hops :0: Room ;

6 request profile;

7 in-region: Room ;

8 RoomAvgTemp

9 generate roomAvgTempMeasurement:TempStruct ;

10 consume tempMeasurement from hops :0: Room ;

11 in-region: Room ;

12 controller :

13 RegulateTemp

14 consume roomAvgTempMeasurement from hops :0: Room ;

15 consume tempPref from hops :0: Room ;

16 command SetTemp(setTemp) to hops :0: Room ;

17 in-region: Room ;

Listing 1.2. Code snippet of office environment management architecture specification
using SAL. Keywords derived from vocabulary are printed underlined, while language
keywords are printed in bold .

3.3 Application Logic Implementation

Leveraging both the vocabulary and architecture specification, we generate a
programming framework to aid the application developer in development pro-
cess. We note two key advantages of this programming framework: (1) Handling
large scale: The generated framework contains code that defines the data interest
of a software component, which enables scalable operation. (2) Ease of applica-
tion development : The generated framework contains significant amount of glue
code that takes care of the interfacing between hardware and software compo-
nents. The generated framework raises the level of abstractions by providing
the application developer with suitable operations for specifying the application
logic.

The generated framework contains abstract classes corresponding to archi-
tecture and vocabulary specification, an approach similar to the one discussed
in [3]. The abstract classes include two types of methods: (1) concrete methods
to interact with other components transparently, without dealing with the low-
level interaction details; and (2) abstract methods that the application developer
implements to specify the application logic.

For each input declared by a component, an abstract method is generated
for receiving data. This abstact method is then implemented by the applica-
tion developer in the subclass. For example, from the badgeDetected input of
Proximity declaration in the architecture specification (Listing 1.2, lines 3-7),
onNewbadgeDetected() abstract method is generated. This method is imple-
mented by the application developer. Listing 1.3 illustrates the implementation
of onNewbadgeDetected(). It updates the user’s temperature preference and
sets it using settempPref() method.



High-Level Application Development in IoT 121

1 public class SimpleProximity extends Proximity {

2

3 public void onNewbadgeDetected (BadgeDetectedStruct arg)

{

4

5 UserTempPrefStruct userTempPref = new

UserTempPrefStruct (

6 arg.gettempValue (), arg.getunitOfMeasurement ());

7

8 settempPref (userTempPref );

9 }

10 }

Listing 1.3. A concrete implementation of Java abstract class Proximity. This
implementation is written by the application developer.

3.4 Target Deployment Specification

Given a vocabulary, the Srijan Deployment Language (SDL) is customized to
enable the network manager to specify the details of each node in the sys-
tem, including its placement (in terms of values of the region labels defined
in the vocabulary), and abilities (a subset of those defined in the vocabulary).
We illustrate SDL by examining the deployment specification of our office en-
vironment management (Listing 1.4). This snippet describes a device called
TemperatureMgmt-Device-1with an attached TemperatureSensor and Heater,
situated in building 15, floor 11, room 1.

1 devices :

2 TemperatureMgmt -Device -1 :

3 region :

4 Building : 15 ;

5 Floor : 11;

6 Room : 1;

7 abilities : TemperatureSensor , Heater;

8 ...

Listing 1.4. Code snippet of office environment management deployment specification
using SDL. Keywords from vocabulary are printed underlined, while language keywords
are printed in bold.

Note that although individual listing of each device’s attributes appears te-
dious, i) we envision that this information can be extracted from inventory logs
that are maintained for devices purchased and installed in systems, and ii) thanks
to the decoupling between this description and the application’s code provided
by our approach, the same description file can be re-used to create node-level
code for all IoT applications based on the same domain vocabulary deployed on
a given network.



122 P. Patel et al.

4 Evaluation

This section evaluates our approach and shows how it reduces the development
effort of IoT applications. We measure development effort through the number
of lines of code (LoC) written by the authors. For this evaluation, we imple-
mented two representative IoT applications of two different domains with our
approach: (1) an office environment management application (as described
in Section 1) and (2) a fire management application, which aims to detect
fire in house and housing community (collection of houses). In the latter appli-
cation, fire is detected by analyzing data from smoke and temperature sensors.
When a fire occurs, the application triggers sprinklers and unlocks doors to allow
residents to evacuate the house. Additionally, residents of the house and of the
whole neighborhood are informed through a set of alarms and warning lights.
Table 2 summarizes the kinds of components used by each application. For val-
idation, we deployed both applications on a set of nodes running on top of a
middleware/simulator written in Java.

Table 2. List of components of two representative applications

Component
Type

Office Environment
Management

Fire Management

Sensing
TemperatureSensor TemperatureSensor
BadgeReader SmokeDetector

Actuating

Heater Door
Monitor Alarm

SprinklerSystem
Warning Light

Storage ProfileDB none

Computational

RoomAvgTemp HouseAvgTempComputation
FloorAvgTemp HouseFireComputation
BuildingAvgTemp HcFireComputation
Proximity

Controller
RegulateTemp HouseFireController
ManageTemp HcFireController

Development Effort.. Our measurements (using the Metrics3 1.3.6 Eclipse
plug-in) reveal that more than 81% of total number of lines of code is generated
in both applications (see Table 3).

Code Coverage.. The measure of LoC is only useful if the generated code is
actually executed. Similar to the approach in [4], we measured the coverage of
the generated programming framework and handwritten application logic (see

3 http://metrics.sourceforge.net

http://metrics.sourceforge.net


High-Level Application Development in IoT 123

Table 4) using the EclEmma4 Eclipse plug-in. Our measures show that more
than 90% of generated code is actually executed, the 10 other percents being
error-handling code for errors that did not happen during the experiment. This
high value indicates that most of the execution is spent in generated code and
that, indeed, our approach reduces the development effort by generating useful
code.

Table 3. Lines of code in application development process

Handwritten (Lines of Code) Generated (Lines of Code)

Application
Name

Vocab
Spec.

Arch.
Spec.

Network
Spec.

App.
Logic

Partial
App.
Logic

Mapping
code

Generated
Frame-
work

generated
handwritten+generated

Office Env.
Mgmt.

30 36 49 169 139 470 638 81.45%

Fire Mgmt. 28 35 41 125 144 336 575 82.16%

Table 4. Code coverage of handwritten and generated code

Application Handwritten code Generated code

Office Env. Mgmt. 95.8 % 90.7 %

Fire Mgmt. 95.4 % 93.3 %

5 Related Work

Many software engineering approaches have been proposed to simplify the de-
velopment of Pervasive computing systems, WSAN, and IoT applications. The
existing work can broadly be divided into two categories: (1) node-level pro-
gramming and (2) system-level programming.

Node-level programming refers to a process in which programmers are
directly concerned with the operation of each node in a system. Programmers
typically write such an application in a general-purpose programming language
(often Java or C) and target a particular middleware API or node-level service [6,
9, 25]. Even if this approach scales for a large number of similar nodes, it is
impractical for large scale heterogeneous systems as can be found in IoT systems.

System-level programming refers to a process in which programmers de-
scribe how the system will behave as a whole, regardless of how the system will
get deployed on particular nodes. The techniques investigated in the literature

4 http://www.eclemma.org/

http://www.eclemma.org/


124 P. Patel et al.

towards IoT application development can be further categorized as: (1) library-
or toolkit-based and (2) model driven.

Library- or toolkit-based approaches. These typically offer abstractions and
services to help developers implement their applications in a general-purpose
programming language. Gaia (with its Olympus toolkit) [22], context-toolkit [7],
AURA [10], and one.world [11] are notable examples. They reduce development
effort by hiding many of the low level details (such as network communica-
tion) inherent in IoT development. Nevertheless, these approaches have a steep
learning curve as they tend to become more complex with time. Moreover, a
significant amount of glue code needs to be written to adapt the approach to the
requirements of the application. In contrast, our languages are small and each
is dedicated to a particular stakeholder’s skills and knowledge.

Model-driven (MDE) approaches. MDE techniques have been proposed to
limit the burden of developing IoT applications. In such an approach, appli-
cations are specified using high-level and abstract models and then given as
input to code generators which produce low-level code as output. For instance,
PervML [23] allows developers to specify pervasive systems at a high-level of
abstraction through a set of models (in UML). Nevertheless, such approaches
typically require expertise in the modeling language which stakeholders might
not be willing to acquire.

A few vocabulary-inspired approaches [4, 8] have been proposed in the per-
vasive computing domain. Representative of these approaches is DiaSuite [4],
a tool-based framework that allows stakeholders to define a vocabulary of en-
tities dedicated to an application (i.e., sensor, actuator), thus abstracting over
their heterogeneity. Compared to DiaSuite, our work offers concepts (such as
regions) dedicated to describing large scale applications. These concepts are of
utmost importance in IoT. Additionally, we offer automated deployment of the
application on all devices using a mapping technique.

Numerous approaches [12, 15, 17, 21] have been proposed to address the large
scale challenge of the sensor network community. However, the clear separation
of roles among the various stakeholders of the application development process,
as well as the focus on heterogeneity among the constituent devices has been
largely missing from WSAN macroprogramming research so far.

6 Conclusion and Future Work

To address the challenges faced during the development of IoT applications, in
this paper we presented a multi-stage model driven approach for IoT application
development, founded on a clear identification of the skills and responsibilities of
the various stakeholders involved in the process. Notable in our approach is the
use of customized modeling languages tuned to each stakeholder’s specific task
and the application domain, where the abstractions available to one stakeholder
are generated from the information provided by other stakeholders in previous
stages. Our approach is complemented by code generation and task-mapping
techniques which lead to the node-level code to be deployed on the constituent



High-Level Application Development in IoT 125

devices. Our initial evaluation based on two representative scenarios shows that
the use of our techniques improves productivity in the IoT application develop-
ment process.

In our work so far, we have made progress toward providing support to all
the stakeholders in the IoT application development process and have prepared
a foundation for our future work. With this foundation in place, our future work
will involve three complementary aspects: (1) We will provide richer abstractions
to express the properties of the devices (e.g., processing and storage capacity, as
well as mobility properties). These will then be used to guide the design of algo-
rithms for efficient mapping of software components on devices. (2) We intend to
include features to enable the stakeholders in common development tasks such as
testing, and allowing for iterative application development based on evolution
of requirements. (3) The evaluation presented in Section 4 is preliminary. We
plan to conduct an empirical evaluation based on a well-defined experimental
methodology [13]. In particular, we will explore the aspects of reusability and
expressiveness.

Acknowledgments.. This work was supported in part by the European Com-
mission FP7 NESSoS project and the ANR Murphy project. The authors are
grateful to the reviewers for their helpful comments.

References

1. Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey. Computer
Networks 54(15), 2787–2805 (2010)

2. CASAGRAS EU project final report (2009),
http://www.rfidglobal.eu/userfiles/documents/FinalReport.pdf

3. Cassou, D., Bertran, B., Loriant, N., Consel, C.: A Generative Programming Ap-
proach to Developing Pervasive Computing Systems. In: GPCE 2009: Proceedings
of the 8th International Conference on Generative Programming and Component
Engineering (2009)

4. Cassou, D., Bruneau, J., Consel, C., Balland, E.: Towards a tool-based development
methodology for pervasive computing applications. IEEE Transactions on Software
Engineering (2011)

5. Chen, C., Helal, S., de Deugd, S., Smith, A., Chang, C.: Toward a collaboration
model for smart spaces. In: 2012 Third International Workshop on Software Engi-
neering for Sensor Network Applications (SESENA), pp. 37–42. IEEE (2012)

6. Costa, P., Mottola, L., Murphy, A.L., Picco, G.P.: Programming wireless sensor
networks with the teeny lime middleware. In: Cerqueira, R., Campbell, R.H. (eds.)
Middleware 2007. LNCS, vol. 4834, pp. 429–449. Springer, Heidelberg (2007)

7. Dey, A., Abowd, G., Salber, D.: A conceptual framework and a toolkit for sup-
porting the rapid prototyping of context-aware applications. Human-Computer
Interaction 16(2-4), 97–166 (2001)

8. Drey, Z., Mercadal, J., Consel, C.: A taxonomy-driven approach to visually proto-
typing pervasive computing applications. In: Taha, W.M. (ed.) DSL 2009. LNCS,
vol. 5658, pp. 78–99. Springer, Heidelberg (2009)

9. Frank, C., Römer, K.: Algorithms for generic role assignment in wireless sensor
networks. In: Proceedings of the 3rd International Conference on Embedded Net-
worked Sensor Systems, pp. 230–242. ACM (2005)

http://www.rfidglobal.eu/userfiles/documents/FinalReport.pdf


126 P. Patel et al.

10. Garlan, D., Siewiorek, D., Smailagic, A., Steenkiste, P.: Project aura: Toward
distraction-free pervasive computing. IEEE Pervasive Computing 1(2), 22–31
(2002)

11. Grimm, R., Davis, J., Lemar, E., Macbeth, A., Swanson, S., Anderson, T.,
Bershad, B., Borriello, G., Gribble, S., Wetherall, D.: System support for pervasive
applications. ACM Transactions on Computer Systems (TOCS) 22(4), 421–486
(2004)

12. Gummadi, R., Gnawali, O., Govindan, R.: Macro-programming wireless sensor
networks using kairos. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M.
(eds.) DCOSS 2005. LNCS, vol. 3560, pp. 126–140. Springer, Heidelberg (2005)

13. Kitchenham, B., Pickard, L., Pfleeger, S.: Case studies for method and tool evalu-
ation. IEEE Software 12(4), 52–62 (1995)

14. Kruchten, P.: The 4+ 1 view model of architecture. IEEE Software 12(6), 42–50
(1995)

15. Luo, L., Abdelzaher, T., He, T., Stankovic, J.: Envirosuite: An environmentally
immersive programming framework for sensor networks. ACM Transactions on
Embedded Computing Systems (TECS) 5(3), 543–576 (2006)

16. Mottola, L., Pathak, A., Bakshi, A., Prasanna, V.K., Picco, G.P.: Enabling scope-
based interactions in sensor network macroprogramming. In: IEEE Internatonal
Conference on Mobile Ad Hoc and Sensor Systems, MASS 2007, pp. 1–9 (October
2007)

17. Mottola, L., Picco, G.: Programming wireless sensor networks: Fundamental con-
cepts and state of the art. ACM Computing Surveys (CSUR) 43(3), 19 (2011)

18. Patel, P.: Enabling High-Level Application Development in the Internet of Things.
Techreport (July 2012), http://hal.inria.fr/hal-00732094

19. Patel, P., Pathak, A., Teixeira, T., Issarny, V.: Towards application development for
the internet of things. In: Proceedings of the 8th Middleware Doctoral Symposium.
ACM (2011)

20. Pathak, A., Mottola, L., Bakshi, A., Prasanna, V., Picco, G.: Expressing sensor
network interaction patterns using data-driven macroprogramming. In: Fifth An-
nual IEEE International Conference on Pervasive Computing and Communications
Workshops, PerCom Workshops 2007, pp. 255–260. IEEE (2007)

21. Pathak, A., Prasanna, V.K.: High-Level Application Development for Sensor Net-
works: Data-Driven Approach. In: Nikoletseas, S., Rolim, J.D. (eds.) Theoretical
Aspects of Distributed Computing in Sensor Networks, Monographs in Theoretical
Computer Science. An EATCS Series, pp. 865–891. Springer, Heidelberg (2011)

22. Ranganathan, A., Chetan, S., Al-Muhtadi, J., Campbell, R., Mickunas, M.: Olym-
pus: A high-level programming model for pervasive computing environments. In:
Third IEEE International Conference on Pervasive Computing and Communica-
tions, PerCom 2005, pp. 7–16. IEEE (2005)

23. Serral, E., Valderas, P., Pelechano, V.: Towards the model driven development of
context-aware pervasive systems. Pervasive and Mobile Computing 6(2), 254–280
(2010)

24. Taylor, R., Medvidovic, N., Dashofy, E.: Software architecture: foundations, theory,
and practice. Wiley (2009)

25. Whitehouse, K., Sharp, C., Brewer, E., Culler, D.: Hood: a neighborhood abstrac-
tion for sensor networks. In: Proceedings of the 2nd International Conference on
Mobile Systems, Applications, and Services, pp. 99–110. ACM (2004)

http://hal.inria.fr/hal-00732094

	Enabling High-Level Application Development in the Internet of Things
	1Introduction
	1.1Illustrative Application: Office Environment Management
	1.2Challenges and Contributions

	2Multi-stage Model-driven Approach for IoT Application Development
	3Detail of Our Approach
	3.1Domain Vocabulary Specification
	3.2Application Architecture Specification
	3.3 Application Logic Implementation
	3.4Target Deployment Specification

	4Evaluation
	5Related Work
	6Conclusion and Future Work




