
Definition and Development of a Topology-Based
Cryptographic Scheme for Wireless Sensor

Networks

Stefano Marchesani, Luigi Pomante,
Marco Pugliese, and Fortunato Santucci

Center of Excellence DEWS, Università degli Studi dell’Aquila, L’Aquila, Italy
{stefano.marchesani,luigi.pomante,fortunato.santucci}@univaq.it,

marco.pugliese@ieee.org

Abstract. A Wireless Sensor Network (WSN) is a versatile and dis-
tributed sensing system that is able to support a wide variety of appli-
cation domains. One of the most important issue in WSN design is to
guarantee the reliability of the collected data which involves in turn secu-
rity issues across wireless links. This paper deals with the cryptographic
aspects in the broader field of security in WSNs. In particular, moving
from some previous advances in our research activity, this manuscript
proposes a novel cryptographic scheme that is compliant to security re-
quirements that may arise from real-world WSN applications and reports
some details about an implementation in TinyOS that we have carried
for experimental validation. The proposed scheme, called TAKS2, ex-
ploits benefits from Hybrid Cryptography to handle resource constraints
and allows to generate topology authenticated keys to provide increased
robustness to the scheme itself.

Keywords: WSN security, cryptographic scheme, hybrid cryptography,
topology authenticated key.

1 Introduction and Contribution

In this paper, we propose a novel scheme to generate topology authenticated
keys for handling cryptographic aspects in resource constrained deployments of
Wireless Sensor Networks. We then describe the implementation of the proposed
scheme in TinyOS, an operating system for a variety of families of sensor nodes
[18], and its real deployment and testing on some of MICAz sensor nodes.

The proposed scheme, called TAKS2, exploits benefits from both symmetric
and asymmetric schemes (Hybrid Cryptography) but here only partial compo-
nents of symmetric keys are pre-distributed and not the keys as all. The crypto-
graphic scheme presented in this paper is an upgrade of TAKS, that was earlier
presented in [15] and later refined in [14] wherein we extended the scheme to El-
liptic Curve Cryptography (ECC). Upgrades we propose in this paper are related
to simplifications in the key management protocol and reductions in memory
usage.

M. Zuniga and G. Dini (Eds): S-Cube 2013, LNICST 122, pp. 47–64, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

48 S. Marchesani et al.

The remainder of this paper is organized as follows. In Section 2, an overview
of state-of-art about cryptography applied to WSN is provided along with cur-
rent pending issues, and a brief reference to the main concepts of TAKS are
reported. Section 3 describes the cryptographic scheme and its main features
are compared with the corresponding ones of TAKS. In Section 4, the scheme is
formally defined and its components are rigorously described. In Section 5, the
security of the proposed scheme is formally analyzed. In Section 6, implementa-
tion issues over sensor nodes, cost analysis and scheme testbed are discussed. In
Section 7, some conclusive comments and future works are reported as well.

2 Background and Motivations

Providing security in traditional networks often means using asymmetric en-
cryption. In general contexts, the ever increasing amount of available resources
in terms of computation, memory and power supply makes it possible to ignore
the main disadvantage of this strategy: indeed, the robustness of asymmetric
algorithms is highly dependent on the size of the keys that in turn affects the
complexity of the algorithms. Most recent studies have led to the definition of
ECC [6]. Among those alternatives that resort on public keys, this solution ap-
pears as the best choice in terms of execution times and key size in order to meet
some given requirements [19].

However, whenever computation resources become tightly constrained (e.g.
in WSNs), the role of symmetric cryptography becomes again relevant. The
most important disadvantage is related to key management, since encryption
and decryption algorithms are lighter than those based on asymmetric key. Nev-
ertheless, this problem is one of the most addressed ones in the literature [4].
There are pair-wise key pre-distribution solutions, that are based on determin-
istic pre-distribution of keys for each pair of nodes. The trivial solution consists
in distributing a key for each pair of nodes, eventually with the same key for
the entire network. Other random pair-wise key schemes are based on storing
only a subset of all possible keys in each node [5]. To communicate with each
other, every node needs to negotiate a key with its peer, randomly selecting one
key in its subset. If location of nodes is known, it is possible to simplify the last
algorithm by providing to each node only the keys for the actual neighbors [9].
Other techniques are based on cluster pre-distribution: therefore, in each cluster
different keys are used [8] and keys can be build specifically for each pair of
nodes according to the nodes composing the cluster itself. Instead, the master
key pre-distribution requires that a master key is distributed in the entire net-
work and that nodes use a combination of it and previous exchanged nonces.
Finally, the idea behind the key matrix based dynamic key generation [3] is to
distribute rows and columns of matrices, whose product is a symmetric matrix,
as public and private key, respectively; by multiplying rows and columns, a pair
of nodes may produce the same key to encrypt their messages.

With respect to the previous solutions, the scheme proposed in this paper
does not rely on pre-distribution of keys in nodes, but it is rather based on

Topology-Based Cryptographic Scheme 49

their dynamic generation moving from partial components stored in nodes as in
[15]. Through computationally inexpensive operations, a node can compute the
decrypt/encrypt key in a single phase without any need of setup/negotiation.
Moreover, as will be shown in next section, the stored partial components are
defined such that secure communications among that nodes are allowed only if
their topology is compliant to the planned network topology. This motivates the
names TAK (Topology Authenticated Key) and TAKS (Topology Authenticated
Key generation Scheme). We define qualitatively planned network topology as
the network topology that is planned by a service manager (the planner) to
satisfy some service requirements. We also define eligible neighbor nodes of a node
those nodes with which the node may be authorized to communicate. According
to the previous definition, the planned network automatically gets the attribute
of certified network topology, where the certification authority is the planner
itself.

3 Description of the Cryptographic Scheme

To describe the cryptographic scheme following definitions are needed:

– public: any information anyone can access (attackers included);
– restricted : any information any node in the network can access;
– private: any information only a single node in the network can access;
– secret : any information only the planner can access.

The proposed scheme requires an offline definition of some parameters (i.e. par-
tial components). We call this set of parameters Local Configuration Data (LCD)
which define the physical or logical topology configured in each node: topology
can be physical or logical depending on the scheme is applied on physical/MAC
layer or upper layers respectively. LCD includes:

– Local Key Component (Loc.Key.Comp.);
– Transmit Key Component (Trans.Key.Comp.);
– Local Planned Topology (Loc.Pld.Top.) i.e. a set of Topology Vectors in one-

to-one relationship with eligible neighbor nodes.

The security of proposed scheme is based on the confidentiality of the infor-
mation used to generate the keys: Local Key Component and Transmitted Key
Component are both private and they are calculated from deployment parame-
ters that are secret. Following we introduce the scheme.
We put q large prime such that q � N where N is the total number of nodes
in the network. The corresponding keys length will be approximately log2 q. Let
U be a vector space over GF (q) where the generic vector u ∈ U is represented
with a 3-pla (ux, uy, uz) of vector components elements in GF (q).
Let TAK() be a function satisfying the following requirements:

R1. it must be a surjective function and TAK(u, u′) �= 0, ∀u, u′ ∈ U ;

50 S. Marchesani et al.

R2. TAK(u, h(u′)) = TAK(u′,−h(u)), ∀u, u′ ∈ U , where h() is an arbitrary
vector function in U ;

R3. TAK(αu, u′) = TAK(u, αu′) = αTAK(u, u′), ∀u, u′ ∈ U and α ∈ GF (q);

TAK(·) is the function used to generate TAKs.
Let g(p, v) be a function satisfying the following requirements:

R4. it must be a surjective function;
R5. g(p, v) = 0 only for a predefined set of distinct values of p, v.

g(·) is the function used to verify message authenticity.
According to the Kerchoff principle the explicit expressions for both TAK(·)
and g(·) are public.
Fig.1 reports the conceptual representation of the proposed scheme. Let σ(i) be
the set of eligible neighbors of node ni, we define the Local Planned Topology of
node ni as T (i) = {Trans.Key.Comp.σ(i)}. It is worth noting that each node also
stores its own Transmit Key Component that we denote as Trans.Key.Comp.i
for node ni.
If ni wants to communicate with nj, it has to generate a random value α ∈ GF (q)
and to build a message as concatenation of:

– the cipher text (c) produced by a symmetric encryption algorithm Encr(·)
with αTAK(Loc.Key.Comp.i, T rans.Key.Comp.j) as key;

– the deciphering information (d) where d ∈ U and d = −αTrans.Key.Comp.i;
– the message authentication code (τ) associated to the cipher text using

any cryptographic hash function (denoted as MAC(·)) with key equals to
αTAK(Loc.Key.Comp.i, T rans.Key.Comp.j).

When nj receives the message, it has to calculate a pair-wise key to decrypt
it. It computes its own key as TAK(Loc.Key.Comp.j, d). If Loc.Key.Comp.i,
Loc.Key.Comp.j ∈ U and Trans.Key.Comp.i = h(Loc.Key.Comp.i) and
Trans.Key.Comp.j = h(Loc.Key.Comp.j), we have that:

αTAK(Loc.Key.Comp.i, T rans.Key.Comp.j) =
αTAK(Loc.Key.Comp.j,−Trans.Key.Comp.i) =
TAK(Loc.Key.Comp.j,−αTrans.Key.Comp.i) =

TAK(Loc.Key.Comp.j, d)

So nj can correctly decrypt the message and TAK(Loc.Key.Comp.j, d) is val-
idated as TAK. A crucial point is how nj can recognize its calculated key as a
symmetric TAK: this is done by verify message authenticity function g(·) that
has to return zero only if encryption and decryption keys are identical. This is
established using τ information.
The reference TAKS description can be found in [15]. Here we will deal with the
upgrades to TAKS, we denoted as TAKS2, that follow:

– In TAKS2, topology vectors in a node now coincide with the Transmit Key
Components of its eligible neighbours. Therefore less memory is needed in
each node to store static information.

Topology-Based Cryptographic Scheme 51

Fig. 1. TAKS2 scheme description

– In TAKS2, the transmission protocol is 1-phase (i.e. there is no need of
other party response message to proceed) as there is no need of a prior
exchange of the Transmit Key Components between nodes (as occurs in
TAKS): each transmission contains the ciphered text (c), the authentication
tag and the ephemeral Transmit Key Component of the transmitter. Any
node which receives this message can check to be the right recipient and
message integrity. The ephemeral Transmit Key Component is defined as
the Transmit Key Component multiplied by a one-shot random value.

– In TAKS2, the Secret Share (SS) for each eligible node pair is given by TAK
multiplied by a one-shot random value (in TAKS is coincident with TAK):
therefore in TAKS2 also SS is a one-shot random value for each eligible node
pair and security level gets enhanced (in TAKS only a SS value for each
eligible node pair, hence each node must store several SS according to the
number of eligible neighbours).

– In TAKS2, authentication is performed by a standard authentication func-
tion.

The main drawback in TAKS2 is the ephemeral Transmitted Key Component to
be transmitted each time. This increases energy consumption per transmission
and it can turn to a problem in case of large data transmission rates and large
key size. In monitoring applications, transmission rates are related to sampling
rates on sensor boards, which depend on the dynamics of the monitored system:
if large transmission rates are needed, key size (hence vector size) should be
reduced without degrading security: in this occurrence ECC facilities should be
included into TAKS2 [14].

52 S. Marchesani et al.

4 Formal Apparatus

Building blocks of the proposed scheme are:

1. Hybrid key cryptography
2. Network topology authentication.

4.1 Hybrid Key Cryptography

Let nodes ni and nj be a pair. The following definitions are assumed:

a) Let A,M,KL,KT ∈ U be vector fields.
b) Elements in A are such that for the generic couple ai, aj ∈ A then ai×aj �= 0

and fixed a vector m ∈ M , then m · (ai× aj) �= 0. This information is secret.
c) Let b ∈ GF (q) be a scalar not generator in GF (q). This information is secret.
d) Let f(.) = kbm·(.) be a scalar function where m ∈ M satisfied (b) and

k ∈ GF (q) is an arbitrary constant.
e) Let c ∈ U be a vector. This information is secret.
f) Let be si = mf(ai) and sj = mf(aj) with k = 1. Let kli, klj ∈ KL ⊆ U and

kti, ktj ∈ KT ⊆ U be defined as:

{
kli = aikb

m·ai

kti = si × ai

{
klj = ajkb

m·aj

ktj = sj × aj

g) Let kl ∈ KL ⊆ U and kt ∈ KT ⊆ U respectively define the Local Key
Component and Transmit Key Component in a node. Both components are
private.

h) Expressions for kl , kt and f(.) are public.

Pair-Wise TAKS. This section deals with the generation of pair-wise TAK
or, in other words, a TAK shared in a pair of sensor units.

Theorem 1 (Pair-wise TAKS2 Generation). Let ni and nj be a node pair.
Fix m,c,b and be ai, aj ∈ A a generic couple of elements in A compliant to
definitions (b) and be f(.) defined as (d) and α a random value in GF (q). If
expressions for kli,kti and for klj,ktj are the same as (f) then

TAK = αTAK(kli, ktj) = αTAK(klj ,−kti) = αkli · ktj = −αklj · kti
Proof. The proof is straightforward. Applying the definition of TAKi:

TAKi = αTAK(kli, ktj) = αkli · ktj = αaif(ai) · (sj × aj) =

αaikb
m·ai · (mbm·aj × aj) = αkbm·(ai+aj)ai · (m× aj) = βai · (m× aj)

Applying the definition of TAKj:

TAKj = αTAK(klj ,−kti) = −αklj · kti = −αajf(aj) · (si × ai) =

−αajkb
m·aj · (mbm·ai × ai) = −αkbm·(aj+ai)aj · (m× ai) = −βaj · (m× ai)

Topology-Based Cryptographic Scheme 53

Exploiting the vector algebra property a · (s′ × a′) = s′ · (a′ × a), we have:

TAKi = βai · (m× aj) = βaj · (ai ×m) = −βaj · (m× ai) = TAKj ��
In TAKS2, the transmitter TAK is defined as the scalar product between the
Local Key Components and the Topology Vector associated to the destination
node, while the receiver TAK is defined as the scalar product between the Local
Key Component and the Transmit Key Component (in [15] TAK is defined
as the squared scalar product) so that the key space gets enhanced (∼ 50%).
Furthermore, fixed m,c,b and be ai, aj ∈ A the following properties hold:

1. Always TAK �= 0 being m · (ai × aj) �= 0 from (b) and f(.) �= 0 from R1.
2. Elements in KL are distinct being kli ‖ ai and klj ‖ aj with ai × aj �= 0.

Hence kli × klj �= 0.

3. Elements in KT are distinct being kti ‖ m × kli and ktj ‖ m × klj and

kli × klj �= 0.

4. Key components in a node are distinct being for generic node i kli · ktj = 0

because kli ‖ ai and kti ‖ m× ai.

Cluster-Wise TAKS. This section deals with the generation of cluster TAK
or, in other words, a common TAK shared in a group of sensor units or cluster.
Node clustering is commonly considered as one of the most promising tech-
niques for dealing with the maximization of WSN lifetime. In a clustered WSN,
the sensor units are grouped into a set of disjoint clusters: each cluster has a
designated leader, the so-called cluster head (CH). Nodes in one cluster do not
transmit their gathered data directly to the sink, but only to their respective
cluster head. Accordingly, the cluster head is responsible for:

– coordination among the cluster nodes and aggregation (i.e. compression) of
their data, and

– transmission of the aggregated data to the sink, directly or via multi-hop
transmission (for more, see [11]).

In [11] is provided an explicit analysis of node clustering in WSNs and it is proved
that the condition that ensures superior performance of clustered WSNs is that
the formed clusters lie within the isoclusters of the monitored phenomenon. An
isocluster is an area consisting of points that have the same value or lie within
a certain limited value range: isocluster is a key concept also for data and alarm
aggregation in anomaly detection logic in monitoring applications running over
WSN. There are lots of clustering algorithms available from literature (e.g. [1])
each one according to specific aggregation metrics: in [16] application-oriented
metrics have been considered.

The vector algebra approach used in TAKS and TAKS2 gives us the chance
to generate both pair-wise and cluster-wise cryptographic keys with the same
scheme: this is due the definition of scalar product between vectors where about
q2 solutions remain available after having fixed one vector in the product and
the product value, while the conventional scalar product between scalars would

54 S. Marchesani et al.

remain only a unique solution. That is another benefit in using vectors instead
of scalars over GF (q).

Suppose the cluster composed by the clusterhead nCH and the sensor units
ni and nj . In sec. 4.1 we stated that quantities into the definitions for the Local
Key Component and the Transmitted Key Component in Sec. 4.1 f, i.e. a ∈ A,
c ∈ C, m ∈ M , and the scalar b ∈ B, can be freely chosen with compliancy
to the (weak) constraints in Sec. 4.1 b, c. We can show that just adding only a
further constraint in the selection of aCH , ai, aj ∈ A , a cluster-wise TAK, i.e. a
TAK such that TAKCH,i = TAKCH,j with TAKi,j �= TAKCH,i, TAKCH,j can
be generated.

Theorem 2 (Cluster-wise TAKS2 Generation). Suppose the cluster com-
posed by the clusterhead nCH and the sensor units ni and nj. Given c ∈ C,
m ∈ M , b ∈ B and aCH , ai and aj compliant to the constraint

{
m · h(aj − ai) = 0
m · (h(aj − ai)× aCH) = 0

for an arbitrary h ∈ GF (q). Then TAKCH,i = TAKCH,j is the cluster TAK
with TAKi,j �= TAKCH,i, TAKCH,j. The same result applies to clusters of any
size.

Proof. The proof is straightforward. Developing the complete expression for each
pair-wise TAK given in Theorem 1, we get

{
TAKCH,i = klCH · kti = bm·(aCH+ai+c)m · (ai × aCH)

TAKCH,j = klCH · ktj = bm·(aCH+aj+c)m · (aj × aCH)

From the condition TAKCH,i = TAKCH,j we get the constraints set

{
m · (aj − ai) = 0
m · ((aj − ai)× aCH) = 0

for which vector (aj − ai) must be orthogonal to m and aCH must lie on the
plane identified by vectors (aj − ai) and m. Suppose to add a further member
node, say node nk, to cluster: the constraints set becomes

⎧⎪⎪⎨
⎪⎪⎩

m · (aj − ai) = 0
m · ((aj − ai)× aCH) = 0
m · (ak − aj) = 0
m · ((ak − aj)× aCH) = 0

where first and third equations enforce vectors (aj−ai) and (ak−aj) to lie on the
same plane orthogonal to m while second and forth equations enforce (aj − ai)
and (ak−aj) to be parallel, or (ak−aj) = h(aj−ai) for an arbitrary h ∈ GF (q),
and aCH to lie lie on the plane identified by vectors m and h(aj − ai). Therefore
the constraints set can be compactly written as

Topology-Based Cryptographic Scheme 55

{
m · h(aj − ai) = 0
m · (h(aj − ai)× aCH) = 0

for an arbitrary h ∈ GF (q). The condition

TAKi,j, ..., TAKj,k �= TAKCH,i, TAKCH,j, ..., TAKCH,k

can be shown as follows. Suppose the absurd case

TAKi,j, ..., TAKj,k = TAKCH,i, TAKCH,j, ..., TAKCH,k

which gives

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m · h(aj − ai) = 0
m · (h(aj − ai)× aCH) = 0
m · h′(aCH − aj) = 0
m · (h′(aCH − aj)× ai) = 0
m · h′′(ai − aCH) = 0
m · (h′′(ai − aCH)× aj) = 0

for arbitrary h, h′, h′′ ∈ GF (q): first, third and fifth equations would enforce
vectors h(aj − ai),h

′(aCH − aj) and h′′(ai − aCH) to lie on the same plane
orthogonal to m while second, forth and sixth equations would enforce aCH to
be parallel to h(aj − ai), ai to be parallel to h′(aCH − aj) and aj to be parallel
to h′′(ai − aCH) or

⎧⎨
⎩

aCH = h(aj − ai)
ai = h′(aCH − aj)
aj = h′′(ai − aCH)

which is not solvable for any h, h′, h′′ ∈ GF (q). ��
The interpretation of this result is that for any cluster can be associated a

plane identified by vectors m and h(aj − ai), with ai, aj from a generic couple
of member nodes, where aCH must lie in. If a backup cluster-head is defined for
the same cluster, say CH’, then aCH′ must lie in the same plane as well.

4.2 Network Topology Authentication

As in [15], network topology authentication is still based on two main elements:
a verification function g(p, v) and a set of Topology Vectors, T (i), corresponding
to eligible neighbors nodes of ni .
We have already defined T (i) = {tσ(i)} = {ktσ(i)} as the set of σ(i) Topology
Vectors stored in node ni. According to upgrades listed in Section 3, we directly
set tj ≡ ktj . Let g(p, v) be a function where p is a characteristic parameter of the
entity to be authenticated (e.g. node nj), or the prover, and v a characteristic
parameter of a reference authentic value (e.g. node ni), or the verifier.
Let MAC(·) be an cryptographic hash function [17], we define as verification
function g(p, v) = g(SSj , SSi) = MAC(SSj)−MAC(SSi). It is straightforward
show that definition of g(·) is compliant to R4 and R5.

56 S. Marchesani et al.

Theorem 3 (Network Topology Authentication). In a node pair ni and
nj, if MAC(SSj) computed by receiver nj results equal to MAC(SSi) computed
by transmitter ni, then ni is network topology authenticated by nj.

Proof. Node nj computes SSj = klj · d. Node ni computes SSi = αkli · ktj . If
g(SSj, SSi) = 0, we have that MAC(SSj) = MAC(SSi). Cryptographic hash
function collision property [17] implies that SSj = SSi or that kli, klj , kti and

ktj are compliant to R2 and R3. Thus, ni is network topology authenticated by
nj . ��

5 Security Analysis

The following sections deal with these issues: in terms of computation of the
entropy associated to TAKS2, complexity in breaking TAK generation algorithm
and, lastly, robustness of TAKS2 at network level.

5.1 TAK Entropy

This section deals with the quantitative evaluation of TAK entropy. The follow-
ing position is shown:

– H(kti) = H(ktj) = log2 q
3 = 3 log2 q

This is straightforward to show because kti and ktj are private data and
moreover they are hidden by random moltiplication. Therefore, the uncer-
tainty about kti and ktj is maximum. Their entropy also is maximum (i.e.
3 log2 q).

Any operation on random randomizes the result, therefore we have that:

H(TAK) = H(kli · ktj) = H(klj · kti) = log2 q

or rather

H(TAK)
log2 q = 1bit/binit.

5.2 Security Level in a Single Node

This security level is calculated by evaluating the complexity to break the cryp-
tographic key with a single node available. The security level in a single node
of TAKS2 equals to security of TAKS [15]. In this case, also, it equals to the
complexity in reverse engineering m, c, a and b from kl, kt and the (public)
expression of f(.). The following system of equations show that the relationship
between kl, kt and m, c, a and b is not simply a discrete logarithm, which is one
of most difficult problem in GF (q) algebra [10], but becomes more complex due
to m and a appearing as multiplying factors of the exponentiation and in the
exponent.

{
kl = abm·(a+c)

kt = (m× a)bm·a

Topology-Based Cryptographic Scheme 57

5.3 Security Level in the Network

This security level is calculated by evaluating the complexity to break the cryp-
tographic key with all nodes in the network available. The T-Security concept
is introduced.

Definition 1. Given a network with N nodes, a cryptographic key is T-Secure
if an attacker should capture T + 1 < N nodes in the network to gain enough
information to crack the key.

The best case is when T = N , because in this case the cryptographic key never
can be violated as there is no enough information shared in the network to do
that. This result can be achieved if a share of the information needed to generate
cryptographic keys is external to the network (i.e. residing in an external server).
As proved for TAKS [15] also TAKS2 is N-secure.

6 Implementation Issues

The encryption scheme proposed in this paper belongs to a wider research project
whose aim is to realize a middleware for secure WSN [13] [14]. The middleware
will provide one or more encryption and decryption schemes and an intrusion
detection system (such as [12]) integrating them in Agilla [2] an agent-based mid-
dleware developped for TinyOS 1.x. After its definition, we have implemented
TAKS2 in TinyOS 1.x to facilitate its integration in Agilla. Hereafter, we in-
troduce concepts of TinyOS needed to understand TAKS2 implementation and
then we discuss about implementation strategy.

6.1 TinyOS Programming

A TinyOS program consists of a minimal scheduler and a graph of components
[7]. The scheduler can be seen as a service provided by the operating system not
directly used by programmers. Then we focus on components.
A component is a self-conteined module of the TinyOS program: it can use ser-
vices provided by other components and provide services that other components
can use. These services are grouped in interfaces. These interfaces are the only
point of access to the component and are bidirectional. An interface declares a
set of functions called commands that the interface provider must implement
and another set of functions called events that the interface user must imple-
ment. A single component may use or provide multiple interfaces and multiple
instances of the same interface. For example, we can consider the TinyOS com-
ponent which deals with radio transmission and reception: we expect one or more
interfaces that define a command to send messages and an event to handle their
reception.
Moreover, commands and events handlers are not atomic so, for long elabora-
tions, TinyOS provides tasks. Tasks are atomic to each other. They are scheduled
by the application scheduler with FIFO policy and can be preempted by events

58 S. Marchesani et al.

and commands. For this reason the design and implementation of the events and
commands handlers of a TinyOS component typically provide storing of their
context (i.e. actual parameters of the function) and consequently posting of the
elaboration to a task.

6.2 The SecureComm Component

In this section, we present SecureComm, the component implements TAKS2.
First of all, it is described the SecureComm component itself (i.e. interfaces
provided and used) and then we propose a pseudo-code version very similar to
the real code.

SecureComm component

SecureComm

{

provides

{

interface StdControl;

interface SendMsg;

interface ReceiveMsg;

}

uses

{

interface SendMsg;

interface ReceiveMsg;

interface StdControl;

interface Random;

interface MAC;

interface BlockCipherMode;

}

}

Generally, software design of any encryption scheme must be done so that using
the scheme is completely transparent to the user. To satisfy this condition the
security layer must provide the same interface of underlying layer. TAKS2 is
implemented on physical layer provided by TinyOS and so it offers the same
interface.
GenericComm is the TinyOS component that users exploit to interact with
the physical layer. It is possible to send and receive messages through the
SendMsg and ReceiveMsg interfaces provided by the component. Then, we have
implemented the SecureComm component so that it provides SendMsg and Re-
ceiveMsg interfaces. Of course, SecureComm also uses SendMsg and ReceiveMsg
of GenericComm to be able to send and receive radio packets. SecureComm
also provides StdControl that is the TinyOS standard interface to initialize
and de-initialize the component itself. Finally, it uses components offering Ran-
dom, MAC and BlockCipherMode interfaces to generate a random, to compute

Topology-Based Cryptographic Scheme 59

MAC tag and to encrypt/decrypt messages. Actually these components are Ran-
domLFSR, CBCMAC and CBCModeM respectively.

SecureComm component pseudo-code

/*Command called at every "send a message" request*/

command send(addr, length, plain_txt) {

if(length < MAX_LENGTH) {

if(busy == FALSE) {

busy = TRUE;

save_info(addr, length, plain_txt);

post send_message();

}

}

}

/*Task that handles the logic to send a message*/

task send_message() {

alpha = rand();

tak = get_tak(addr);

SS = multiply(alpha,tak);

c = encrypt(SS, plain_txt, MAX_LENGTH);

tau = mac(SS,c);

d = multiply(-alpha,kt);

GenericComm.send(BROADCAST, MAX_LENGTH,c|d|tau);

}

/*Function that initializes and encrypts the plain text*/

encrypt(SS, plain_text, length) {

CBCModeM.init(SS);

return CBCModeM.encrypt(plain_text, length);

}

/*Function that initializes and computes the MAC tag*/

mac(SS, text) {

CBCMAC.init(SS);

return CBCMAC.MAC(text);

}

/*Event called when send is done*/

event sendDone(addr, length, plain_txt) {

busy = FALSE;

}

/*Event called when a radio packet is received*/

event GenericComm.receive(rcv) {

if(busy == FALSE) {

60 S. Marchesani et al.

busy = TRUE;

save_info(rcv);

post receive_message();

}

}

/*Task that handles the logic to receive a message*/

task void receive_message() {

SS = inner_product(rcv->d, kl);

tau = mac(SS,rcv->c,MAX_LENGTH);

if(tau == rcv->tau) {

plain_txt = decrypt(SS, rcv->c, MAX_LENGTH);

busy = FALSE;

signal UpperComponent.receive(plain_txt);

}

}

/*Function that initializes and decrypts the cipher text*/

dencrypt(SS, plain_text, length) {

CBCModeM.init(SS);

return CBCModeM.dencrypt(plain_text, length);

}

Any component that needs to send a radio message uses the send() command
of GenericComm. We duplicate this command in SecureComm to save context
information and to delegate further elaboration to send message() task.
This task generates a random α and it computes the TAK knowing the address
of destination node that is used to access Local Planned Topology table imple-
mented on node. Then it can generate the secret share SS to encrypt the plain
text (producing c) and get the message authentication code (τ). So, the task can
send the whole packet by using the send() command of GenericComm. It is worth
noting that encryption and MAC tagging are done respectively by encrypt()
and mac() functions. These functions currently use components CBCModeM
and CBCMAC from TinySec library although the component is flexible to work
with different ones. In fact, it is sufficient to change these components with other
ones offering BlockCipherMode and MAC interfaces respectively. The discussion
on encryption is concluded observing that multiply() and inner product() have
been implemented to work on operands of 128 bit as well as the other functions
and the entire scheme.
Message reception is very similar to transmission. To handle received message is
needed to implement a new event handler wired to receive() handler of Gener-
icComm (we omit the wiring operation in the pseudo-code to avoid too much
details). Such an handler saves information and delegates the elaboration to
receive message() task. Such a task computes the secret share based on de-
ciphering information (d) and Local Key Component. Then, the task can au-
thenticate the message accepting it if authentic or discarding it otherwise. It

Topology-Based Cryptographic Scheme 61

is important highlight that every message is broadcast delivered. So the above
procedure is executed by every node in the range of the transmitter, but only
the actual destination node is able to correctly decrypt sent packet. Finally also
for deciphering, the component SecureComm is able to work with different com-
ponents as long as they are compliant with components used in encryption.

6.3 Cost Analysis and Execution Time

In this section, we describe the cost analysis of proposed scheme and its exe-
cution time. This analysis aims to evaluate the complexity of the scheme re-
gardless of the encryption and decryption algorithm and message authentication
coder (since they are always needed and could be freely selected by the network
planner). So, we do not care of encrypt(), decrypt() and mac() spatial and com-
putational complexity. In Table 1 we report computational complexity of other
functions. Let n and σ(i) be the key size in bytes and the cardinality of the set
of eligible neighbors respectively:

– to generate a n-bytes random, we need to generate n random of 8 bit, so
rand() costs O(n);

– to add two n-bytes number, we need to do n addition of 8 bit data, so
addition costs O(n);

– to multiply two n-bytes number, we need to do n(n+1)
2 moltiplication and n

addition of 8 bit data, so addition costs O(n2);
– to do inner product of two vector of 3 n-bytes components, we need to do 3

n-bytes moltiplication and 2 n-bytes addition so inner product costs O(n2);
– to get TAK from destination address we need to find Topology Vector of

destination node (that costs σ(i)) and to do inner product with proper Local
Key Component. So, to get TAK from destination address costs O(n2+σ(i)).

Table 1. Computational complexity of TAKS2 functions

Function t(n) Ot(n)

rand() n O(n)

get tak() σ(i) + 3n+ 3n(n+1)
2

O(n2 + σ(i))

multiply() n(n+1)
2

+ n O(n2)

inner product() 3n(n+1)
2

+ 2n O(n2)

Since send message() task is a serialized call of rand(), get tak() and multi-
ply() we can affirm that computational complexity of TAKS2 encryption is
O(n2+σ(i)) � O(n2). Similarly, since receive message() task equals to complex-
ity of inner product() we can affirm that computational complexity of TAKS2
decryption is O(n2). This result is not a problem since we have good security

62 S. Marchesani et al.

properties with 128 bit keys.
The spatial complexity, due to the creation of temporary structures for mathe-
matical calculations, is O(n+σ(i)). So, the spatial complexity is not a constraint
for the execution of the scheme.
To calculate the execution time of the encryption and decryption scheme we
have used an enriched version of SecureComm component to send periodically
test packets. To get the execution time we have made SecureComm able to get
system time of the node through the SysTimeC TinyOS component. Further-
more, enriched version of SecureComm is also able to send arbitrary packets
via UART, so that we can get information by the node during its normal be-
havior. Sampling system time in appropriate point in the code and sending this
information via UART we have been able to calculate execution time of various
operations carried out by node. With this solution, send and receive tasks are
15.42ms and 8.34ms long respectively with encryption, decryption and MAC
calculation 1.83ms, 1.97ms and 1.87ms long respectively.
For that concern memory occupancy considering σ(i) = 5 meaningful (as in
[16]), nesC compiler reports 1375 bytes as occupancy in RAM.

6.4 Validation

The proposed scheme has been validated by means of a testbed designed to show
that:

T1. two mutually eligible nodes are able to communicate;

T2. only the actual destination node is able to correctly decrypt a packet.

To prove test T1 and T2 we have deployed a network of 3 nodes. In this network,
each node is within range of other ones. Fig.2 shows the planned network topol-

Fig. 2. Testbed Planned Network Topology

ogy. Starting from planned network topology depicted in Fig.2. we randomly
produce (a0,a1,a2,b,c,m) and we calculate (kl0, kt0), (kl1, kt1), (kl2, kt2) as de-
scribed in Section 4.
Therefore, we get the following for LCD:

Topology-Based Cryptographic Scheme 63

LCD0 =
{
kl0, kt0, T (0) =

{
kt1, kt2

}}
LCD1 =

{
kl1, kt1, T (1) =

{
kt0

}}
LCD2 =

{
kl2, kt2, T (2) =

{
kt0

}}
The design of the testbed is based on typical features of monitoring wireless
sensor networks. In these networks, a set of nodes send data to a special node
called base station. In our network, node n0 behaves as base station while other
ones are dedicated to data acquisition.
To validate the scheme, we have implemented an application on SecureComm
so that:

– n1 and n2 send a test message (rather than sensor data) to base station at
predefined rate;

– each node notify message reception toggling a led;
– each node notify authenticated message reception toggling a led and sending

the message via UART interface.

Previous application facilities are chosen so that test T1 and T2 can be easily
proved. The former by verifing that at each transmission base station send the
expected test message on UART. The latter by verifing that base station is the
only node to toggle the authentication led although other node also receives the
message. This testbed has been run both on TOSSIM (a simulator for TinyOS
networks) and on a real network of MICAz nodes.

7 Conclusions and Future Works

This paper has proposed a novel scheme to generate topology authenticated keys
in Wireless Sensor Networks. Its effectiveness has been proved both formally and
experimentally. In particular, its robustness has been proved by showing that en-
tropy of the keys is high and the scheme is N-secure (i.e. the attacker should
capture N nodes in the network to gain enough information to crack the key).
Moreover, since key size in symmetric schemes is quite limited, the computational
complexity of the scheme (O(n2)) is a very result with respect to its robustness.
The described work belongs to a wider research project whose aim is to de-
velop a secure WSN middleware. Such a middleware will provide a encryption
and decryption scheme associated with an intrusion detection system. Future
works foresee defining and implementing intrusion detection techniques to form
a complete secure WSN middleware.

Acknowledgment. The research leading to these results has received funding
from the European Union Seventh Framework Programme [FP7/2007-2013] un-
der grant agreements n. 257462 HYCON2 Network of excellence and n. 240555
ERC SG VISION. Moreover, it has been motivated and supported by the ESF-
COST Action IntelliCIS (Prof. Fortunato Santucci is participating to this Ac-
tion). The development of the middleware platform also fits in the frame of
the Projects Ricostruire and SMILING supported by the Ministry of Economic
Development to enhance technology transfer in the RIDITT framework.

64 S. Marchesani et al.

References

1. Abbasi, A.A., Younis, M.: A Survey on Clustering Algorithms for Wireless Sensor
Networks. Computer Communications 30 (2007)

2. Agilla Home Page, http://mobilab.wustl.edu/projects/agilla/
3. Blom,R.:Anoptimal class of symmetric key generation systems.Eurocrypt 84 (1985)
4. Camtepe, S.A., Yener, B.: Key distribution mechanisms for wireless sensor net-

works: a survey. Techical Report TR-05-07, Troy (2005)
5. Chan, H., Perrig, A., Song, D.: Random key predistribution schemes for sensor

networks. In: IEEE Symposium on Research in Security and Privacy (2003)
6. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.

Springer, New York (2004) ISBN 0-387-95273-X
7. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System Archi-

tecture Directions for Networked Sensors. In: Proceedings of the 9th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-IX), Cambridge, MA, USA, pp. 93–104 (November 2000)

8. Lai, B., Kim, S., Verbauwhede, I.: Scalable session key construction protocol for
wireless sensor networks. In: IEEE Workshop on Large Scale RealTime and Em-
bedded Systems, LARTES (2002)

9. Liu, D., Ning, P.: Establishing pairwise keys in distributed sensor networks. In: 10th
ACM Conference on Computer and Communications Security, CCS 2003 (2003)

10. Menezes, A.J., Van Oorschot, P., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press (1996)

11. Vlajic, N., Xia, D.: Wireless Sensor Networks: To Cluster or Not To Cluster? In:
Proceedings of the 2006 International Symposium on a World of Wireless, Mobile
and Multimedia Networks (WoWMoM 2006), Buffalo (2006)

12. Pugliese, M., Giani, A., Santucci, F.: A Weak Process Approach to Anomaly De-
tection in Wireless Sensor Networks. In: First International Workshop on Sensor
Networks, SN 2008 (2008)

13. Pugliese, M., Pomante, L., Santucci, F.: Agent-based Scalable Design of a Cross-
Layer Security Framework for Wireless Sensor Networks Monitoring Applications.
In: Proceedings of the International Workshop on Scalable Ad Hoc and Sensor
Networks (SASN 2009), Saint Petersburg (2009)

14. Pugliese, M., Pomante, L., Santucci, F.: Secure Platform over Wireless Sensor
Networks. INTECH Publishers (2012) ISBN 978-953-51-0218-2

15. Pugliese, M., Santucci, F.: Pair-wise Network Topology Authenticated Hybrid
Cryptographic Keys for Wireless Sensor Networks using Vector Algebra. In: 4th
IEEE International Workshop on Wireless Sensor Networks Security (WSNS 2008),
Atlanta (2008)

16. Pugliese, M., Pomante, L., Santucci, F.: Topology Optimization and Network De-
ployment Algorithm in WSNs for Mobile Agent-based Applications. In: 4th Euro-
pean Modelling Symposium, EMS 2010 (2010)

17. Rogaway, P., Shrimpton, T.: Cryptographic Hash-Function Basics: Definitions,
Implications, and Separations for Preimage Resistance, Second-Preimage Resis-
tance, and Collision-Resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS,
vol. 3017, pp. 371–388. Springer, Heidelberg (2004)

18. TinyOS Home Page, http://www.tinyos.net
19. Wander, A.S., Gura, N., Eberle, H., Gupta, V., Shantz, S.C.: Energy analysis

of public-key cryptography for wireless sensor networks. In: Proceedings of the
Third IEEE International Conference on Pervasive Computing and Communica-
tions (PERCOM 2005), Washington, pp. 324–328 (2005)

http://mobilab.wustl.edu/projects/agilla/
http://www.tinyos.net

	Definition and Development of a Topology-Based Cryptographic Scheme for Wireless Sensor Networks
	1 Introduction and Contribution
	2Background and Motivations
	3Description of the Cryptographic Scheme
	4Formal Apparatus
	4.1Hybrid Key Cryptography
	4.2 Network Topology Authentication

	5Security Analysis
	5.1TAK Entropy
	5.2Security Level in a Single Node
	5.3Security Level in the Network

	Implementation Issues
	6.1TinyOS Programming
	6.2The SecureComm Component
	6.3Cost Analysis and Execution Time
	6.4Validation

	7Conclusions and Future Works

