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Abstract. Performing field experiments is a key step to validate the
design of a Wireless Sensor Network (WSN) application and to evalu-
ate its performance under various conditions. We present an experiment
management and data analysis tool called IRIS that offers effective man-
agement of various configuration settings for WSN experiments. One spe-
cial feature of IRIS is its extensibility. That is, IRIS allows the developer
to define customized functions for application-specific data analysis and
performance evaluation. Other main features include: enabling the inter-
action with the deployed WSN at runtime for fine tuning the experiments
and providing graphical presentation for visualizing the collected data as
well as the processed results. We highlight the advantages of IRIS for the
WSN application development in different experiment phases. Further-
more, we demonstrate the usefulness of IRIS with two real-life WSN ap-
plications to show that IRIS can be integrated to develop an application
and can greatly help in performing experiments more efficiently.

Keywords: Wireless sensor networks, Data processing, Experiment man-
agement, Data analysis, Data visualization.

1 Introduction

Wireless Sensor Networks (WSNs) offer a pragmatic option for acquiring phys-
ical parameter measurements, so many applications, e.g., habitant monitoring,
surveillance and industrial automation, have considered deploying application-
specific WSNs. Setting up a suitable WSN involves an iterative process of devel-
oping the necessary WSN application, deciding on the deployment topology and
evaluating the application performance. The developer often conducts numer-
ous empirical experiments or testing cases with various application parameter
settings and network configurations. Once the experiment data is available, the
developer needs to define how to process and analyze the data in order to eval-
uate the application performance.
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The tasks of handling experiment settings, evaluating the application perfor-
mance in order to determine the best-fit WSN deployment is time consuming and
error-prone. It is easy to see that effective management on experiment configu-
rations and performance evaluation is the key to the success of WSN application
development, especially when a complex application requires several WSN de-
ployments. For this purpose, we offer an integrated solution that enables effective
experiment management and data analysis for performance evaluation. Our work
was motivated when preparing experiments in an EU project, PLANET [I], for
a pollution monitoring application in the Doniana Biological Reserve (DBR) [2],
Spain. The application requires a long-term WSN deployment in order to acquire
physical measurements to monitor the target environment. The measurement
data is either delivered by the connected WSN or collected by unmanned aerial
or ground vehicles (UAVs or UGVs). With the time and hardware limitation
in DBR, we needed to efficiently perform concurrent experiments with various
network configurations and parameter settings. Therefore, we developed a tool,
formerly known as IMAC [3], which provides a primitive mechanism for exper-
iment management and on-site data analysis. The use of IMAC greatly helped
us in accomplishing the experiment objectives.

We present in this paper the successor of IMAC, called IRI7 with many
augmented features to IMAC. Our goal is to provide an integrated and flexible
solution for experiment configuration management and performance data anal-
ysis in order to facilitate the WSN application development. We particularly
address IRIS’ main features in several aspects. First, IRIS provides a mecha-
nism for managing WSN experiments. The developer can use IRIS to automate
the application installation procedure, to iterate the experiment with different
configuration and parameter settings, to create customized logs for different ex-
periment purposes, etc. Second, for data collection and result analysis, IRIS
emphasizes the extensibility by allowing the user to specify required data mes-
sage formats and to flexibly define necessitated functions for data processing.
The user can also develop the application by integrating IRIS and implement
the program logic using functions. Third, during the experiment, the developer
can use IRIS to interact with the deployed WSN in order to fine tune the pa-
rameter settings for higher performance or for debugging purpose. Finally, IRIS
also includes graphical interface for visualizing the status of data collection as
well as analyzed results. IRIS integrated JFreeChart [4] to generate figures with
line charts and bar charts for clear data presentation. With these features, IRIS
can support experiment tasks in different phases of experiments including pre-
experiment configuration, experiment runtime and post-experiment data analysis.

The remainder of the paper is structured as follows. Section 2] describes the
related work of experiment tools for WSNs; Section [3] gives an overview of the
IRIS tool and elaborate the main features; Section Fl demonstrates the usage of
the aforementioned features in different experiment phases; in Section B we show
two case studies, in which IRIS helps in the process of the WSN development;
finally, we conclude our work and discuss the future work in Section

! After the Greek goddess IRIS for the meaning for messaging and communication.
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2 Related Work

Much work has been devoted for enabling WSN application experiments. WSN
testbeds, for example, offer hardware and software for WSN experiment setup,
WSN application installation, node reprogramming and experiment execution
for performance analysis. The TWIST [5] testbed deployed by TKN (Telecom-
munication Networks group at Technical University Berlin) enables indoor ex-
periments with heterogeneous node platforms and network reconfiguration; the
CONET testbed [6] includes a graphical software that allows an intuitive exper-
iment configuration. Similar to IRIS, these testbeds allow managing the WSN
experiments. However, such testbed infrastructure is setup in a specific environ-
ment, and they are not built for performing on-site experiments with the real
environment nor for processing the application data.

Several network analysis tools have been proposed to gather data from the
physical environment to captures the network dynamics, SWAT [7] is a software
tool that automates data collection and analysis of measurements for low-level
wireless network properties. These properties allow a better understanding for
the performance of protocols or applications in different environment. Other
tools of this category are TRIDENT [8] and RadiaLE [9]. Similar to IRIS, these
tools offer a user interface allowing users to interact with the testing nodes that
gathers network parameters, to visualize the data packet and to process/analyze
the data. The difference is that these tools gather raw data packet statistics
such as received signal strength (RSSI), link quality indicator (LQI), noise floor,
and define a fixed set of performance metrics, e.g., packet delivery temporal and
spatial correlations and link asymmetries. IRIS does not limit the processing
data type and allows the user to define application-specific processing function.
We note that IRIS can share similar functionality if the metrics are defined as
IRIS functions.

For analyzing application data, MATLAB [I0] and Octave [II] are notable
technical languages for performance analysis, algorithm development and model
design. They also provide a rich set of built-in math functions for a wide range of
applications such as communication, signal processing, computational biology,
etc. Other tools such as SciDavis [12] and LabPlot [13] are free software for
scientific data analysis and visualization. While these tools are powerful for data
processing, they can not be used for run-time WSN data analysis. A set of tools
such as MOTE-VIEW [I4], SpyGlass [15], Nviz [16] and NetViewer [I7] are
commonly used for WSN data collection and visualization. However, they have
limited capability for data processing.

Although above tools are specialized in either experiment management or
data processing, they don’t address the possibility to support both on-site WSN
experiment and real-time application data processing. To the best of our knowl-
edge, IMAC/IRIS is the first tool that provides an integrated solution for the
above issues and offers a flexible mechanism for the user to define application-
specific processing functions to meet different experiment purposes.
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3 IRIS

IRIS aims to provide an integrated solution for experiment management and
on-site data analysis. The predecessor, IMAC, provides an environment for ba-
sic experiment journaling, data logging and visualization. IRIS enhances these
features and especially puts emphasis on offering flexible data processing with
customized functions. More importantly, IRIS provides an innovated method
allowing to manipulate the collected data during or after an experiment.

3.1 Architecture Overview

We developed the IRIS tool in Java as a modular system, which is flexible and
extensible. Each IRIS module carries out one or more main features of IRIS.
Figure [ shows an overview of the IRIS’ design architecture.

The first module, User Configuration (UC), takes user input for configuring
experiments, processing data and specifying messages used to interact with the
WSN. This module also provides the user-configuration to other modules. To en-
able automated application installation and experiment measurement manage-
ment, we introduced an Ezperiment Management (EM) module. The Processing
and Analysis (PA) module carries out IRIS’ capability of processing experiment
data using user-defined functions, while the WSN-Communication Interaction
(WCI) module enables the interaction between the user and the deployed WSNs
running TinyOS applications. Other modules such as Data Storage and Recovery
(DSR) module and Visualization and Controlling (VC) module are responsible
for storing the log data and for visualizing the experiment output, respectively.

The core of IRIS is centered at the Controller component and its associated
Data Model, which stores all the message structures and experiment data im-
ported into IRIS. The Controller defines the logic for managing these data as



98 R. Figura et al.

well as the interaction with all other components. Together all the modules carry
out the main features of IRIS as described below.

3.2 Features

We highlight the main features of IRIS regarding experiment management, data
collection, WSN interaction, data processing and data visualization.

Experiment Management. The first feature of IRIS is that it provides a set
of useful utilities that allows performing experiments efficiently.

Automated Application Installation The WSN developers have a common expe-
rience, i.e., repeatedly installing the application onto many sensor nodes with
unique IDs. IRIS’ Application Manager automates the installation process, and
makes the task of matching the hardware devices with their node IDs and re-
quired applications less erroneous, especially when the application has strict
limitation on the hardware for installation. This feature is extremely useful and
have greatly shortened the preparation time of our experiments in DBR.
Measurement Management When running a series of experiments, another is-
sue is to match the recorded data to different experiment settings. In IRIS, an
experiment can consist of several experiment runs, or “measurements”, and for
each measurement IRIS organizes a set of log files for incoming and outgoing
messages in the binary, CSV and WiseML formats. For each experiment, IRIS
generates a metadata file that specifies the general information and experiment
statistics including an experiment ID, the start time, the hardware list, list of
TinyOS applications, the number of measurements and their corresponding set-
tings, etc. Moreover, for the applications that stores the sensor data in the flash,
IRIS provides a utility for offloading the data (see Section B.2)). IRIS associates
the offloaded data with its measurement and logs the flash data in a similar way.
Customized Logging IRIS provides a flexible and convenient mechanism allowing
the user to customize the logging format. The user can define application-specific
format for every incoming or outgoing message. Together with the Data Process-
ing Unit, it is possible to define functions to directly manipulate collected raw
data and to store the end result to a log file freely. This bypasses the step of raw
data storing and therefore greatly increases the efficiency.

Data Collection and WSN Interaction. The second feature of IRIS allows
user interactions with the deployed WSN in both directions, i.e., collecting data
from the WSN and sending command messages to the network in order to con-
trol the experiment flow. Such interaction requires the knowledge of the message
structures. IRIS allows the user to extend the message set by defining new mes-
sage structures with the templates generated by the TinyOS Message Interface
Generator (MIG) tool.

Data Collection. To collect WSN data, IRIS can be connected to one or several
base stations via serial ports. Every base station collects messages and delivers
those messages to the WCI module to handle the messages. The handled message
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Fig. 2. Different types of composition functions in IRIS

are then stored by the DSR module depending on whether the message can
be parsed. If so, the message fields are converted into IRIS attributes and the
messages are stored as attribute values. The attributes and their values are
stored in a human readable format, i.e., CSV or WiseML for further processing
or result analysis. In addition to collecting data from the base station, IRIS also
provides a TinyOS program called FlashReader for offloading the data from the
flash memory. This application reads out the flash content of a node and sends
the data over the serial link, through which IRIS parses and logs the data.
WSN Interaction. IRIS allows the user to control the experiment flow and to
interact with the deployed WSN by dispatching the arbitrary user-defined AM
messages. Such feature is advantageous for adjusting experiment parameters
and for program debugging. To send a message to the WSN, the user needs to
connect IRIS with one or more base stations, and to specify three parameters: the
message template (type), attribute values and the base station for sending the
message. When configured with the message template, IRIS creates its message
instances and serializes them in the binary form for sending.

Processing and Analysis. IRIS offers an innovated way for extending the data
processing capability of IRIS by flexibly defining application-specific functions
to process data at the packet level. These functions can be applied to collected
data during runtime or after the experiment. Such feature is especially useful for
runtime data analysis, application debugging and customized logging. In IRIS, a
function is created via the definition of a function template, which specifies the
number of input attributes (ports) and the number of static configuration values.
The user can initiate a function instance by wiring the target attributes to the
input ports and deciding on the constant values during/after the experiment.
Currently, IRIS provides a rich set of function templates for data processing.
However, the user can extend it with user-defined templates. With such feature,
the user can use IRIS not only merely as a data processing tool but as a building
block for a WSN application (refer to Section i1l for an example).

It is worth noting that IRIS’ function template has a unique feature that
distinguishes IRIS from other data processing tools. That is, it is composable,
meaning that the function template can take inputs as attributes that are either
converted from the message template or created by other function templates.
Figure ] depicts the flexible composability of the function templates. For in-
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Fig. 3. The graphical user interface of IRIS

stance, a normal function template can take message attributes as inputs
(Func 1); one can have a function output as input and creates a new attribute
(Func 2); a template as Func 5 can take input a message attribute and a newly
created attribute. With composable function templates, the user can implement
a variety of data processing algorithms that directly access the data without
redundant storing and retrieving for further processing, and thus can obtain the
experiment result with less storage resources and significantly reduced time.

Visualization and User Control Interface. Visualization and user control
interface are basic and yet important features for a tool like IRIS. The user in-
terface of IRIS consists of several parts for the user input and for visualizing the
experiment data. Figure B] shows a snapshot of the main graphical user inter-
face (GUI) of IRIS. Through the IRIS’ GUI, the user can perform experiment
management, including creating an experiment profile, initiating data collection,
sending control messages, store/load the experiment data, defining the function
instances for data processing, etc. For each measurement, IRIS first displays gen-
eral information about the measurement. When the data is available, the Packet
View displays the content of the messages based on their attributes and can
be customized to only show required attributes. Additionally, IRIS is integrated
with JFreeChart, a library for generating line charts or bar charts. It allows the
user to zoom into the chart, to save pictures of generated charts and to change
the scale of the view for a better visualization about any attributes.

4 Usage

With above features, IRIS supports the user to perform tasks in the different
experiment phases: pre-experiment, runtime and post-experiment.

4.1 Pre-experiment Phase

In this phase, the user can use IRIS to perform the following four tasks.
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Automatically Installing Applications To automate application installation, the
user needs to provide two configuration files, which specifies a list of application
node IDs with the TinyOS applications to be installed, and a list of the IDs with
their hardware addresses, respectively. IRIS also provides utilities to generate
these lists easily. Once both lists are available, the user can attach any number
of nodes to the USB ports and start application installation.

Defining Message Templates TRIS requires the message templates in order to
access the content of incoming and outgoing messages. Therefore, the user needs
to define application-specific templates as described previously. If an incoming
message template is missing, IRIS will treat the collected messages as a binary
stream. In contrast, the outgoing message structure must be defined, otherwise
the message values cannot be serialized and therefore cannot be sent. With
the message template, each message field is converted to an attribute, which
stores the name of a message field together with all of its values. The definition
or the type of an attribute is opaque to IRIS. However, such definition can be
important for data processing e.g. indexing the packets by their source ID. Thus,
IRIS allows attribute mapping to assign attributes with the type information for
an experiment. These typed-attributes can then be used in the functions, e.g.,
a filtering function based on the node ID as a type. IRIS has already defined a
set of mappings, e.g., the sequence numbers and the source node-ID, and the set
can be easily extended by the user.

Implementing Customized Function Templates IRIS allows the user to process
the experiment data by defining customized function templates, which can be
categorized into three types. The first type is the monitoring function, which
requires no output value but only examines the attribute values of incoming
messages, e.g., an alarm function, which displays a warning message when an at-
tribute value reaches a certain threshold. The second type is the scalar function,
which only outputs a scalar value. This function is normally used to generate
an aggregated result such as PRR. The last type of functions outputs a new
attribute. Most data processing functions fall into this category. Such functions
are normally defined to process the original message values in order to generate
a new value, e.g., filtering functions and transformation functions. The newly
defined function template must be implemented in Java and the compiled class
must be placed in a specific folder so that it is available to IRIS. IRIS defines
a set of base classes for customized function definition. The user defines the
function logic by overriding the method computeData(), which is invoked every
time when a new packet is received. Listing [Tl shows an example of a snipped
definition of a CC2420 RSSI conversion function template.

Listing 1.1. A User-Defined CC2420 RSSI Conversion Function Template

public float [] computeData(float [][] val,float[] set){
float [] res = new float[val[0].length];
for (int i=0; i<val [0].length; i++)
res[i] = val[0][i] — 45;

return res;

}
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Fig. 4. Creating a fire monitoring function instance using attribute mapping

Creating Ezperiment Profile To initiate an experiment in IRIS, the user can cre-
ate an experiment profile, which records logistic information specified by the user
regarding performed experiment. For each experiment, IRIS creates a directory
to hold all generated related files including the application files, log files, etc. If
no log file is specified, IRIS automatically stores the binary and CSV formats of
every incoming and outgoing message.

4.2 Experiment Runtime

Once IRIS is configured with required templates for messages and functions,
and with required experiment information, during the experiment runtime, the
user mainly uses the IRIS GUI to collect/process/visualize the sensory data and
to interact with the WSN. After the user starts the data collection process,
the incoming messages are first logged in binary, CSV or WiseML format. In
addition, the message attributes are automatically displayed in the Packet View
(see Area 2 of Figure [B]) if the messages can be parsed.

For interacting with the WSN, TRIS allows the user to flexibly send messages in
three different ways. First, the user can create a message using the GUI and send
it to the network if the message template has been defined. The second option
is to define a function template for sending messages by using the “IRIS Mote”
class provided by IRIS. The last method is useful when the user likes to introduce
a series of messages. IRIS provides a scripting language for specifying sending
commands. To perform runtime analysis, the user can create a function instance
by selecting the required function template from the GUI (see Area 5 in Figure[3).
The selected function can then be configured by mapping the input ports to the
desired attributes and by defining the constant settings of the function. Figure @l
illustrates an example of creating a fire monitoring function with the specified
minimum and maximum temperature thresholds for triggering the alarm.

For visualizing the runtime data, IRIS displays attribute values with a line
graph or a bar chart. The user can choose the attribute from a pull-down menu
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as showed Figure Bh to view the change of the attribute values in real time.
Furthermore, it is possible to filter the values by the attribute types. Figure Bb
shows an example to only display the RSSI values from the node with the ID 3.

4.3 Post-experiment: Analysis and Management

When the experiment is complete, the user can apply previously defined func-
tions to the collected data in a similar way as it for runtime processing. If the
application requires the data stored in the flash, IRIS can automate the process
of reading/erasing the flash by specifying the data structure and the volume-
partitions. The default read-flash applications reads the whole flash content as a
single volume and sends it via the serial port to IRIS. The offloaded data and any
logged data can be visualized and processed within the Java GUI. Data can be
loaded into different measurements using the following formats: binary, CSV or
WiseML. Moreover, it is possible to load the data of two different measurements
for comparing the measurements outcomes.

5 Case Study

In this section, we address the usability and extensibility of IRIS with two study
cases: the first use case demonstrates an IRIS-integrated WSN application, while
the second case uses IRIS for experiment management and data processing.

5.1 WSN Failure Detection and Diagnosis System

Wireless sensor networks are especially susceptible to unexpected environmen-
tal factors, radio interference, battery depletion and hardware vulnerability. To
improve the robustness and reliability of WSNs, we have developed a Failure
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Detection and Diagnosis System (FDDS) to provide analytical monitoring in-
formation regarding the presence of failures with their possible root causes. The
implementation of FDDS integrates IRIS to carry out required operations. Addi-
tionally, to evaluate FDDS’ performance, we conduct a set of experiments using
IRIS to interact with the network with various parameter settings. Figure
illustrates the IRIS-integrated FDDS and IRIS’ support for the experiments.

IRIS-Integrated FDDS. FDDS consists of two parts: (1) a set of 20 TinyOS
agents (running on the TelosB platform), which periodically send monitoring
information, and (2) a central control server (running on the PC), which an-
alyzes the data for hardware/network failures and their root causes. FDDS
requires collecting application and network monitoring data from the WSN.
Thus, FDDS integrates the IRIS’ data collection routine to gather these mes-
sages (see Figure [Bh,I). Once the data is available, the FDDS control server
performs real-time data processing for failure detection, and monitors parame-
ters such as PRR, ETX [I8] and the congestion level (cl) [19], which is defined
as ¢l = n(bp)/n(gp), where n(bp) and n(gp) are numbers of bad and good pack-
ets, respectively (A good /bad packet is the packet received without/with a CRC
error). Each FDDS agent records the values of ETX, n(bp) and n(gp) in its flash
during the last monitoring period, and includes these values in the monitoring
messages to the control server. The server is implemented with three IRIS pro-
cessing functions (see Figure Bb). The first two functions are calculate PRR()
and calculate congestion level(), which output the PRR and ¢l attributes, respec-
tively. calculate PRR() needs one attribute as input (sequence number), while
calculate congestion level() takes two attributes, n(bp) and n(gp), to calculate
the value of ¢l. The third function, root cause diagnosis(), implements the fail-
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ure detection and the root cause diagnosis algorithms. It takes three attributes,
PRR, ETX and cl, as input, and outputs the root cause of the failure as a new
attribute if a failure has occurred.

Discussion. Integrating with IRIS makes the development process of FDDS very
efficient. FDDS draws support from IRIS in several aspects. First, with IRIS’
data collection utility, we only need to define the required message types without
additional code, and the gathered data is recorded in a customized format for
later processing. Since IRIS has covered the typical and yet tedious data collec-
tion task, we could focus our efforts on optimizing the FDDS algorithm. Second,
flexible IRIS function definition especially allows us to easily design the above
functions to carry out the operations of FDDS. Third, to retrieve data stored in
each agent’s local flash, we use the IRIS’ flash offloading utility to automatically
download the flash data from all the nodes connected to the USB ports (see
Figure[Bk). Moreover, the flash data is stored in the customized log in the same
format for the runtime messages. Without such feature of IRIS, we would have
to manually download the flash data and to write a program for parsing the data
and storing it in the correct format. Last but not least, FDDS uses IRIS’ GUI
for the user to view the network condition during runtime (see Figure[6d). This
feature not only frees us from the GUI implementation and but also helps us in
debugging and verifying FDDS’ operations in different failure scenarios.

FDDS Experiments. The aim of the experiments is to evaluate the FDDS’
performance on failure detection and root cause analysis. We first would like
to know the accuracy of FDDS in identifying these failure causes. Therefore,
we simulated 4 root causes of the failures at the nodes: battery depletion, bad
link, node crash and node reboot. Moreover, we also study the impact of two
different message sending rates (for both application and monitoring messages)
on the responsiveness and the performance of FDDS. The experiment runs on
the above IRIS integrated FDDS and uses IRIS’ utility for introducing messages
to the WSN in order to reconfigure different parameter values for both sending
rates (see Figure [Bh, IT). IRIS manages the experiment profile and stores the
collected experiment data in a particularly customized format, sorting with the
timestamp and the parameter setting (see Figure [Bk,f). For each experiment
run, the result of the response time and the root cause is logged along with the
corresponding parameter setting and the measurement profile.

Discussion. It is easy to see the advantages of IRIS with its effective environ-
ment for experiment management. Without this feature, the user typically needs
to manually record the experiment logistics, to organize all collected data sets
by placing them in proper directories, to associating them with the measure-
ment settings and to store them in the customized format, etc. In the FDDS
experiment, the experiment data is collected and stored based on the experi-
ment profile and organized in the customized format. In addition, IRIS allows
us to retrieve stored logs and to visualize the data flexibly in order to focus on
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the monitored information. For instance, FDDS monitors the changes of ¢l of
each node for failure detection. For post-experiment analysis, we apply the same
FDDS function filtered by the sensor ID in order to calculate the cl. Further-
more, using the IRIS visualization tool, we can compare different experiment
results using a combination of functions and filters and view the results in the
graphical charts.

5.2 Secure Communication

In many realistic WSN applications it is fundamental to guarantee confidentiality
and/or authenticity of messages exchanged within the network. The issue is that
the developer needs to assure confidentiality, integrity or both, while preserving
performance of a network of resource constrained sensor devices. In addition, it
is a prudent cryptographic engineering practice to periodically refresh crypto-
graphic keys in order to avoid cryptanalysis attacks. Thus, it is important to
distribute and refresh cryptographic keys in an efficient manner and to lower
the overhead for network performance [20/21]. To tackle the above issues, we
implemented a security architecture to be used in the PLANET project [I]. The
PLANET Security Architecture (PLASA) is composed of three modules: secure
communication, key management and a keyDB for storing cryptographic keys
(see Figure [fh). With these modules, PLASA is used as a transparent layer
between the application and the remaining communication layers to secure com-
munications and manage cryptographic keys. PLASA transparency relies on the
secure communication module transparency. This module secures communica-
tions according to a security policy, which can dynamically change over time.
Further details about this module can be found in [22]. In this study case, we
use IRIS as an experiment tool to evaluate the performance of PLASA with dif-
ferent security policies and to study the impact of the rekeying frequency on the
number of packets which are discarded because of authentication mismatches.
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PLASA Experiment Using IRIS. The setup of the PLASA experiment in-
cludes 2 to 10 sensor nodes that periodically send a fixed amount of packets to
the base station connected to IRIS, when the secure communication is enabled,
PLASA secures the packets before transmitting them, while the base station
unsecures the received packets and authenticates them. The performance eval-
uation of PLASA first involves in reconfiguring the node with many different
settings to consider various security policies, and thus the experiment replies on
IRIS for effective experiment management. We also heavily used IRIS to auto-
matically installing the application linked with PLASA and specified security
policy for each measurement (see Figure [fb). Different security policies influ-
ence performance with: (1) processing overhead due to security computations,
and (2) communication overhead due to extra bytes added to the packet to allow
the adversary to recognize the security policy, or because of the Message Authen-
tication Code (MAC) appended to the payload. To know the impact of different
policies on WSNs with different number of nodes, we define a processing function
called calculate delivery ratio() to calculate the delivery ratio, which is defined
as the ratio between the amount of secured packet transmitted by a sender and
the amount of packets correctly received by the base station. By knowing the
changes of this ratio, we can derive the overhead introduced by the security pol-
icy. Moreover, we defined another function called monitor discarded packets()
to evaluate the impact of rekeying (see Figure [7k). During the experiment, we
use IRIS to send different rekeying messages (Figure [d, IT) and to evaluate
PLASA’s performance with different policies and to monitor the number of dis-
carded messages using the functions defined previously. The collected messages
as well as the changes of the metric values, e.g., the delivery ratio, can be viewed
on the IRIS’ GUI (Figure[Zk). Finally, the messages are stored in the customized
logs for post-experiment data analysis (Figure [7f).

Discussion. The PLASA experiment demonstrates the IRIS’ capability regard-
ing effective management with a large set of experiment data, runtime WSN
interaction, real-time data processing and visualization for result analysis. The
experiment requires the sensor nodes to be reconfigured with various security
policies. With the IRIS’ installation tool, we only need to define a script pro-
gram with a few lines of code and connect the nodes to the USB hubs. Similar
to the FDDS experiment, we spend little efforts on collecting experiment data
and managing data logs, and only need to define the required message types.
The requirement of the PLASA experiment strongly highlights the usefulness of
IRIS in runtime data processing. IRIS can calculate the delivery ratio of each
node at runtime and provide plots of network performance over time. Note that
the impact of the processing overhead on the delivery ratio cannot be evaluated
with simulations. Collecting and analyzing a huge amount of experimental data
without a tool like IRIS might be very complex. It is worth mentioning that the
implementation of the two processing functions only counts for less than 100 lines
of code in total. When performing rekeying, IRIS is extremely useful because
it allows periodically injecting a rekeying message to the network without re-
installing the sensor node programs or forcing sensors to change their behaviour
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to send rekeying messages. Thus, we force the refresh of the cryptographic key
and observe the number of packets that cannot be correctly unsecured during the
network transient state, in which nodes do not share the same key. Finally, IRIS
allows storing the experimental results to compare them over time, or to collect
statistics offline. This is very important because the feature makes it possible to
have a deep evaluation on the impact of security policies.

5.3 The Limitation of IRIS

While aforementioned case studies show the main advantages of IRIS, several
factors can hamper the efficiency of IRIS. We notice that IRIS, with one process-
ing function, can process approximately the first 50,000 packets at the constant
rate: e.g., average 50 ms per packet with the sending rate of 50 ms per second. Af-
ter that, the processing time increases linearly and IRIS becomes less responsive.
However, the actual packet number depends on the number of functions applied
on the incoming data, the number of packets to be visualized, the number of at-
tributes for processed messages and the number of active graphs. Among them,
the number of functions used has a significant impact on IRIS’ performance. We
notice that the total processing time for the same amount of packets increases
superlinearly as the number of applied functions increases. This is due to the
data structure we use to organize the collected packets for data processing. We
expect higher performance of IRIS with a new data structure. However, IRIS
supports message caching. If the data needs not to be processed at the arrival
of every packet, IRIS can be configured to activate the function after a specified
number of receiving packets. This can greatly reduce the processing time.

6 Future Work and Conclusion

IRIS is a flexible and effective tool to support the WSN application for exper-
iment management, data collection, real-time data processing, WSN runtime
interaction, customized logging and visualization. The novelty of IRIS is its ca-
pability of managing the experiment data and its flexibility of allowing the user-
defined functions for data processing. Other features like WSN interaction and
visualization can also greatly help in experiment reconfiguration, data analysis,
program debugging and performance evaluation. We have demonstrated the use-
fulness of IRIS with two real-life applications. We believe that the development
of such a tool is valuable and the user can benefit from it when developing the
WSN application.

While IRIS being a powerful tool, it can be enhanced in several aspects. First,
IRIS’ function currently can only process data as the floating-point type, so we
plan to extend the data model to keep the type information of collected data so
that more data types can be handled. As for the performance issue of IRIS, we
are designing an optimal data structure. Finally, we would also like to evaluate
IRIS’ performance with more complex composition functions.
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