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Abstract. This paper presents a practical solution for the fence-line
intrusion detection problem. The MEMS based sensor platform is in-
troduced along with its WirelessHART networking capabilities. A De-
centralized Sequential Hypothesis Testing algorithm is studied at the
theoretical level before being applied to the problem at hand. Results
from several deployments show 100% detection rates within one second
of the intrusion. The system is presented as a viable replacement for
much more expensive and less performant security systems.
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1 Introduction

Since humans first transitioned from nomadic tribes to permanent settlements,
we have had to find solutions to the essential problems associated with property:
how to mark what is ours and how to protect it. In short, perimeter security
has been an ever-evolving priority in human history. At their most basic, fences
delineate land and serve as a marker of private property. Factor in a few tech-
nological innovations, and they can serve as a deterrent to intruders, or even
an alarm system. However, even the strongest barriers have their weaknesses.
Fences can be climbed over, dug under, and even cut through.

Many security systems were implemented in an attempt to reinforce the fence
structure [5]. The most common fence line intrusion detection systems are taut
wire, fiber optic, strain-sensitive cable, electric field and capacitive systems. How-
ever, each of those approaches comes with its own set of challenges, rendering it
undesirable. For example, taut wire setups are expensive, complicated to install,
and require regular tensioning of the fence sections. Fiber optic fence sensors,
which use light variations within the communication medium to detect move-
ments, are suceptible to weather turbulences. False alarms can also result from
poor fence installations. This is also the case of strain-sensitive cables, which
can also suffer from Electro-Magnetic interference. This type on interference
does not affect electric field and capacitive installations. However, those sys-
tems suffer from suceptibility to weather and animal movement, as well as the
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gradual growth of vegetation along the fence line. All of the described security
schemes require laying at least one cable around the facility to be monitored.
This becomes quite expensive as the perimeter grows, and also leads to issues
with maintenance.

Our approach to the problem of fence intrusions in perimeter security will
be one of Wireless Sensor Networks (WSN) combined with cheap Microelec-
tromechanical systems (MEMS) sensors. Essentially, we will set up a low-power
wireless network along a fence line, equip each fence section with vibration and
inertial sensors and run detection algorithms to detect intrusions. The goal is
to detect all manner of intrusions (e.g. kicking, climbing, leaning, rattling) with
zero false negatives, while limiting false positives to less than 1/mile/month.
This idea is not novel as can be seen in [6], [7] and [8]. The difference between
this work and that undertaken by Yousefi et al. is our more advanced hardware
platform and greater emphasis on the network architecture, the system, and its
scalability. Furthermore, our solution is a hybrid between distributed and cen-
tralized detection. Finally, we try to move away from the unecessary complexity
that often characterizes of academic studies. The simplicity of our algorithm
allows us to reach superior performance with, we conjecture, a much lower en-
ergy consumption. Concerning the study undertaken by Wittenburg et al., the
authors do not present any reason for choosing only accelerometers to perform
their sensing, and fail to explain the less-than-intuitive placement of their mod-
ule on the fence poles. The results presented in their paper are not satisfactory,
as they fail to bring down the rate of false negatives, something that is of great
importance for security systems. Finally, though one can appreciate the exercise
of training and classification, it is apparent in [8] that such an approach is of
no use in fence-line inertial sensing. The main reason of course is that signals
captured at the fence are chaotic in nature and vary widely from one climber to
the other, making the extraction of common features a very difficult task. The
nature of this problem however hints at a different statistical tool we employed
in our detection scheme: sequential decision problems.

In this paper, we start by studying the theoretical problem of sequential hy-
pothesis testing in section 2, both for the centralized and decentralized case. We
then describe the experimental setup both in terms or hardware and software
and network architecture in section 3. Applying the theory to a practical algo-
rithm is shown in section 4. Section 5 illustrates the results we obtained following
several deployments, before concluding in section 6.

2 Sequential Hypothesis Testing

Sequential analysis is the branch of statistics that deals with decision making as
the samples are being collected. It differs from classical hypothesis testing in that
conclusions are reached more quickly, often before the end of the experiment.
Consequently, it is ideal for detection, signal processing, clinical trials and other
applications. In general, sequential decision problems involve one or more sensors
and a fusion center where the final decision is made. In the centralized setting, all
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of the information received by the sensors is made available at the fusion center.
However, in the decentralized case, the sensors themselves are part of the decision
process and relay partial information rather than all of their observations [1,3,4].
The following two sub-sections go into some detail concerning both approaches.
In this part of the paper, we will be following the study done in [2].

Let us now formally define the problem we want to solve.
Depicted in figure 1, we see K sensors observing a stochastic process {ξit} with
prior P i. The assumption we make here is based on the study in [2], and it
states that the observed processes are independent. Furthermore, we consider
that there are two possible hypotheses in the system at hand

Fig. 1. A system of K sensors and a fusion center

H0 with probability P = P0 and H1 with P = P1 (1)

Additionally, Pj =
∏K

i=1 P
i
j for j = 0, 1. The next step would be to define the

local log-likelihood ratio that takes place at each of the sensors.

ui
t = log

dP i
1

dP i
0

(ξit) with ui
0 = 0 (2)

Independence between the observed processes allows us to write the following
log-likelihood ratio that takes place at the fusion center,

ut = log
dP1

dP0
(ξit) =

K∑

i=1

ui
t for 0 ≤ t < ∞ (3)

The aim is to optimally define the pair (T, dT ) where T is the stopping time
and dT is the decision, which takes values 0 or 1, depending on which hypothesis
was picked. We shall attempt this both in the centralized and decentralized cases.
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2.1 Centralized Sequential Hypothesis Testing

It has been shown by Wald and Wolfowitz [1] that the Sequential Probability
Rratio Test (SPRT) is optimal in solving the centralized case of the following
problem.

Given, the type-I and type-II probability levels α, β > 0 such that α+ β < 1,
we want to find (T , dT ) such that

Ej [T ] = infEj[T ], j = 0, 1 (4)

The SPRT mentioned above is defined in this case as,

T = inf t > 0 : ut /∈ (−A,B) (5)

dT =

{
1 if uT ≥ B
0 if uT ≤ −A

(6)

A = log(
1− α

β
), B = log(

1− β

α
) (7)

Hence, the procedure for applying this test is to obtain the observations from
the sensors, apply the global log-likelihood ratio, add it to the previous value
and verify whether this sum left the open interval (−A,B) or not. The first time
at which we leave this interval will be time T , and the associated decision dT
will follow the rule in (6). This test is optimal under our assumptions. We will
see in the next sub-section how to generalize this concept to the decentralized
case.

2.2 Decentralized Sequential Hypothesis Testing

This decentralized problem is approached from the discrete time case. Though
the continuous time case is studied in [2], it is not of major practical use. Rather
it provides some intuition on treating its discrete time equivalent. As we have
mentioned before, the difference between the centralized and decentralized cases
is that, in the latter, the sensors make decisions before relaying some information
back to the fusion center. Indeed, each sensor computes a local log-likelihood
ratio,

lin = log
dF i

1

dF i
0

(ξin) (8)

Now, we set two thresholds −Δi, Δ̄i,

−Δi = log
P1

P0
(ξin = 0), Δ̄i = log

P1

P0
(ξin = 1) (9)

This allows us to define an SPRT that occurs at each sensor as follows,

zin =

{
1 if ui

τ i
n
≥ Δ̄i

0 if ui
τ i
n
≤ −Δi

(10)
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where τ in is the local stopping time at the sensor and zin is the information
sent to the fusion center at that time. In order for the fusion center to compute
its log-likelihood ratio based on the zin, we could envision that the following two
values be precomputed and made available at that fusion center:

−Λi = log
P1

P0
(zin = 0), Λ̄i = log

P1

P0
(zin = 1) (11)

Now, the reason the pair Λi, Λ̄i is defined separately from the pair Δi, Δ̄i

resides in the fact that discrete time sampling gives rise to an overshoot effect.
One can think of this effect as an uncertainty in the exact time the local log-
likelihood ratio crossed the open interval (−Δi, Δ̄i) for the first time.

In turn, the fusion center will use the information provided by the sensors to
update its global log-likelihood ratio.

un = un−1 +

{
Λ̄i if zin = 1
−Λi if z

i
n = 0

(12)

The main result of Fellouris and Moustakides in [2] is first to define a measure
of the D-SPRT thresholds at the fusion center,

Ã ≤ |logβ|, B̃ ≤ |logα| (13)

then to show the following asymptotic optimality on the global log-likelihood
ratio:

|E0[uT̃ ]− E0[uT ]| ≤
O(θ)

Θ(Δ)
|logβ|+Θ(Δ) (14)

|E1[uT̃ ]− E1[uT ]| ≤
O(θ)

Θ(Δ)
|logβ|+Θ(Δ) (15)

where θ is the maximum overshoot (formally defined in [2]), Δ is equivalent
to any of the two Δi, Δ̄i assumed to be equal, and T̃ is the stopping time for
D-SPRT at the fusion center, while T is the optimal stopping time for the cen-
tralized case. In fact, one can readily see that because of the loss of information
and loss in time resolution between the centralized and decentralized cases, the
optimality is lost. Equations (13) and (14) represent the Kullback-Leibler di-
vergence (which can be thought of as the relative entropy between an optimal
distribution and a sub-optimal one) applied to the log-likelihood ratio. The au-
thors in [2] go on to simulate and observe that the D-SPRT derived in this section
is useful in most practical implementations. The reader is invited to study fig.
3 of [2]. The proof of the above result uses simple concepts in statistics and is
within grasp of readers with some background in stochastic processes.

3 Experimental Setup

Now that the theory is well understood, we turn our focus to implementing a
solution to the perimeter security problem at hand. Tackling fence monitoring
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was not a straightforward task. In fact, fence models were not readily avail-
able, which meant that building any detection infrastructure needed thorough
experimentation. We now present the hardware platform of choice along with
the underlying software architecture.

3.1 Hardware

The hardware platform for this project is based on the GINA (general inertial
and navigation assistant) [9] which is developed at UC Berkeley and is used
in many research groups around the world. This sensor board comes with the
MSP430f2618 microcontroller from Texas Instruments, and sensors listed in ta-
ble 1. GINA is expandable with analog sensors and digital devices through its
expansion pins. As can be seen in figure 2, a daughter card is mounted on those
pins and sits on top of the GINA board. This daughter card is referred to as the
WirelessHART Interface Module (WHIM) and carries the DN2510 radio by Dust
Networks. As can be inferred by the board name, this radio is a WirelessHART
compliant one at 2.4GHz. The GINA/WHIM combination consumes a few mi-
crowatts in sleep mode and, when it is running at full capacity, currents around
20mA were recorded at 3V. An IP-65 enclosure (shown in figure 3) completed
the hardware solution fitting nicely in the diamond pattern of the chain-link
fence.

Table 1. List of Gina components and their features

Type Manufacturer Part Number Features

Microcontroller Texas Instruments MSP430F2618 16-bit, 16MHz,
116kB flash, 8kB RAM

3-axis accelerometer STMicroelectronics LIS344ALHTR +/-2 Gs or +/-6 Gs,
(sensitive) 1.8 kHz, 660 mV/G

3-axis accelerometer Kionix KXSD9-1026 +/-8 Gs, 2 kHz
(large range)

3-axis gyroscope Invensense ITG3200 2000 degs/s

3-axis magnetometer Honeywell HMC5843 +/- 6 Oe, 116Hz

Temperature sensor Texas Instruments TMP20AIDRLT +/-2.5 C, -55 C to 130 C

3.2 System Architecture

The fact that the hardware platform holds a WirelessHART compliant radio,
alludes to the system architecture. As the sensors are placed along the fence
line, they join the WirelessHART network formed by the gateway, and start re-
porting data there. Looking at figure 4, we can see that a computation element
exists both at the sensor side and at the gateway as well. This means that any
detection scheme can implement one of the following three models:
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Fig. 2. The hardware platform: GINA/WHIM

Fig. 3. The IP-65 enclosure that houses the hardware platform and sits on the fence
[courtesy of Hammond Inc]
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– server-side computations only
– sensor-side computations only
– hybrid model with computation taking place at both ends

The first model is clearly not scalable, as all the nodes would be required to
send all of their raw sensor data, thereby flooding the network. In the second
case, an energy issue arises. Since the sensors are battery-operated, we need to
be careful with resource usage. As such, the ideal solution would require some
initial computation to be done on the sensors themselves, which then relay partial
information to the gateway. The final decision is then generated at the server
end, and an appropriate action performed.

Fig. 4. System architecture for the Smart Fence. The detection algorithm can run
only on the motes, or only on the server, or using a hybrid approach where some
computations happen in the motes and their output is relayed to the server to make
the final decision.

4 Detection Algorithm

In this section we explore the procedure we followed to develop the detection
algorithm for fence monitoring.

4.1 Preliminary Testing

Some of the primary questions to answer are the following: Which of the sensor
data generated by GINA is relevant? How fast should we sample our sensors? To
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come up with a solution, we strapped three of the platforms we developped on
three contiguous fence sections. All of the sensors were then sampled at 300Hz
and the raw data transmitted to a gateway, as we ran controlled shaking, kick-
ing and climbing tests. A singular value decomposition of the highly dimensional
sensor data enabled us to single out three axes of interest, as can be seen in fig-
ure 5. Not surprisingly, it turned out that most of the information is contained
in the z-axis of the accelerometer (pointing out of the plane of the fence), and
the x-axis and y-axis of the gyroscope (in the plane of the fence). The result is
intuitive, and the reader is invited to imagine a chain-link fence vibrating under
the influence of, for example, shaking. Clearly, the accelerometer will see accel-
erations dominantly in the z-direction, while the angular rates observed by the
gyroscope will mainly be along the plane of the fence itself. The next step in the
analysis was to determine the sampling frequency. A quick look in the Fourier
domain revealed that most events of interest happened below 35Hz, justifying
our sampling frequency of 70Hz. An additional tradeoff can be observed here.
Increasing the sampling frequency obviously yields better results, in terms of
capturing all of the information contained in the the waveform. However, the
added data generated by this oversampling has to be processed either at the
sensor or server side. This means that energy will be spent either on the on-
board microcontroller or during transmission.
The preliminary testing phase also showed that strong gusts of wind were prob-
lematic at the fence line. As a matter of fact, the accelerations recorded during
those events were comparable to those recorded after a person gently shook the
fence. For this reason, we made the decision to apply Lebesgue sampling and set
a threshold under which, the entire platform enters sleep mode.

Fig. 5. Singular value decomposition of the highly dimensional sensor data. This plot
shows that only three axes contain the majority of the data. Namely, the z-axis of the
accelerometer into the fence and the x-axis and y-axis of the gyroscope in the plane of
the fence.
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4.2 Applying D-SPRT to Fence Monitoring

The process of applying D-SPRT in our case consists of selecting the probability
priors both at the sensor side and server side. This was done by running con-
trolled tests along the fence line. Similar to the previous section, intrusion traces
were compared with “background noise” traces. With enough repetitions, the
probabilities could be calculated. Those statistical values were then augmented
with assumptions concerning the number of intrusions per time period. It is of
note that this process does not need repetition and the thresholds could be ap-
plied to any fence section regardless of the environment or construction. Figure
6 shows actual log-likelihood ratios recorded at the sensors during experiments
we performed on fences. As can be seen in the right-most figure, everytime the
upper limit of the interval is crossed, a value of H1 is transmitted to the server
and the ratio gets reset. The middle graph shows the case where the sensor
records activity but deems it regular noise. A value of H0 gets transmitted and
the ratio is reset as well. The left-most figure shows the case where the sensor
starts recording data, but the traces end before the interval is left and no infor-
mation is transmitted to the server. This corresponds to very small disturbances
for example. Figure 7 shows the progression of the log-likelihood ratio over time
for a climb signal and for a kick stimulus. It can be readily seen that the climb
signal generates several H1 packets sent to the server side, while the kick signal
only generates a couple before the ratio decays and the sensor stops recording.
At the server side, a decision is made based on the number of H1 and H0 packets
received, the reception time, and the relative proximity of the reporting sensors.
With this last piece, the system was ready for deployments.

Fig. 6. Sensor log-likelihood ratios for various disturbances, in the short run. When the
ratio crosses the upper limit, an H1 is transmitted to the server. This is then added to
the global log-likelihood ratio that can trigger the alarm or ignore the sensor output.
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Fig. 7. Sensor log-likelihood ratios for a climb and kick signal, in the long run. In
reaction to climbing the fence, the sensor reports a series of H1 consecutively as it
seeing a lot of activity. For the kick stimulus however, the sensor may report a couple
of H1 packets for example, before its log-likelihood ratio decreases.
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5 Deployments and Test Results

Several deployments were made to put the Smart Fence system to the test. They
varied in longevity, environmental conditions (e.g. wind, rain, time of the day)
and fence construction. In all of them, different individuals were asked to climb
the fence. Shown in figure 8 are the server side log-likelihood ratios for various
climbers under varying conditions. Clearly we can see that the output of our
dection algorithm is not the same in all of the time series. The main reason is,
as stated before, not all climbing styles are equivalent. While some people tend
to be aggressive, and generate a lot of activity at the fence line, others choose a
calmer approach and climb more methodically. Independently of these variations
however, our algorithm was able to detect intrusions every time we attempted
one. The detection time was obviously not the same for all of them, but even
with an interval of 660ms, we were able to see the algorithm reacting to the
intrusion.

One long term deployment was also performed at the Chevron refinery in
Richmond, California. During that test, four sensors were deployed along the
North-East fence line of the Technology Center for a period of six weeks. Shown
in figure 9 is the network manager and linux box running the detection algorithm
overlooking the sensors from one of the offices in that building. Figure 10 is an
aerial photograph of the deployment site. Some refinery employees were asked
to disturb the fence line during the deployment period and record the time and
date of that activity. At the end of the experiment, all of the “intrusions” were
detected with no false alarms. Additionally, the sensors withstood rain, strong
winds and direct sunlight.

Fig. 8. Log-likelihood ratios for different climbers and conditions. This figure shows
that even with different climbing styles, our detection algorithm reported the intrusion
within a few milliseconds of its start.
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Fig. 9. Long-term deployment setup at the Chevron-Richmond refinery. The result of
this test was a detection rate of 100% with no false alarms. The sensors withstood
strong winds and rainy weather.

Fig. 10. Aerial view of the deployment site [courtesy of Google Maps]
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6 Conclusion

In this paper, we have demonstrated that the Smart Fence is a viable solution to
the perimeter security problem of chain-link fences. Following our long-term de-
ployment we observed 100% detection with no nuisances. Still, additional testing
is needed in order to validate the detection algorithm and look for weak points.
More intrusion methods should also be attempted to see if special cases need to
be accounted for. One issue we did not address is the cost of the system. Since our
custom-made hardware platformwas built with commercial off-the-shelf parts, we
can predict that, if produced in large quantities, the Smart Fence should directly
compete with the solutions already available on themarket. This still assumes that
one sensor platform is needed per fence section. Nevertheless, one would certainly
benefit from fusing different intrusion schemes along with our proposed solution.
Perhaps a good practice would involve a human in the loop who, alerted by the
Smart Fence system, would direct a CCTV camera to the corresponding fence sec-
tion to check for the type of intrusion and its significance. In terms of future di-
rections for this research effort, we observe an opportunity to make this security
scheme even more robust by augmenting it with learning techniques to dynami-
cally adjust the sensor thresholds based on collected statistical data.
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